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CHAPTER 4

The Control of UCG Grammars

Pierre-Frangois Jurie, CLF
Gabriel G. Bés, CLF

1 Introduction

The work on the control of grammars arises from our contribution to the ACORD project which
was concerned with (in close cooperation with LdM) the adaptation to French of two models of

grammars {GPSG and UCG).

The control of grammars consists of four parts : (i) a descriptive metalanguage expressed as
a set of axioms © ; (ii) the linearisation of © in terms of the notion of a constructor ; (iii) a
transition relation between some constructor associated with @ and a grammar G ; it is this
relation which allows the comparison of models of © with the sentences specified by G. The
set of axioms @ of the descriptive metalanguage is the formalised knowledge about the object
language. It captures observations about the object language but it differs in function and for-
malism from the particular grammar models which are intended to be associated with the same
object language.

Control of grammars has both practical and theoretical goals. The practical goals are related
to reliability, reusability and modularity requirements on linguistic observations.

Reliability is a necessary condition of any NLP practical application. But our claim is that
so far nobody knows explicitly what the coverage of a parser or a generator is. Demos and
actual specifications are, at best, hints indicating roughly what the system can or should be
capable of. When a lot of money is spent in the implementation of grammars and parsers, it
is a big disappointment to find in a haphazard way obvious but completely unforeseen counter-
examples to some system. This arises not from the fact that an ’actual grammar cannot cover
all the language’ -a point which nobody denies- but from the fact that examples which work’
say very little about the descriptive power of the grammar. Control of grammars can thus con-
tribute to enhance the reliability of NI products and to monitor extensions of their coverage.

We do not know of any grammar of the UCG or LI'G type of any language having been extended
in a modular way by several different teams. Nor are we aware of any systematic tailoring of
grammars of this type in order to re-use them for particular specific applications. Even if we do
not discuss here the usefulness of the notion of grammar, and even if we do not conjecture that
UCG or LFG grammars are definitively neither modular nor reusable, we do conjecture that the
reusability and modularity goals can be satisfied more efliciently if purely axiomatic knowledge
about linguistic data of the metalanguage type is carefully distinguished from grammar type
knowledge, the latter being expressed by ’constructive rules’ (see below).

On the theoretical level, we found in general strong scepticismm about the notion of descrip-
tive metalanguage., Two main criticisms are generally advanced :



(i) There are no 'facts’ independent of a particular theory.
(ii) Knowledge about an object language can be expressed only by a grammar. A metalanguage
is a grammar G; that duplicates the grammar G; which is intended to be verified.

With the assumption that {computational) linguistics is an empirical science, criticism (i) must
be examined in terms of the states of data in empirical! sciences.

These conform to a general pattern in which hypothetical objects are distinguished from the
data they must account for. Low level theorems (or predictions) deduced from deeper ones and
from the more general hypotheses of the theory must be compared with observations or lower
level generalisations of observations, which are formulated in some more or less explicit language.
This crucial point is condensed in the following citation from (Bunge 69) .

”Given a set of theoretical predictions and a set of empirical data, it is necessary to decide
whether the two sets match [...] Theories cannot be compared with observational data directly.
Before being able to compare a set of theoretical predictions with an empirical report, we must
make them comparable, formulating them in the same language [...] At first glance, there are
two means of achieving this goal. Either we translate theoretical predictions into some obser-
vational language, or, inversely we translate empirical data into the language of the theory. In
fact, the two transformations are effected at the same time”(p.537-538).

Seismograms are different from the predictions of some vulcanological theory. The two must be
compared, and it is through this comparison that a particular vulcanological theory is confirmed
or not.

We do not understand by what token we may (or can) not have in (computational) linguis-
tics objects which have the same relation with respect to theoretical predictions of grammars as
seismograms with respect to predictions of vulcanological theories.

Observe that we are not claiming that linguistic observations are naive constructs with no
theoretical background, nor that they follow immediately from sensory experience, nor that
they are monolithically invariant. We do not say either that it is necessary to collect first all the
data in order to do afterwards all the theoretical work on grammatical models and on particular
grammars.

In much more simple and practical terms we claim that there is a common pattern of problems
that GB, LFG, GPSG, UCG, CUG, FUG, TUG, pure CG, CCG and many others recognize
as such, and that there is a consensus of agreement about them, even if the statement of the
conditions underlying each one may be quite difficult. ‘

It may be that (computational) linguistics is unique with respect to other empirical sciences
in the fact that there are always a great number of interlocking variables which underlie the
descriptive statements of any set of observations. A different descriptive predicate must be as-
sociated with each variable, and the overall picture of interactions between all the intervening

*Empirical does not have here any ontological status. It simply says that {computational) Linguistics must be
ranged with physics, chemistry or biology, and not with mathematics or logics ; i.e., that in one way or another,
(computa,tlonai) linguistic hypotheses can be falsified (tested or verified) by cbservations (or facts or data).

?The citation is actually an English re-translation ol the Spanish edition of the book (Bunge Mario. La
investigacion cientifica. Barcelona, Ariel, 1969)



variables is quickly lost. But this state of affairs must be interpreted as pointing to the necessity
of a descriptive metalanguage rather than the opposite.

Criticism (ii) asserts the uselessness of a metalanguage ; this, at best, doubles the work that is
necessary in any case,

The validity of criticism (ii) depends on the definition of grammar. Besides formal proper-
ties, we suggest that grammars, when referring to such objects as LFG, UCG, GPSG, FUG,
HPSG particular grammars, are intended to satisfy at least three basic requirements :

(a) Constructive rules
(b) Integration with parsing and generation
(c) Characterisation of NI

By (a) we understand that the rules of the grammar are not only inferencing rules but also
actual processes defining effective construction of structures from other structures.

By (b) we understand that grammars must be integrated in parsing and generation mecha-
nisms in efficient ways.

By (c) we understand that grammars must contribute to the definition of NL. We expect from
a grammar the expression of NL characteristics.

Say we label the grammars satisfying (a) to (c) r-grammars (resiricted grammars). We can
reword criticism (ii) and obtain the following.

(iii) Knowledge about an object language can be expressed only by r-grammars.

The assumption of our work on control of grammar is that (iii) is not true. Independently
from labels, the metalanguage we proposed is not an r-grammar, because it does not satisfy any
of the above (a) to (c) requirements.

. Axioms are not constructive rules. That is, they say nothing about the concatenation of leaves,
the specification of trees, etc. A set may be specified in a predicate notation (as in (a}) or by
recursive rules (as in (b)) ; the (a) type corresponds to © ; the (b) type to G.

(a) {x | x is a positive integer less than n}

(b) (1) 1€k
(ii) Ifx € E and x is less than n-1,thenn + 1 € E
(iii) nothing else is in E

Axioms express declarative knowledge which is not intended to be integrated in their actual form
as the declarative knowledge effectively used in NL processes such as parsing or generation. The
notion of procedural ’efficiency’ is thus alien to them.

Axioms are not meant to say anything clever about NL. Rather, they are intended, ideally,
to present in an orderly, explicit and modular manner, observations about NL. Because the met-
alanguage is a formalised object, it is entirely possible that careful descriptive axiomatisation of
linguistic observations will allow the formulation of real and valid generalisations about NL, i.e,
formal statements which can be empirically falsified with respect to formalised or formalisable
observations and from which it will be formally possible to deduce low level descriptive axioms.



To sum up : a metalanguage has a different function from an r-grammar. Metalanguage axioms
express a durable and reusable source of knowledge about language. They may ’provide’ the
actual declarative knowledge effectively used in language performance, but they must not be
confused with the declarative knowledge which directly underlies language use.

2 The Metalanguage

The aim of the metalanguage is to give an axiomatic description of the sentence. Here we con-
sider only the simple sentence ; in particular noun phrases are not analysed, that is they are
treated as atomic.

We will consider two stages in this axiomatisation : in the first one, the lexicon, the formalised
properties are merely properties of the phonological representations of individual items, not

of strings. The second stage introduces properties of the sentence {as a string) ; for example
properties which involve the order of the phonological representations,

2.1 The Lexicon

It consists of four components : {a), (b), (c), (d).

We start with two sets :

(a) E (the phonologies), and
(b) T (the valencies).

a, b, ...will denote elements of F ; {, {1, ...elements of T.

We fix a set of unary primitive lexical predicates (subsets) of E

O B T
Tt1y -~ +3 Tgp (tl, ...,tp c T)

Boolean combinations of these primitive predicates will be called lexical predicates; they are
denoted by ¢, 1, ... We write p(z) or z € @ if z is an element of the subset of E denoted by ¢.

A, V, —, «—, ~ are the classical Boolean connectors (conjunction, disjunction, implication,
equivalence, negation), V and 3 are the classical quantifiers.

(d) A set of lezical arioms of one of the following forms.
disjointedness :: @ and ¥ are disjuncts i.e. : Va € E ~ (p(a) A ¥(a))
inclusion : Ya € E pfa) — 9(a)

2.2 Example 1

Eis a set of phonological representations of words or complex noun phrases.

T = {nom, obj, dat, mod, _}, consists of the valencies : nominative, objective, dative, mod-
ifier ; we add *_' which is useful to denote the absence of real linguistic affectation of valency.



Primitive lexical predicates
verb
fin (finite verb)
imp (imperative verb)
part (participle)
aux (auxiliary)
cl (clitic)
clnom (nominative clitic)
clobj (objective clitic)
cldat {dative clitic)
np {noun phrase)
np {nom or obj)
npdat
pp (prepositional phrase), ne, pas
Jex (lexical element), wh (interrogative element), lexne (negative lexical element)
suby, for t € T and t # _ (verb subcategorisation)

Lexical axioms

(1) @ and 1 are disjoint for every pair of distinct ¢ and t in {fin, imp, part, clnom,
clobj, cldat, np (nom or obj), npdat, pp, ne, pas}.

(2) ¢ and 1 are disjoint for every pair of distinct ¢ and ¢ in {lex, wh, lexne}.
(3) Vx € E (verb(x) «— fin(x) V imp{x) V part(x))

(4) ¥x € E (cd(x) «— clnom(x) V clobj(x) V cldat(x})

(5) ¥x € B (np{x) «— np(nom or obj) V npdat(x))

(6) ¥x € E ((np(x) V pp{x)) «— (lex(x) vV wh(x) V lexne(x)))

Obviously such an example can be expanded and refined very simply by extending the compo-
nents (a), ..., {d). '

2.3 The Sentence

We will consider now properties for strings of the form
U= Up, U] ... Uy

where each u; is a pair <aq, ;> with ¢; € E and t; € T. We say that «; is the phonologi-
cal representation of u; and t; its valency. z, 2, y, ... will denote pairs of <a, t>.



A sentence will be a string « which satisfies a set of axioms, ©(u). But we do not want, and, in
fact we do not need, to write here an explicit and definitive set, © (u), of such axioms. Firstly,
any such axiomatic system must not be considered as a ’definitive’ one, but rather as a very
flexible tool. Secondly, from a theoretical point of view, the form of the axioms we introduce in
©(u) is much more important than what they contain. But we assume that the characterisation
of the simple sentence of the French language does require axioms of more complex form than
those of types (1) ...{VI) below.

To define the form of these axioms in © we adopt the following conventions. Let u = wup,
U3 ... Uy be a string of the previous form,

(1) If ¢ is a lexical predicate we denote (i) if the phonology of u; satisfies (.
(2) For each valency t, we denote (i) if ¢ is the valency of u;.

(3) We distinguish a lexical predicate denoted by ¢ (in actual applications { will be the
verb) and we denote by

F(i) the formula ¥ & (((k) —— i < k), and
B(i) the formula V k (((k) — k < i).

Then F(i) (resp. B(i)) is true in u iff the place iis before (resp. after) every place where
{ occurs.

(4) We denote by p, ¢, ...every Boolean combination of lexical, {, F and B predicates.

2.4 Axiom Types for Sentences

(I) Order Type
[p < ql(u) =2 Vi, j (p(R) A (i) — 1<)
([p < q is true in u if for any positions 7 and jin u, if pis satisfied at ¢ and g at j, then
i is before j)

(IT) Unicity type :

< p>(u) =¥ j(e0) Ap() — i =J)
(There exists at most one place in u where p is satisfied)

(IIT)  Incompatibility type

[p X q] (u) 2 Vi, j ~ (p(i) A alj))
(p and ¢ cannot be both satisfied in u}

(IV)  Pure implicational type

[p = q](u) = Vi (p(i) — qfi))
(Every position in w, satislying p, satisfies q)



(V) Absolute existential type

[3p](u) = i p(i)

(There exists some place in u satisfying p)

(VI)  Relative existential type

[3p == 3q](u) = Fi p(i) — Fj (i)
(If p is satisfied at some place in u, then ¢ is also satisfied at some place in u).

Remarks

(1) For any p, ¢ we have, in every u
[p<aAlg<p)) —pXq

(2} The relation p < q is not transitive but we have for every p, ¢, r, in every u
(p<gAhg<rAdg)—p<r

2.5 FExample 2

We describe here a small axiomatic system ©(u). Its lexicon is a reduction of the one in our
Example 1. To simplify the notation the Boolean conjunction symbol, A, will often be omitted.
For example, the expression objwhF will denote the predicate obj(i) A wh(i) A F{i). 6(u) will
consist of the following primitive lexical predicates and axioms.

Primitive lexical predicates
¢ (= verb), np, pp, cln, wh, lex
Lexical axioms

(1) Vx ~(@(x) A $(x)), for any distinct ¢ and 4 among ¢, np, pp and cin.
(2) Vx ~ (lex (x) A whix))
(3) Vx np(x) «— (lex(x) vV wh(x}}

Pure implicational axioms

(4) ~{ =>np V pp Vcln
(5) np < nom V ob]
(6) cln => B

(7} objF == wh

(8) nomB == lex

Unicity axioms
(9 L{>

(10) < cn»
(11} < nom »



(12) < obj>»
Incompatibility axioms

{13) nomB X cln
{14)  objwhB X cln
(15)  nomwhF X cln

Order axioms

(16) nomB < objB

(17)  cln < objB

(18)  objF < nomF

(19)  ppF < (nom V obj)

(20)  (nom V obj V cln) < ppB

Absolute existential axloms

(21) 3¢
(22)  3(nom V cl)

Relative existential axiom
(23)  InomB = JobjwhF

The models of ©. It can be seen that ©(u) is true iff u is a string of one of the following types

(1) whobj verb nomlex

(2) npnom verb

(3) npnom verb npobj

(4) whobj npnom verb

(5) lexnom verb clnom

(6) lexnom verb clnom lexobj
(7) whob] lexnom verb clnom
(8) verb cinom

(%) verb clnom lexobj

(16)  whobj verb clnom

plus a potentially infinite family M :

<$17"'a$i,saylu'“ayj >

where S is a model of type (1) to (10} and the x’s and y’s are pp.

More formaly a model of type (1), for example, is a string

u = (ug,ur, t2) = (<ag, to>, <a1, t1>, <az, t2>)

such that ag is a npwh, tg = obj, a1 is a verb, t; = -, ay is nplex and {3 = nom.

The proof that the set of all the models of the axiom system © is exactly given by the above list



plus M is rather intricate. It is done by disjunction in various instances of the kernel sentences
i.e. sentences without pp, plus induction on the length of the sentences for recursive sentences
(sentences with an arbitrary number of pp). The method of transition relations that we will
introduce in the section 4 will avoid detailing a complete list of the models of an axiomatic
system ©, when this system is compared with a grammar §G.

3 Constructibility

The axiomatic systems give static descriptions of sentences in a way completely independent of
the various dynamic systems (like grammars) that may be used to construct these sentences.

Def 1. Let § be a grammar and O an axiomatic system. We write g (u) whenever u is a
string which can be constructed as a (complete or terminal) sentence by G, and we say that §
and @ are equivalent iff

Va (G(u) ¢ Ofu))
The problem which arises is, given G and ©, how to prove that G and © are equivalent.

3.1 The Central Kernel Property

As G is a dynamic 'system, to work on a terminal sentence u of G requires to know all the history
of the contruction process for u. Thus it is not at all sufficient to take into account only the
terminal sentences of G but we have to incorporate in our theory all the substrings which are
constructed by G at any intermediate stage.

Def 2. We will write «G(u) if u is a string constructed by § at some stage (terminal or not).
Notation. Every string u of length > 1 will be represented by

U= W e VX

where 2’ is the first element and 2 is the last one of u.

The following property reflects the fact that « ’has a history’, or in other words that it is
recursively constructed.

The central kernel property. A predicate P{u) possesses the central kernel property, CKP,
iff :

V(u} (P(u) ~— P(v) VvV P(w)).

Clearly if G is of the type UCG for example, *G(u) has the CKP. This is due to the fact that
in this type of grammar, the phonological representations are constructed by concatenation of
adjacent elements going up from the verbal entry (recall that we have not analysed here the noun
phrases). {(For example in the contruction of [John gives a book], at least one of the substrings
[John gives] or [gives a book] is produced at an intermediate stage, but not the substring [Jehn
a book]) In general, an axiomatic system does not have the CKP, because of the existential
axioms (pure or relative) it may contain.



Notation. ©* and ©”will denote two parts of © such that

(a) Yu (@(u) ¢— O@’(u) V ©”(u)), and

(b)  ©'(u) has the CKP

This decomposition of © is not unique . For example, we may choose obviously ©’ as the uni-
versal part of ©, and ©” as its existential part. But, under some assumptions it is possible to
leave also some existential types axioms in ©’.

Proposition 1. If 9’ contains two absolute existential axioms, 3p and 3¢, and if p and ¢
are disjoint, then O does not have the CKP ( disjointedness means that Va ~ (p(a) V ¢(a)) as
in 2.1)

Proof. If © has the CKP then ©’ would have a model u, of length >1, such that, for ex-
ample, z satisfies p, 2’ satisfies ¢, and any other elements of u does not satisfy p nor ¢. Then we

would have ~ ©’(p) and ~ ©’(w) ; and this is impossible by CKP.

Proposition 2. Suppose that 3¢ and Ip == 3¢ are axioms of ©’ (p and ¢, disjoints). If
© 7’ has a model u in which it is true that

3ij (p(i) A B(E) A q(3) A B({) V Vk (k <1 — ~ q(k)))
then @ does not have the CKP.

We symbolise this situation (and its dual situation, for F)) by the following figure :

§ ~4 p q q p  ~q £

Proof. If ®has the CKP, then ©’ would have a model u such that z’satisfies {, x satisfies ¢, p
is satisfied in vand ¢is not satisfied in v. Then v is not a model ©’ (because dp = Jq is false in
v) and wis not a model of @’ (because 3¢ is false in w) ; but this contradicts the CKP hypothesis.

Proposition 3. Suppose that 3¢, < ¢ >, dp == Ig and Ip’ = 3¢’ are in O (p, ¢
disjoints and p’, ¢’ disjoints}. If © has a model symbolised by

then ©' has not the CKP.

The proof is very similar to the proof of the previous proposition.



Proposition 4. Suppose that @’ satisfies the following conditions.

(i) 3¢ and < { > arein @',
(ii) For every p # (, dp is not in ©’.

(iii) For every 3p = 3q in ©’, the formulas qB < pB and pF < qF are logical consequences
of @.

(iv) For every pair dp = Jq and Ip’ == 3¢’ in @’, the formulas qB < p’B and pF < q'F are
logical consequences of ©°.

Then ©’ has the CKP.

Proof. Suppose that ©’ does not have the CKP, then ©” has a model « such that neither
v nor w is a model of ®° Thus there exist two (necessary) existential axioms A and A’ such
that A is not true in v and A’is not true in w.

By (i) and (ii) we have only three cases :

1st case. A’is 3¢ and A is of type dp = J¢ and then u is a model of type I, but such
models do not exist by condition (iii).

2nd case. Similar to the 1st case, with type A and 4’ exchanged.

3rd case. A is of type dp = Jq and A’is of type Ip’= J¢’. Then u is a model of type (III})
but such models do not exist by condition (iv).

3.2 Constructors

To go on in the modelization of the recursive construction of sentences in a UCG type grammar,
we introduce now the concept of constructor.

Def. A pair of predicates F(z’,w}, B(v, z} is said to be a constructor for O if it satisfies
the following condition.

(CONST) If the lenght of u > 1, then @'(u) — ((©(w) A F(x’, w) V (©’(v) A B(v, x))
Intuitively F (resp. B) will express under what conditions it is possible to add a new element in
front (resp. at the end) of a model of ©’ to obtain a new model of ©”. The condition CONST im-
plies that every model not reduced to the verb is constructed from a model by adding an element
to it on the left by F or on the right by B. Thus CONST implies obviously that ©”has the CKP.
Proposition 5. ©7 admits a constructor if ©” has the CKP.

Proof. If O has the CKP, then the pair <F, B> defined by

F(x', w) «—— 0’(v) «— B(v, x)

is a constructor of &



3.3 Translation from Q@' to < F,B >
We suppose here that ©” has the CKP and that the axiom 3¢ is in ©. Then by Proposition 1,

0’ does not contain any other absolute existential type axiom and by Proposition 5, O’ admits
a constructor. We will see that the constructor defined in the proof of the Proposition 5 can be
derived from the axioms of ©®’in a uniform way.

Let us denote by L (resp. T) any logically false (resp. true) formula. For each Boolean

combination of lexical, t-s , F and B predicates, p, and for each axiom, A, of O’ (except 3() we
defined left translation *p and ®4 and right translation p* and A® by the following rules.

(Ro}  *pis pin which each Fis changed into T and each B is changed into L .
p*is pin which each Fis changed into L and each Bis changed into T.
(A%, °A) are related to some <7,B> admitted by ©’(see Proposition 6).
(R1) HAisp < q,then
A%v, x) = p¥(x) — ~ dj € vqlj)
PA(x, w) 1 *q(x) — ~ 3j € vp(j)
(Ry) I Ais < p>»,then
A%(v, x) i p¥(x) — ~ 3Ty € v p(y)
A (x, w) it ¥p(x) — ~ Ty € wp(y)
(R3) HAispXq,then
A(v,x) = [p< gl® Alg < pl
PA(x, w) = %[p < q] A °[g < p]
(Rg) I Aisp= q,then
A%(v, x) = p*(x) — q*(x)
CA(xw) = Fp(x) — *q(x)
(Rs) If Ais 3p = Hq, then
A%(v, x) i p*(x) — Ty € v q(y)

OA(x, w) = *p(x) — Ty € w q(y)

Proposition 8. Let f(w, w) (resp. B(v, z)) be the conjunction of all the left (resp. right)
translations of the axioms of @’ {except 3().

If ® has the CKP then <7, B> is a constructor of @,



Proof. It can be verified that for each string v and each axiom 4 :

(a) A(u) — A(x, w) A A%v, x)

(b) A(w) APA(x, w) — A(x), and

(c) A(v) A A%(v, x) — A(u)

Then from (a), (b), (¢) and the CKP we deduce that <F,B> is a constructor of 0.

3.4 Example 3
We come back to the system © introduced in the Ixample 2. Clearly ® has not the CKP

because it contains two absolute existential axioms (3¢ and (el v nom)) (cf. Proposition 1).
Let ©’; be © minus the axiom I(cl V nom) and ©% be 0% minus the axiom InomB == Jobj
whF. By Proposition 4, ®’; and ©’3 have the CKP.

If, for example, A is the axiom cln == B, it is easy to verify from (Rp) and (R4) that

AY(v, %) e T, and

OA(x, w) s ~ cln (x)

Similary, if A is nomD < objB,.then from (Rg) and (R;) we have

A%(v, %) «— (nom{x) — ~ Iy € v (ohj(y) A B(y))), and

A(x, w) +—— T

If Ais InomB = JobjwhF, then, from (Ry) and (Rs) we have

A%(v,x) «— (nom(x) — Iy € v (obj(y) A wh(y) A F(¥))), and

OA(x,W) e T

It is practically convenient to summarize all the information contained in F and B by the
following tables (tables for ©’; and ©’; will differ only by the 2nd line of their B-tables).

B - table for ©’; (and ©’;)

B - +

cln ¢ln, nom, objB, ppB
npnomlex cln, nom, objB, ppB objwhF (For 61 only)
npobjwh cin, obi, ppB
npobjlex obj, ppB

PP




F - table for ©’; (and ©)

F +

npnomlex nom, obj F, ppF
npnomwh nom, obj F, c¢ln, ppF
npobiwh obi, ppF

pp

Conventions for table reading

(1B)  B(v,z) implies that = satisfies one of the predicates of the left column in the B-table.
(2B)  If the following conditions are satisfied

(a) p Is a predicate in the left column of the B - table,

(h) 1, ..., g are all the predicates in the line of p and the column -

(¢) T4, ..., 7} are all the predicates in the line of p and the column +, and
(d)  satisfies p,

then, B(v, x) is true iff

(i) For each p; and each yin v q;(y) is false and
(ii) For each r; there exists some y; in v such that r;(y;) is true.

For (1F) and (2F) the same conventions as {18) and (2B) are valid, with B changed in F, and

vin w.

4 Transition between Metalanguages and Grammars

We consider here a grammar G of UCG type and we introduce the following notations and con-
ventions.

(1) 5, S’...will denote signs of G, and, for each atomic phonological representation a taken
into consideration, .5, will denote a sign of phonology a, in G.

{2) The rules of ¢ are arranged into two classes. B.f rules {i.e. Backward application rules)
which consume the valency t and concatenate to the right of the verbal sign, and, similarly, F_t
rules (Forward application rules). B_t rules are denoted by S +; 5, and F_t rules by S; +¢ S

(3) To each verbal sign §is associated a string, u = ph(S), of pairs 2 = <a, t> (atomic phono-
logical representation 4+ valency, if it is relevant) such that

(1) S =8+ 9,
v = ph(S) and x = <a, >
then ph (5') = vx



(i) S =5, + 8
w = ph(S) and X’ = <a, >,
then ph(S’) = x'w

(4) We denote by Term the set of all the terminal signs of G (e.g. signs in which all the valencies
are consumed).

(5) Finally we have by definition, for all »
(1) *G(u) iff there exists a sign S such that ph(S) = u, and

(i) G(u) iff there exists a sign S in Term(S) such that ph(S) = u

4.1 Transition relations

‘We recall that we suppose that ©fu} — ©’(u} A ©”(u} where ©’(u) has the CKP, the axiom
3¢ is in ©°(u), and <F, B>is a constructor of ©°.

To obtain a criterion of equivalence between 0 and G we introduce the notion of transition
relation.

Def. A transition relation (between <F,B> and G ) is a predicate R{u, S), which satisfies
the following conditions for every string v = 2’w = vz and signs S and §,.

(RT1) If ais a verb, then R (<a, >, S,)

(RT2B) (R(v,5) A S" = 8§ +; 5. A x = <a, t>) — R(u, §7)
(RT2F) R(w,SYA S = 5, +: S A X' = <a, t>) — R(u, $)
(RT3B) R(v,S) — (B(v, <a, t>) «— S +¢ 5, is defined)

(RT3F) R(w,S) — (F(<a, t>, W) e Sy +¢ 5§ is defined)
Proposiﬁon 7. If R(u, S)is a transition relation between ¢ and <F, B>, then

Vu (©(u) «— *G(u))
If moreover, R{u,S) satisfies
(RT4) R(u,S) — (0”(u) «— Term (S))

then @ and & are equivalent.

Proof. The proof is straightforward by induction on the length of u using the statement that,
for every u and S, ph(S) = v implies R{u, 5).



4.2 Example 4

We describe now another small axiomatic system © (specially oriented toward some problems
of French negation)? and we will show a UCG grammar G and a transition relation R between
this grammar and a constructor < F,8 > of ©. Thus by the previous theorem, it will turn out
that @ and G are equivalent.

Primitive lexical predicates
¢ {= verb), np, ne, pas, lex, neg
Lexical axioms

(1) Vx ~ (p(x) A (x)) for any distinet ¢ and % among (, np, ne, pas
(2) Vx ~ (lex (x) A neg(x)),
(3) Vx (np(x) — (lex{(x) V neg(x})}

Pure implicational axioms

(4) ~ ( => np V neV pas
(5) np <= nom V obj

(6) ne = I

(7) pas => B

(8) nom == F

(9)  obj=>B

Unicity axioms

(10) < (>

(11) <Lne»

(12) <K pas>»

(13) < obj>»

(14) < nom »
Incompatibility axiom
(15)  pas X neg

Order axioms

(16)  nom < ne
(17)  pas < obj

Relative existential axioms

(18)  dpas = Jne
(19)  dneg = Ine

30n this and related points, see G.G. Bés and K. Baschung *Filtres dans une grammaire catégorielie”. To
appear in A. Lecomte (ed.) Proceedings of the Workshop on Word Order in Categorial Grammar, Clermont-
Ferrand, May 25-27, 1990.



(20}  Ime == 3J(pas V neg)

Absoclute existential axioms

(21) A
(22)  Hnom
(23)  Jobj

We define ©” as the set of the axioms (1) to (19) plus (21) ; ©” consists of (20), (22} and (23),
and © = O plus ©”. Clearly, from the Proposition 4 in 3.1, ©’(u) has the CKP.

A contructor, < F,B >, of ©’(u) is given by the following tables

B - +
pas obj, pas ne
obilex nom, obj
objneg nom, pas, obj ne
F - +
ne nom, obj, pas, ne )
nomlex nom obj
ROMReg 0Om, pas obj, ne
The grammar G
Sign
Catr[Features] : O : Sem : Ph

sent Obj ne  pas neg pre
np nom j i va post

Rules. Backward and Forward functional application. -

Notation. Sem (Semantics) and Ph (Phonology) are omitted. We introduce the following con-
ventions for denoting Se signs (i.e. signs whose cal value is sent and lexical entries).

Se signs
V :sent"[., j, ., Va] / np°[nom, j, i, Va] : pre / np”[ob], j, i, Va] : post

V' :sent"[ ne, _, Va] / np"[nom, ne, i, Va] : pre / np“[obj, ne, i, Va] : post



V” : sent"[, ne, pas .] / np”[nom, ne, pas, .} : pre / np~[obj, ne, pas, | : post

Lexical entries :

verbs 1 V

ne: V' [/ V:pre

pas: V? [ V' post

nplez: C / (C / np"[nom or obj, ,, ., ]: )

npneg: C [ (C / np”[nom or obj, ne, i, neg| : )

A transition relation between < F,B > and §. To describe more easily a transition
relation R{x, S) between the previous < F,B > and G, we introduce the following notations.
Given a verbal sign Se, obj(Se) [resp. nom(Se)] is nc (not consumed) if the valency obj [resp.
nom) still occurs in the valency list of Se, and it is ¢ (consumed) if this valency is already con-
sumed. By ne(Se), pas(Se) and neg (Se), we denote the values in Se of the feature slots 2, 3 and

4 respectively.

Let R(u, Se) be the conjunction of the following (1) to (6).

(1) ne is in u «— ne{Se) = ne

(2) pas is in u «— pas(Se) = pas

(3) Ix € u neg(x) <« neg(Se) = neg

(4) Ix € u obj(x) +— obj{Se) = ¢ and nom(Se) = nc
(5) 3x € u nom(x) «— nom(Se) = obj(Se) = ¢

(6) u is reduced to a verbal entry «— Seis of type V
Then by the Proposition 7, ©'(u) «—— *G(u).

The proof that R(u, Se) is actually a transition relation can be made by verifying the RT
of Def in 4.1 successively for each type of argument entry.

Finaly let us suppose that Term {G) consists {by definition of G) of all the signs such that

(1) nom(Se) = obj(Se) = ¢, and

(2) ne(Se) = j, or
ne(Se) = ne and pas(Se) = pas, or
ne(Se) = ne and neg(Se) = neg

The condition (BTY) of Proposition 7 in 4.1 is also verified. And thus © and G are proved to be
equivalent,



