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4 place Jussieu, F-75005 Paris, France and
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We present calculations of the one-loop vacuum polarization contribution (Uehling potential) for
the two-center problem in the NRQED formalism. The cases of hydrogen molecular ions (Z1 =
Z2 = 1) as well as antiprotonic helium (Z1 = 2, Z2 = −1) are considered. Numerical results of the
vacuum polarization contribution at mα7 order for the fundamental transitions (v = 0, L = 0) →

(v′ = 1, L′ = 0) in H+
2 and HD+ are presented.

Introduction

In Refs. [1, 2] a complete set of mα7-order contributions has been evaluated for the fundamental transitions of the
hydrogen molecular ions H+

2 and HD+ as well as for two-photon transitions of antiprotonic helium. All calculations
at this order were performed in the nonrecoil limit, by evaluating the one-electron QED corrections in the two-center
approximation. The only exception is the Uehling potential vacuum polarization contribution, which was computed
with a lower level of accuracy. Following the notations of Ref. [4], Eq.(46), the Uehling correction at mα7 order for a
two-center system can be written as

∆E(7)
vp =

α5

π

[

V61 ln(Zα)
−2 +G

(1)
V P (R)

]

〈Vδ〉 , (1)

where R is the internuclear distance, and

Vδ(r) = π
[

Z3
1δ(r1) + Z3

2δ(r2)
]

. (2)

The V61 coefficient is known analytically, while the nonlogarithmic term was calculated in [1, 2] in the Linear Combi-

nation of Atomic Orbitals (LCAO) approximation using the hydrogen atom ground state value of G
(1)
V P . In this work

we present a complete account of the vacuum polarization contribution in the two Coulomb center approximation.
We utilize the formalism of nonrelativistic quantum electrodynamics (NRQED), a similar approach has been used

in [3] (see Sec. II.B of that paper) for pionic hydrogen. We start from the nonrelativistic wave function and then
obtain contributions due to the relativistic corrections to the electron wave function and modification of the Coulomb
vertex function. This approach is first illustrated by calculating the Uehling potential energy shift for S-states of the
hydrogen atom in Sec. I.

Sec. II extends the formalism to the two-center case, and the G
(1)
V P (R) function is calculated. More precisely, the

calculated terms also include all contributions of higher order in α generated by the Uehling potential and leading
relativistic corrections. Final results for the fundamental transitions in the H+

2 and HD+ ions are presented and
discussed in Sec. III.
We use atomic units throughout.

I. HYDROGEN ATOM

In the NRQED formalism, the zero-order approximation is the nonrelativistic (Schrödinger) wave function Ψ0 with
Pauli spinors, defined by

(H0 − E0)Ψ0 = 0, H0 =
p
2

2
+ V, V = −

Z

r
. (3)

For higher-order terms the Rayleigh-Schrödinger perturbation theory is used. If one wants to evaluate the one-loop
vacuum polarization contribution to the bound electron in the external Coulomb field to the required mα7 order, one
needs to evaluate the first-order contribution, which is the Uehling potential Uvp(r) (Fig. 1a). Next is the leading-order
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FIG. 1: Feynman diagrams for the one-loop vacuum polarization NRQED contributions.

relativistic correction to the wave function of the electron (Fig. 1b), which produces a second-order contribution with
the Breit-Pauli Hamiltonian:

HB = −
p4

8
+

1

8
∆V, (4)

as the perturbation. The last term is the vertex function modification (Fig. 1c). The only contribution at this order
to the vertex with the Coulomb photon interaction is the Darwin term, see Fig. 3 in [5] or Eq. (7) of [6].
In atomic units the Uehling potential is expressed:

Uvp(r) = −
2

3

Zα

πr

∫

∞

1

dt e−
2r

α
t

(

1

t2
+

1

2t4

)

(

t2 − 1
)1/2

. (5)

Evaluation of the first-order correction with the nonrelativistic wave functions of the hydrogen S-states is straight-
forward and results in the following expression:

∆Ea
vp =

〈

nl
∣

∣Uvp

∣

∣nl
〉

=
α(Zα)4

πn3

[

−
4

15
+

5π

48
(Zα)−

2

7

(

1 +
1

5n2

)

(Zα)2 +
π

768

(

49 +
35

n2

)

(Zα)3 + . . .

]

(6)

The second-order term, determined by the diagram in Fig. 1.b, has a form

∆Eb
vp = 2

〈(

HB − 〈HB〉
)

(E0 −H)−1
(

Uvp − 〈Uvp〉
)〉

(7)

and may be obtained by substituting ΨB = (E0 − H)−1 (HB − 〈HB〉)Ψ0 into Eq. (7). An analytical expression of
ΨB can be found e.g. in [6]. For the S states, one gets

∆Eb
vp =

α(Zα)4

πn3

{

−
3π

16
(Zα)

−
2

15

[

ln (Zα)−2 − 2

(

ψ(n+1)− ψ(1)− lnn+ ln 2−
107

60
−

2

n
+

5

2n2

)]

(Zα)2

+
5π

96

[

ln (Zα)−2 − 2

(

ψ(n+1)− ψ(1)− lnn− ln 2−
43

60
−

2

n
+

3

n2

)]

(Zα)3 + . . .

}

(8)

where ψ is the logarithmic derivative of the Euler gamma function Γ(z).
As discussed above, the NRQED effective Hamiltonian atmα(Zα)6 order contains just one contribution determined

by the diagram in Fig. 1c:

H(7)
vp =

1

8
∆Uvp. (9)

Using

∆

(

e−Λr

r

)

= −4πδ(r) + Λ2 e
−Λr

r
,
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one gets

H(7)
vp = −

1

12

Zα

π

∫

∞

1

dt

[

−4πδ(r) +
4t2

α2

e−
2r

α
t

r

]

(

1

t2
+

1

2t4

)

(

t2 − 1
)1/2

. (10)

Taking the expectation values of this effective Hamiltonian, one immediately gets for S states

∆Ec
vp =

1

8

〈

nl
∣

∣

(

∆Uvp

)∣

∣nl
〉

=
α(Zα)4

πn3

[

3π

16
(Zα)−

1

3

(

1 +
1

5n2

)

(Zα)2 +
5π

576

(

7+
5

n2

)

(Zα)3 + . . .

]

(11)

The NRQED contribution, which is determined by the three terms of Fig. 1, should be exact up to mα(Zα)7 order.
The sum of these three contributions for S states gives the final result

∆EU =
α(Zα)4

πn3

{

−
4

15
+

5π

48
(Zα)−

2

15
(Zα)2 ln (Zα)−2

+
4

15
(Zα)2

[

ψ(n+1)− ψ(1)− ln
(n

2

)

−
431

105
−

2

n
+

57

28n2

]

+ . . .

−
2

15

[

ln (Zα)−2 − 2

(

ψ(n+1)− ψ(1)− lnn+ ln 2−
431

105
−

2

n
+

57

28n2

)]

(Zα)2

+
5π

96

[

ln (Zα)−2 − 2

(

ψ(n+1)− ψ(1)− lnn− ln 2−
153

80
−

2

n
+

103

48n2

)]

(Zα)3 + . . .

}

(12)

The first three lines are in complete agreement with the combined result of [7, 8]. The last line extends the general
expression of ∆EU by one further order in Zα.

II. TWO-CENTER PROBLEM

Now, we are ready to study two-center systems. The nonrelativistic Hamiltonian of an electron is then

H0 =
p2

2
+ V, V = −

Z1

r1
−
Z2

r2
. (13)

The energy and wavefunction of the ground (1sσ) state will be denoted by E0 and ψ0 respectively. The Uehling
potential is a sum of interactions with both nuclei:

Uvp(r) = Uvp(r1) + Uvp(r2), (14)

We now want to calculate the contributions corresponding to diagrams a), b) c) of Fig. 1 in the same way as it was
done in the previous Section for the hydrogen atom.
The first of these diagrams contains the leading-order contributions (of orders α(Zα)4 and α(Zα)5) which were

already included in earlier calculations [9]. We are thus interested in higher-order (α(Zα)6 and above) terms, which
can be obtained by the following subtraction:

∆E(7+)
a = 〈ψ0|Uvp|ψ0〉 −∆E(5)

vp −∆E(6)
vp (15)

= 〈ψ0|Uvp|ψ0〉+
4α3

15
〈Z1δ(r1) + Z2δ(r2)〉 −

5α4

48
π
〈

Z2
1δ(r1) + Z2

2δ(r2)
〉

As shown in Sec. I, diagrams b) and c) both contain α(Zα)5-order terms, which cancel each other. Writing ∆Eb in
terms of the first-order perturbation wavefunction ψB associated with the Breit-Pauli Hamiltonian

∆Eb = 2 〈ψB|Uvp|ψ0〉 (16)

with

(E0 −H0)ψB = (HB − 〈HB〉)ψ0 , (17)
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one can see that the α(Zα)5-order term in ∆Eb comes from the leading 1/r singularity of ψB. In order to get the

contribution of order α(Zα)6 and above, it is convenient to subtract this singularity and use the wavefunction ψ̃B

defined by

ψB = ψ̃B + (U1 − 〈U1〉)ψ0 , U1 = −
V

4
(18)

which satisfies the following relation [6, 10]:

(E0 −H0)ψ̃B = (H ′

B − 〈H ′

B〉)ψ0 , H ′

B = −(E0 −H0)U1 − U1(E0 −H0) +HB . (19)

One thus obtains

∆E
(7+)
b = 2

〈

ψ̃B|Uvp|ψ0

〉

+
1

2
〈V 〉 〈ψ0|Uvp|ψ0〉 . (20)

Finally, the subtracted term is added to the contribution ∆Ec which is thus redefined as

∆E(7+)
c =

1

8
〈ψ0|∆Uvp|ψ0〉 −

1

2
〈ψ0|V Uvp|ψ0〉 (21)

Integration by parts and use of the Schrödinger equation ∆ψ0 = 2(V − E0)ψ0 provides the following relationship, in
which the α(Zα)5-order term has been explicitly canceled out:

∆E(7+)
c =

1

4
〈ψ0|pUvpp|ψ0〉 −

E0

2
〈ψ0|Uvp|ψ0〉 . (22)

The final result is

∆E
(7+)
U = ∆E(7+)

a +∆E
(7+)
b +∆E(7+)

c (23)

and may be put in the form (see Ref. [4] Eq.(46))

∆E
(7+)
U =

α5

π

[

V61 ln(α
−2) +G

(1)
VP(R)

]

〈Vδ〉 (24)

with V61 = −2/15. The logarithmic term comes from the logarithmic singularity in ψ̃B , and should thus be subtracted

from ∆E
(7)
b :

G
(1)
VP(R) = π∆E(7+)

a /〈Vδ〉+
[

π∆E
(7+)
b /〈Vδ〉 − V61 ln(α

−2)
]

+ π∆E(7+)
c /〈Vδ〉. (25)

Since the initial NRQED approximation is valid up to and including mα8 order, the result of Eq. (25) should be
accurate to O(α2).

III. RESULTS AND CONCLUSION

We calculated all operator mean values appearing in Eqs. (16), (20) and (22) for the ground (1sσ) electronic state of
the two-center problem, both for Z1 = Z2 = 1 for application to H+

2 and HD+, and Z1 = 2, Z2 = −1 for application to
antiprotonic helium. The numerical approach has been described previously (see e.g. [11]). The following expansion
for the σ electronic wavefunction is used:

Ψ0(r) =

∞
∑

i=1

Cie
−αir1−βir2 , (26)

For Z1 = Z2 the variational wavefunction should be symmetrized

Ψ0(r1, r2) =

∞
∑

i=1

Ci(e
−αir1−βir2 ± e−βir1−αir2), (27)

where (+) is used to get a gerade electronic state and (−) is for an ungerade state, respectively. Parameters αi and
βi are generated in a quasi-random manner.
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FIG. 2: ”Effective potentials” G
(1)
VP(R) for the hydrogen molecular ions, Z1 = Z2 = 1 (left), and antiprotonic helium, Z1 = 2,

Z2 = −1 (right).

H+
2 HD+

this work LCAO [1] this work LCAO [1]

ground state (kHz) −28.35 −34.73 −28.38 −34.93

transition (kHz) 0.42 0.94 0.37 0.82

TABLE I: Results of numerical calculations of the G
(1)
VP contribution for the ground states of H+

2 and HD+ and the fundamental
transitions: (v = 0, L = 0) → (v′ = 1, L′ = 0). Comparison is presented with previous estimates made in [1] within the LCAO
approximation.

The matrix elements of the Uehling potential in such an exponential basis set are not known in analytical form, in
contradistinction with the case of the three-body problem [12]. We thus resorted to numerical integration for all the
terms involving Uvp. To that end we used the approximate form of the Uehling potential presented in [13] which is
accurate to at least nine digits.

Results are shown in Fig. 2. As can be seen, the values of G
(1)
VP(R) at R → 0 tend to infinity and do not obey

the continuity relationship that could be expected, G
(1)
VP(R) → G

(1)
VP(HZ(1S)) where HZ(1S) denotes the 1S state of a

hydrogenic atom with nuclear charge Z = Z1 + Z2. The reason for such a behavior is that the coefficients of the Zα
expansion have no physical meaning, and only the sum over all orders matters. Only the complete Uehling potential
contribution indeed is a continuous function of R at the united atom limit. The same observation is also valid for the
one-loop self energy contribution [11], as well as for higher-order diagrams.
On the contrary, continuity is observed at the other limit, R → ∞. We checked this by direct numerical evaluation

of the expressions (16), (20) and (22) with 1S hydrogenic wavefunctions. The values of G
(1)
VP(R) at large R converge

towards G
(1)
VP(HZ=1(1S)) = −0.61845 in the hydrogen molecular ion case, and towards G

(1)
VP(HZ=2(1S)) = −0.42194

in the antiprotonic helium case.
The last step is numerical integration of the vacuum polarization ”effective” potentials of Fig. 2 over vibrational

or heavy particle degrees of freedom to get the energy corrections for individual states. Numerical results for the
ground states of H+

2 and HD+ and for the fundamental transitions: (v = 0, L = 0) → (v′ = 1, L′ = 0), are collected
in Table I. Comparison with the LCAO approximation demonstrates that in case of individual states it may give
some reasonable estimate. However, for the transition frequency, due to the slope of the ”effective” potential at the
equilibrium position at R = 2.0, the difference in contributions from the two states becomes substantially sensitive
and the LCAO estimate only gives an order of magnitude. This tendency is less marked in the case of antiprotonic
helium, e.g. for the two-photon (33, 32) → (31, 30) transition in 4Hep̄ we obtain a shift of 121 kHz, while the LCAO
estimate is 98 kHz. That may be explained as follows: the dominating contribution comes from the 1S state wave
function of hydrogenlike helium (Z = 2), and the contribution from the antiproton is negligible. However, it is worth
noting that for the antiprotonic helium, nonadiabatic effects become essential at this level, and complete three-body
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calculations are needed to get improved accuracy.
In conclusion, we have calculated the Uehling corrections at orders mα7 and mα8 for the two-center problem.

Together with improved numerical calculations of the relativistic Bethe logarithm [11], these results will allow for
further improvement of the theoretical accuracy on transition frequencies in H+

2 , HD
+ and antiprotonic helium.
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