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Abstract

Let Ω be a smooth bounded domain in R
n, 0< s <∞ and 1≤ p <∞. We prove that C∞(Ω ;S1)

is dense in W s,p(Ω ;S1) except when 1 ≤ sp < 2 and n ≥ 2. The main ingredient is a new
approximation method for W s,p-maps when s < 1. With 0 < s < 1, 1 ≤ p < ∞ and sp < n,
Ω a ball, and N a general compact connected manifold, we prove that C∞(Ω ; N) is dense in
W s,p(Ω ; N) if and only if π[sp](N)= 0. This supplements analogous results obtained by Bethuel
when s =1, and by Bousquet, Ponce and Van Schaftingen when s =2,3, . . . [General domains Ω

have been treated by Hang and Lin when s = 1; our approach allows to extend their result to
s < 1.] The case where s >1, s 6∈N, is still open.

1 Introduction

Let Ω be a smooth bounded domain in R
n, n ≥ 2. [The questions we will consider are already

interesting when Ω is a cube or a ball.] The first topic that we will address is whether C∞(Ω ;S1)
is dense in W s,p(Ω ;S1). Here, s> 0 and 1≤ p <∞, and we let

W s,p(Ω;S1)= {u ∈W s,p(Ω;R2); |u(x)| = 1 a.e.};

for a set N ⊂R
m, we define W s,p(Ω; N) similarly.

Of special interest to us is the case where 0 < s < 1. Recall that in this case a standard norm
on W s,p(Ω) is u 7→ ‖u‖Lp +|u|W s,p , where

|u|
p

W s,p =

ˆ

Ω

ˆ

Ω

|u(x)−u(y)|p

|x− y|N+sp
dxd y.

When s> 1 is not an integer, we write s= m+σ, m ∈N, 0<σ< 1, and then a standard norm on
W s,p is u 7→ ‖u‖Lp +‖Dmu‖Wσ,p .

In this direction, our main result is the following.

Theorem 1. C∞(Ω ;S1) is dense in W s,p(Ω ;S1) when sp < 1 or sp ≥ 2.
If 1≤ sp < 2, then C∞(Ω ;S1) is not dense in W s,p(Ω ;S1).

Many special cases were already known (see the beginning of Section 2), but the case where n ≥ 3,
s < 1 and 2 ≤ sp < n was left open (see [12, Conjecture 2]). This is an interesting and unusual
situation where density holds and lifting fails; more precisely, there exists some u ∈ W s,p(Ω ;S1)
which cannot be written as u = eıϕ with ϕ ∈W s,p(Ω;R) [5].

The proof of Theorem 1, which is presented in Section 2, relies on a new approximation result,
valid only when 0< s< 1, which is discussed below (this is the content of Theorems 5 and 6). This
original construction has its own interest and we believe that it might be useful in other contexts.
An important feature of Theorem 5 is that it does not use any kind of smoothing or averaging.
Hence it is especially appropriate in situations where maps take values into an arbitrary given
set – not necessarily a manifold.
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Remark 1.1. A completely different proof of Theorem 1 for the case n ≥ 3, s< 1 and 2≤ sp < n can
be found in [13]. The main ingredient is the (non trivial) factorization theorem which asserts that
each u ∈W s,p(Ω ;S1) can be written as u = eıϕv, with ϕ ∈W s,p(Ω;R) and v ∈W1,sp(Ω;S1) [21], [13].

Remark 1.2. In the case where 1≤ sp < 2, the reader may wonder what is the closure of C∞(Ω ;S1)
into W s,p. This question is answered in [13]. Roughly speaking, we are able to define a distribu-
tional Jacobian Ju for every u ∈W s,p(Ω ;S1) with 1≤ sp < 2, and then

C∞(Ω ;S1)
W s,p

= {u ∈W s,p(Ω ;S1); Ju = 0}.

This is the S
1 fractional counterpart of a result of Bethuel for maps in H1(B3;S2) [2].

In the range 1≤ sp < 2, the substitute of C∞(Ω ;S1) for density purposes is the following class,
inspired by the important work of Bethuel and Zheng [4] and Bethuel [3]:

Rs,p = {u ∈W s,p(Ω ;S1); u is smooth outside some finite union of (n−2)−manifolds}.

For completeness, we recall the following known result.

Theorem 2. Let n ≥ 2 and s> 0. Assume that 1≤ sp < 2. Then Rs,p is dense in W s,p(Ω ;S1).

If s= 1, Theorem 2 was obtained by Bethuel and Zheng [4] when n = 2 and by Bethuel [3] when
n ≥ 3. Other special cases were treated by Hardt, Kinderlehrer and Lin [17] and by Rivière [23].

In [6], Theorem 2 was proved for s =
1

2
and p = 2; the argument in [6] extends readily to the full

range 0 < s < 1, 1 ≤ sp < 2; this is done in [13]. Finally, when s > 1 Theorem 2 was established by
Bousquet [7].

We next consider the more general situation where the target space S
1 is replaced by a compact

connected manifold N without boundary, embedded in R
m. To start with, we prove that when

n = 1, C∞(Ω ; N) is always dense in W s,p(Ω ; N); see Corollary 3.1. Our main result in Section 3
is a fractional version of a remarkable result of Bethuel [3], which asserts that, when n ≥ 2 and
1≤ p < n, the class

R1,p = {u ∈W1,p(Ω ; N); u is smooth outside some finite union of (n− [p]−1)−manifolds}

is dense in W1,p(Ω; N) (with [ ] denoting the integer part). When 0< s< 1, we prove

Theorem 3. Assume that n ≥ 2, 0< s< 1 and sp < n. Then

Rs,p = {u ∈W s,p(Ω ; N) ; u is continuous outside a finite union of (n− [sp]−1)− manifolds}

is dense in W s,p(Ω ; N).

Remark 1.3. Let n ≥ 2 and s > 0. Assume that either sp < 1 or sp ≥ n. Then C∞(Ω; N) is dense
in W s,p(Ω; N). For the case sp < 1, see Section 3.2; the case sp ≥ n is handled as in [25], [14]. On
the other hand, given any s> 0 and p ≥ 1 such that 1≤ sp < n, there exists some manifold N such
that C∞(Ω; N) is not dense in W s,p(Ω; N); it suffices to take N =S

[sp] and apply Theorem 4 below.

Remark 1.4. With more work, it is possible to improve the conclusion of Theorem 3 by replacing,
in the definition of the class Rs,p, “u continuous” by “u smooth”. This requires a smoothing proce-
dure. Such a procedure with s = 1 (in the spirit of the proof of the H = W theorem of Meyers and
Serrin) is described in [10]. This can be adapted to arbitrary s, but will not be detailed here.

Remark 1.5. When 1< p <∞ and s= 1−
1

p
, Theorem 3 was proved by Mucci [22], using a method

inspired by Bethuel [3] and completely different from ours. It is not clear whether this kind of
method might lead to a proof of Theorem 3.
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Recall the following result due to Bethuel [3]: Assume that Ω is a ball (or a cube). For p < n,
C∞(Ω ; N) is dense in W1,p(Ω ; N) if and only if π[p](N)= 0. The extension of this result to s= 2,3, . . .
can be found in Bousquet, Ponce and Van Schaftingen [8]. A partial analog in our situation is

Theorem 4. Assume that 0 < s < 1, sp < n and that Ω is a ball. Then C∞(Ω ; N) is dense in
W s,p(Ω ; N) if and only if π[sp](N)= 0.

For special target manifolds N, Theorem 4 was obtained by Bousquet, Ponce and Van Schaftin-
gen [9].

When Ω is more complicated, one may still give necessary and sufficient conditions for the
density of C∞(Ω ; N) in W s,p(Ω ; N). Indeed, when s = 1 such conditions (depending on [p]) were
discovered by Hang and Lin [16, Theorem 6.3]. The proof of Theorem 4 shows that the same
conditions govern the case s< 1, provided we replace [p] by [sp].

Two natural questions remain open:
Open Problem 1. Assume that s > 1 is not an integer and that sp < n. Is it true that Rs,p is
dense in W s,p(Ω ; N)?

By Theorem 2, the answer is positive when N =S
1. This is also the case when N is arbitrary

and s = 2,3, . . . (Bousquet, Ponce and Van Schaftingen [8]). However, the general case is still open
even for simple targets such as N =S

2.
Open Problem 2. Assume that s > 1 is not an integer, sp < n and that Ω is a ball. Is it true that
C∞(Ω ; N) is dense in W s,p(Ω ; N) if and only if π[sp](N)= 0?

The main idea for the proof of Theorem 1. We describe here, without proof, the basic tool,
namely approximation by piecewise j-homogeneous maps.

For simplicity, we explain our construction first in 3-d. Let Q = [−1,1]3 and let g : ∂Q → R
m.

We may extend g to a map h : Q → R
m through the formula h(x) = g

(
x

|x|

)
, where | | stands for the

sup norm. The map h is the “homogeneous” extension of g.
Let now K be the 1-dimensional skeleton (=union of edges) of Q and let g : K → R

m. One may ex-
tend g to Q in two steps: first, by homogeneous extension on each face of ∂Q, next by homogeneous
extension from ∂Q to Q. This extension will be again called “homogeneous”.
Similarly, given a map defined on the 0-skeleton (=union of vertices) of Q, one may extend it in
three steps “homogeneously” to Q.
More generally, if K is the j-skeleton of the cube Q = [−1,1]n and g : K →R

m, then g has a “homo-
geneous” extension h : Q →R

m, obtained in (n− j) steps. Such a map will be called j-homogeneous.
One can also consider the more general situation where the cube is replaced by a finite mesh
C =∪iQ i and extend maps defined on the j-skeleton of C to “piecewise j-homogeneous” maps on
C .

We may now state our main approximation result.
Let F ⊂R

m be an arbitrary set, 0< s< 1, sp < n. Let Ω, ω be two smooth open bounded subsets
of Rn such that Ω⊂ω and let f ∈W s,p(ω ;F).

Theorem 5. Assume that 0 < s < 1 and sp < n. Let j be an integer such that [sp] ≤ j ≤ n−1.
Then there exists a sequence {C k} of finite meshes, such that Ω⊂C k⊂ω, and a sequence of maps
fk : C k → F such that:

a) Each fk is piecewise j-homogeneous on C k, i.e., fk is the j-homogeneous extension of its re-
striction to the j-dimensional skeleton S k of C k.

b) Each fk belongs to W s,p(C k;F).

c) fk → f in W s,p(Ω) as k →∞.
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When j = n−1, the main ingredient in the proof of Theorem 5 is presented in Section 4; Section 5
treats the case where j ≤ n−2 and contains the proof of Theorem 5.
Of special interest to us will be the case where j = [sp]. When sp is not an integer, the restriction
of fk to S k is continuous. In particular, each fk is continuous on C

k outside some finite union of
ℓ-dimensional cubes, with ℓ= n− [sp]−1. This need not be the case when sp is an integer.
When F is a compact manifold and j = [sp], Theorem 5 can be considerably improved:

Theorem 6. Assume that 0< s< 1, 1≤ sp < n and that F is a compact manifold without boundary.
Let j = [sp]. Then there exist sequences {C k} and { fk} such that a)-c) hold and, in addition,

d) For each k, the restriction to S
k of fk is Lipschitz.

The proof, presented in Section 8, uses tools developed in Sections 6 and 7.

Remark 1.6. We emphasize the fact that these approximation results are specific to the case
where 0 < s < 1. For example, the map u(x1, x2) = x1 cannot be approximated in W1,1((0,1)2)
by piecewise 1-homogeneous maps associated to meshes contained in (−1,2)2; see Lemma 4.9 in
Section 4. One may extend the argument given there in order to prove that, for any p and j,
non constant smooth maps cannot be approximated in W1,p(Ω) by piecewise j-homogeneous maps
associated to meshes contained in ω.

On the other hand, although the use of homogeneous extensions appears already in Bethuel
[3] in connection with the approximation of W1,p maps, our method is different from Bethuel’s
one. His method involves smoothing of u on a set A ⊂Ω such that Ω\ A is small. Homogeneous
extensions are used only in Ω\ A. In our approach, homogeneous extensions are used everywhere.

The main results of this paper have been mentioned in personal communications starting in
2003 and a sketch of proof can be found in [19] and [20]. Since then, several papers have addressed
related questions.
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2 Proof of Theorem 1 using Theorem 6

We start by presenting more details about the cases already known.

a) Assume that 1 ≤ sp < 2 and that 0 ∈Ω ⊂ R
2. Let u(x) =

x

|x|
; here, | | stands for the Euclidean

norm. One may check that u ∈W s,p(Ω ;S1). Indeed, assume first that s< 1. We have u ∈W1,q ∩

L∞, for each q < 2. To obtain that u ∈W s,p, we take sp < q < 2 and use the Gagliardo-Nirenberg-
Sobolev embedding W1,q ∩L∞ ⊂ W s,p. Assume next that s > 1. Since ∇u is homogeneous of
degree −1 and smooth outside the origin, we have ∇u ∈ Wσ,q whenever (1+σ)q < 2; this is
obtained by arguing as in [24, proof of Lemma 1 (ii), p. 44]. In particular, ∇u ∈W s−1,p, so that
u ∈W s,p.

We claim that there is no sequence {uk} ⊂ C∞(Ω ;S1) such that uk → u in W s,p. Argue by
contradiction as in [25]. Then there is some small r > 0 such that, possibly after passing to a
subsequence, uk → u in W s,p(C(0, r)); here, C(0, r) is the circle of radius r centered at the origin.

If sp > 1, this implies uniform convergence of uk to u on C(0, r). Therefore, deg(uk,C(0, r)) →
deg(u,C(0, r))= 1. However, deg(uk,C(0, r))= 0 since uk is smooth in Ω.

When sp = 1, convergence need not be uniform anymore. However, we know that W s,p(C(0, r))⊂
VMO with continuous embedding, see e. g. [14]. We conclude as above using the continuity of
the degree under BMO convergence [14].

When Ω⊂R
n, with n ≥ 3, one argues similarly using the map u(x)=

(x1, x2)

|(x1, x2)|
, x= (x1, . . . , xn).

b) Assume that sp < 1. Let u ∈W s,p(Ω ;S1). By [5], one may write u = eıϕ, with ϕ ∈W s,p(Ω ;R). If
{ϕk} ⊂ C∞(Ω ;R) converges to ϕ in W s,p, it is immediate that uk := eıϕk → u in W s,p (see e.g. [6,
proof of (5.43)]).

c) Assume that s ≥ 1 and sp ≥ 2. Then we may write u = veıϕ, with v ∈ C∞(Ω ;S1) and ϕ ∈

W s,p ∩W1,sp(Ω ;R) [12, Cases 2 and 3, pp. 128-129]. Let now {ϕk} ⊂ C∞(Ω ;R) converge to ϕ

in W s,p ∩W1,sp. Then eıϕk → eıϕ in W s,p [11, Theorem 1.1’], which immediately implies that
veıϕk → veıϕ = u in W s,p.

d) Assume that sp ≥ n. Then density of C∞(Ω ;S1) in W s,p(Ω ;S1) is well-known [25] via the
Sobolev embeddings W s,p ⊂ C0 when sp > n and W s,p ⊂VMO when sp = n. For further use, we
note that density holds also when S

1 is replaced by an arbitrary compact manifold.

We next turn to the case 0< s< 1 and 2≤ sp < n, which is the only one really new.

Proof of Theorem 1. We assume that 0 < s < 1 and 2 ≤ sp < n. Let q = sp. Recall the Gagliardo-
Nirenberg type embedding [5, Appendix D]

W1,q ∩L∞ ⊂W s,p (2.1)

(valid since q > 1). This embedding is continuous in the sense that

if fk → f in W1,q and ‖ fk‖L∞ ≤ C, then fk → f in W s,p. (2.2)

On the other hand, since q ≥ 2, a result of Bethuel and Zheng [4] asserts that C∞(Ω ;S1) is dense
in W1,q(Ω;S1). Combining this with (2.1)-(2.2), we find that

W1,q(Ω ;S1)= C∞(Ω ;S1)
W1,q

⊂ C∞(Ω ;S1)
W s,p

.
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Let now u ∈ W s,p(Ω ;S1). We start by extending u to a neighborhood ω of Ω; this is achieved via
reflections and yields a map f ∈W s,p(ω ;S1).
We next claim that the maps fk given by Theorem 6 are in W1,r for each r < [sp]+1. In particular,
we have fk ∈W1,q. To establish this fact we rely on the following

Lemma 2.1. Assume that n ≥ 2 and let U ⊂ R
n be an open set. Let K be a closed subset of U

such that H
n−1(K )= 0. Let u ∈W

1,1
loc

(U \ K ) be such that

ˆ

U\K

|∇u| <∞. Then u ∈W
1,1
loc

(U) and the

Sobolev gradient of u is the Sobolev gradient of u|U\K .

This result is proved in [12, Lemma 2.15]. [For similar results, see e.g. [18, Lemma 3], [15,
Introduction].] We apply this lemma with U = C

k and K = Σk, the set of discontinuity points of
fk; this is the “dual skeleton” of S

k. Then Σk is a finite union of (n− j−1)-dimensional cubes, and
thus H

n−1(K )= 0. On the other hand, a straightforward calculation yields

|∇ fk(x)| ≤
Ck

dist(x,Σk)
, ∀ x ∈C

k \Σk, (2.3)

and thus ∇ fk ∈ Lr when r < j+1. We find that fk ∈ W
1,1
loc

(C k), and actually fk ∈ W1,r(C k) when
r < j+1.

Thus

W s,p(Ω ;S1)⊂W1,q(Ω ;S1)
W s,p

⊂ C∞(Ω ;S1)
W s,p

. ä

3 The case of a general target manifold

Here we will address several questions related to the space W s,p(Ω ; N), where Ω is a smooth
bounded domain in R

n and N is a compact manifold without boundary embedded in R
m.

3.1 Proof of Theorem 3 using Theorems 5 and 6

We start by extending a map u ∈W s,p(Ω ; N) to a map f ∈W s,p(ω ; N).
If sp < 1, then the maps fk given by Theorem 5 are piecewise constant, and thus in Rs,p, and we
are done.
Assume next that sp ≥ 1. Let q be such that sp < q < [sp]+ 1. Note that 1 < q < n and that
[q] = [sp]. As in the proof of Theorem 1, (2.1) and (2.2) hold (since q > 1 and q ≥ sp). Combining
(2.1) and (2.2) with Bethuel’s density result for the class R1,q (valid since q < n), we find that
R1,q ⊂Rs,p and

W1,q(Ω ; N)=R1,q
W1,q

⊂R1,q
W s,p

⊂Rs,p
W s,p

.

Since the maps fk given by Theorem 6 are in W1,q (this uses the fact that q < [sp]+1), we obtain

W s,p(Ω ; N)⊂W1,q(Ω ; N)
W s,p

⊂Rs,p
W s,p

. ä

3.2 Proof of Theorem 4 using Theorems 5 and 6

We start with the case sp < 1; here, the topological condition is that N is connected, which is
satisfied by assumption. As we will see, in this case Ω could be any smooth domain.

If N is a curve, then N is diffeomorphic to S
1, and a straightforward argument reduces the

problem to the one of the density of C∞(Ω ;S1) in W s,p(Ω ;S1), which follows from Theorem 1.
Assume next that dim N ≥ 2. Let u ∈ W s,p(Ω ; N). We first extend it near Ω, next we consider

6



a map fk as in Theorem 5. It suffices to prove that such a map, which is piecewise constant,
can be approximated by smooth N-valued maps. Now fk assumes ony finitely many values, say
a1, . . . ,al . Let Γ ⊂ N be a smooth simple curve that contains a1, . . . ,al . Then fk ∈ W s,p(Ω ;Γ). By
our discussion on curves, fk may be approximated by Γ-valued (thus N-valued) smooth maps.

We now turn to the case 1≤ sp < n.

Condition π[sp](N) = 0 is necessary. Let j = [sp]. Argue by contradiction and let v ∈ C∞(S j ; N)
such that v is not homotopic to a constant. Assume that Ω is the unit ball and let u : Ω → N,

u(x)= v

(
(x1, . . . , x j+1)

|(x1, . . . , x j+1)|

)
; here, | | stands for the Euclidean norm. It is easy to see that u ∈W1,q for

each q < j+1, and thus u ∈ W s,p. As in the proof of a) in Section 2, the stability of the homotopy
class under uniform (or BMO) convergence implies that there is no sequence {uk} of smooth N-
valued maps such that uk → u in W s,p.

Condition π[sp](N) = 0 is sufficient. It suffices to prove that each map fk given by Theorem 6
can be approximated by smooth maps. Let q be such that sp < q < [sp]+1, so that [q]= [sp]. Then
C∞(Ω ; N) is dense in W1,q(Ω ; N), since π[q](N) = 0 and Ω is a ball [3], [16]. The proof of Theorem
3 implies that C∞(Ω ; N) is dense in W s,p(Ω ; N). ä

Corollary 3.1. If I is a bounded interval, then C∞(I; N) is dense in W s,p(I; N) for each s and p.

Proof. When sp < 1, density follows from Theorem 4. When sp ≥ 1, we are in case d) discussed in
Section 2 and we still have density.

4 Approximation by homogeneous extensions

At the end of Section 5, we will present two proofs of Theorem 5. The first one is quite long, but
covers all the possible cases and has the advantage of introducing several calculations which will
prove useful in Sections 6-8.

The second proof, much shorter, is valid under the additional assumption j ≥ 1. It relies on
two rather short calculations and on interpolation. While the same strategy could serve to prove
some of the auxiliary results in later sections, e.g. Lemma 8.1, it is unclear whether this approach
could be used in obtaining Lemmas 6.2 and 7.3, which are at the heart of the proof of Theorem
6. If interpolation could help in obtaining Lemmas 6.2 and 7.3, then this approach would lead to
significantly shorter proofs of Theorems 5 and 6.

For the convenience of the reader, the “long proof” of Theorem 5 is split into two parts: this
section is devoted to approximation by piecewise (n−1)-homogeneous maps. Section 5 treats the
case of piecewise j-homogeneous maps, with j ≤ n−2. The proofs of Theorem 5 are presented at
the end of Section 5.

Throughout the remaining sections, C will denote a constant depending only on n, s and p. If
necessary, we will enhance the dependence on the parameters by denoting C = C(n, s, p), etc.

If f : Rn → R
m, one may associate to f a family { fT,ε}T∈Rn,ε>0 of piecewise (n−1)-homogeneous

maps as follows: for each T ∈ R
n, there exists exactly one horizontal (=with faces parallel to the

coordinate hyperplanes) mesh of size 2ε having T as one of its centers. [The mesh consists of
the cubes 2εK + (−ε,ε)n, with K ∈ Z

n.] We restrict f to the boundary of this mesh, next extend
homogeneously this restriction to the cubes of the mesh. The map obtained by this procedure will
be denoted fT,ε or simply fT when ε is fixed.
Analytically, fT,ε is defined as follows: let | | denote the sup norm in R

n. For ε> 0, let

Qε(X )= {Y ∈R
n ; |Y − X | < ε}, Qε =Qε(0).

For a.e. X ∈R
n, there exists a unique K ∈Z

n such that X ∈Qε(T +2εK ). Then

fT (X )= fT,ε(X )= f

(
T +2εK +ε

X −T −2εK

|X −T −2εK |

)
.
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This section is essentially devoted to the proof of

Lemma 4.1. Let 0 < s < 1,1 ≤ p < ∞ be such that sp < n. For each f ∈ W s,p(Rn;Rm) there are
sequences εk → 0 and {Tk}⊂R

n such that fTk ,εk
→ f in W s,p(Rn).

Proof. We will establish the following estimate

1

εn

ˆ

Qε

‖ f − fT,ε‖
p

W s,p dT ≤ a(ε)+b(ε), (4.1)

where

a(ε) → 0 as ε→ 0 and

1
ˆ

0

b(ε)

ε
dε<∞. (4.2)

Assume (4.1) proved for the moment. Then (4.2) implies that, for a sequence εk → 0, we have
a(εk)+b(εk)→ 0. The conclusion of Lemma 4.1 is then an immediate consequence of (4.1).

We next turn to the proof of (4.1). A warning about notation. The calculations below will
involve multiple integrals. In order to make these calculations easier to follow, an integral of the

form

ˆ

A×B

f (X ,Y ) dX dY will be denoted

ˆ

A

dX

ˆ

B

dY f (X ,Y ).

For the convenience of the reader, we split the proof of (4.1) into several steps.

Step 1. We have

A :=
1

εn

ˆ

Qε

‖ f − fT,ε‖
p

Lp dT → 0 as ε→ 0. (4.3)

Indeed, since (Qε(T +2εK ))K∈Zn is an a.e. partition of Rn and fT = fT+2εK for T ∈ R
n and K ∈Z

n,
we have

A =
1

εn

ˆ

|T|<ε

dT
∑

K∈Zn

ˆ

Qε(T+2εK)

| f (X )− fT (X )|pdX =
1

εn

ˆ

Rn

dX

ˆ

Qε(X )

| f (X )− fT (X )|pdT =

=
1

εn

ˆ

Rn

dX

ˆ

Qε

∣∣∣∣ f (X )− f

(
X +Y −ε

Y

|Y |

)∣∣∣∣
p

dY =
1

εn

ˆ

Qε

∥∥∥∥ f (·)− f

(
·+Y −ε

Y

|Y |

)∥∥∥∥
p

Lp

dY .
(4.4)

We note that Y ∈Qε =⇒ Y −ε
Y

|Y |
∈Qε. Therefore,

A ≤ 2n sup{‖ f (·)− f (·+Y )‖p

Lp ; |Y | ≤ ε}. (4.5)

Inequality (4.5) implies (4.3) and completes Step 1.

In order to complete the proof of Lemma 4.1, it remains to estimate

B :=
1

εn

ˆ

Qε

| f − fT |
p

W s,p dT

=
1

εn

ˆ

Qε

dT

ˆ

Rn

ˆ

Rn

dX dY
|[ f (X )− fT (X )]− [ f (Y )− fT (Y )]|p

|X −Y |n+sp
.
,
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and more specifically to obtain an upper bound of the form B ≤ a(ε)+b(ε), with a and b as in (4.2).
To this end, we use the inequalities

|[ f (X )− fT (X )]− [ f (Y )− fT(Y )]|p ≤

{
C(| f (X )− fT (X )|p +| f (Y )− fT (Y )|p), if |X −Y | > ε

C(| f (X )− f (Y )|p +| fT (X )− fT (Y )|p), if |X −Y | ≤ ε
.

We find that

B ≤ C(I + J+D), (4.6)

where

I =
1

εn

ˆ

Qε

dT

Ï

|X−Y |>ε

dX dY
| f (X )− fT (X )|p

|X −Y |n+sp
,

J =
1

εn

ˆ

Qε

dT

Ï

|X−Y |<ε

dX dY
| f (X )− f (Y )|p

|X −Y |n+sp

and

D =
1

εn

ˆ

Qε

dT

Ï

|X−Y |<ε

dX dY
| fT (X )− fT (Y )|p

|X −Y |n+sp
. (4.7)

Thus our purpose is to establish the estimates

I ≤ a(ε)+b(ε), J ≤ a(ε)+b(ε), D ≤ a(ε)+b(ε), (4.8)

with a(ε) and b(ε) as in (4.2).
Clearly,

J = 2n

Ï

|X−Y |<ε

dX dY
| f (X )− f (Y )|p

|X −Y |n+sp
→ 0 as ε→ 0.

Therefore, it remains to estimate I and D.

Step 2. Estimate of I

We have

I =
C

εn

ˆ

Qε

dT

ˆ

Rn

dX
| f (X )− fT (X )|p

εsp
=

C

εn+sp

ˆ

Qε

dT

ˆ

Rn

dX | f (X )− fT (X )|p.

As in the proof of (4.4), we find that

I =
C

εn+sp

ˆ

Rn

dX

ˆ

Qε

dY

∣∣∣∣ f (X )− f

(
X +Y −ε

Y

|Y |

)∣∣∣∣
p

.

We next introduce a change of variables widely used in what follows. We write Y = δω (or
Y = rω or Y = λω elsewhere), where δ = |Y | = max{|Y1|, . . . , |Yn|} and |ω| = 1. We will denote the
new variables δ and ω as polar coordinates.

In polar coordinates, the expression of I becomes

I =
C

εn+sp

ˆ

Rn

dX

ε
ˆ

0

δn−1dδ

ˆ

|ω|=1

dω | f (X )− f (X +δω−εω)|p =

=
C

εn+sp

ˆ

Rn

dX

ε
ˆ

0

(ε−λ)n−1dλ

ˆ

|ω|=1

dω | f (X )− f (X −λω)|p =

=
C

εn+sp

ˆ

Rn

dX

ˆ

|Y |<ε

dY
(ε−|Y |)n−1

|Y |n−1 | f (X )− f (X −Y )|p.

(4.9)
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Since clearly

(ε−|Y |)n−1

εn+sp|Y |n−1 ≤
1

|Y |n+sp
if |Y | < ε≤ 1, (4.10)

we find that

I ≤ C

Ï

|X−Z|<ε

dX dZ
| f (X )− f (Z)|p

|X −Z|n+sp
→ 0 as ε→ 0,

and thus I satisfies (4.8).

Step 3. Estimate of D

We start by noting that, if X ∈Qε(T +2εK ) and |Y − X | < ε, then

Y ∈
⋃

L∈Zn

|L|≤1

Qε(T +2ε(K +L)).

Therefore,

D ≤
1

εn

ˆ

Qε

dT
∑

K ,L∈Zn

|L|≤1

ˆ

Qε(T+2εK)

dX

ˆ

Qε(T+2ε(K+L))

dY
| fT (X )− fT (Y )|p

|X −Y |n+sp
.

For L ∈Z
n, set

DL =
1

εn

ˆ

Qε

dT
∑

K∈Zn

ˆ

Qε(T+2εK)

dX

ˆ

Qε(T+2ε(K+L))

dY
| fT (X )− fT (Y )|p

|X −Y |n+sp
, (4.11)

so that

D ≤
∑

L∈Zn

|L|≤1

DL.

We estimate separately each DL. We consider two cases: L = 0 and |L| = 1.

Step 3.1. Estimate of D0

Since fT = fT+2εK , ∀T ∈R
n, ∀K ∈Z

n, we have

D0 =
1

εn

ˆ

Qε

dT
∑

K∈Zn

ˆ

Qε(T+2εK)

dX

ˆ

Qε(T+2εK)

dY
| fT (X )− fT (Y )|p

|X −Y |n+sp
=

=
1

εn

ˆ

Rn

dU

ˆ

Qε(U)

dX

ˆ

Qε(U)

dY
| fU (X )− fU (Y )|p

|X −Y |n+sp
.

In polar coordinates, we obtain

D0 =
1

εn

ˆ

Rn

dU

ε
ˆ

0

δn−1dδ

ε
ˆ

0

λn−1dλ

ˆ

|ω|=1

dω

ˆ

|σ|=1

dσ
| fU (U +δω)− fU (U +λσ)|p

|δω−λσ|n+sp
.

Since fU (U +δω)= f (U +εω) and fU (U +λσ) = f (U +εσ), we find that

D0 =
1

εn

ˆ

Rn

dU

ˆ

|ω|=1

dω

ˆ

|σ|=1

dσ | f (U +εω)− f (U +εσ)|pk(ω,σ), (4.12)
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where

k(ω,σ)=

ε
ˆ

0

δn−1dδ

ε
ˆ

0

λn−1 dλ
1

|δω−λσ|n+sp
.

In order to complete Step 3.1, we will use

Lemma 4.2. Assume that sp < n. Then, for |ω| = |σ| = 1, we have

k(ω,σ)≤
Cεn−sp

|ω−σ|n+sp−1
. (4.13)

Remark 4.3. In the proof of Lemma 4.1, the condition sp < n is used only to obtain (4.13) and its
more general form (4.17).

Proof of Lemma 4.2. We have k(ω,σ)= k(ω,σ)+ k̃(ω,σ), where k(ω,σ)=
Ï

λ≤δ

. . . , k̃(ω,σ)=
Ï

δ≤λ

. . . We

will establish (4.13) for k(ω,σ) replaced by k(ω,σ); a similar inequality holds for k̃(ω,σ). We have

k(ω,σ)=

ε
ˆ

0

δn−1dδ

δ
ˆ

0

λn−1dλ
1

|δω−λσ|n+sp
=

=

1
ˆ

0

(tε)n−1εdt

1
ˆ

0

(tτε)n−1tεdτ
1

tn+spεn+sp|ω−τσ|n+sp
.

Thus,

k(ω,σ)= εn−sp

1
ˆ

0

tn−sp−1dt

1
ˆ

0

τn−1 dτ

|ω−τσ|n+sp
≤ Cεn−sp

1
ˆ

0

τn−1 dτ

|ω−τσ|n+sp

(here, we use the fact that sp < n).
We complete the proof of Lemma 4.2 by establishing the following inequality.

F :=

1
ˆ

0

τn−1 dτ

|ω−τσ|n+sp
≤

C

|ω−σ|n+sp−1
if |ω| = |σ| = 1. (4.14)

Indeed, if |ω−σ| ≥
1

20
, inequality (4.14) is clear, since in this case we have |ω−τσ| ≥ C, for 0≤ τ≤ 1.

Let now |ω−σ| <
1

20
. We split F = F1 +F2, where F1 =

1−3|ω−σ|
ˆ

0

. . ., F2 =

1
ˆ

1−3|ω−σ|

. . .

On the one hand, we have

|ω−τσ| ≥ C|ω−σ| if |ω| = |σ| = 1 and τ ∈R.

Therefore,

F2 ≤
C|ω−σ|

|ω−σ|n+sp
≤

C

|ω−σ|n+sp−1 . (4.15)

On the other hand, when 0≤ τ≤ 1 we have

|ω−τσ| = |(1−τ)ω+τ(ω−σ)| ≥ 1−τ−τ|ω−σ| = 1−τ(1+|ω−σ|).
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Thus

F1 ≤

1−3|ω−σ|
ˆ

0

τn−1 dτ

[1−τ(1+|ω−σ|)]n+sp
=

1

(1+|ω−σ|)n

1
ˆ

2|ω−σ|+3|ω−σ|2

(1− t)n−1

tn+sp
dt

≤

1
ˆ

2|ω−σ|+3|ω−σ|2

dt

tn+sp
≤

C

|ω−σ|n+sp−1
.

(4.16)

We obtain (4.14) when |ω−σ| <
1

20
combining (4.15) with (4.16).

The proof of Lemma 4.2 is complete.

Remark 4.4. For further use, we note that the proof of Lemma 4.2 shows that (4.14) holds under
more general assumptions on ω and σ. More specifically, if sp < n then we have

1
ˆ

0

τn−1 dτ

|ω−τσ|n+sp
≤

C

|ω−σ|n+sp−1
if |σ| = 1 and 1≤ |ω| ≤ 3. (4.17)

Step 3.1 continued. Recall that we want to establish an estimate of the form D0 ≤ a(ε)+b(ε).
By (4.12) and Lemma 4.2, we have

D0 ≤
C

εsp

ˆ

Rn

dU

ˆ

|ω|=1

dω

ˆ

|σ|=1

dσ
| f (U +εω)− f (U +εσ)|

|ω−σ|n+sp−1

p

=
C

εn−1

ˆ

Rn

dU

ˆ

|ω|=ε

dω

ˆ

|σ|=ε

dσ
| f (U +ω)− f (U +σ)|

|ω−σ|n+sp−1

p

=
C

εn−1

ˆ

Rn

dU

ˆ

|ω|=ε

dω

ˆ

|σ|=ε

dσ
| f (U +ω−σ)− f (U)|

|ω−σ|n+sp−1

p

=
C

εn−1

ˆ

Rn

dU

ˆ

|ω|=ε

dω

ˆ

|λ−ω|=ε

dλ
| f (U +λ)− f (U)|p

|λ|n+sp−1
.

(4.18)

Here is another lemma needed in Step 3.1.

Lemma 4.5. Let G(λ)≥ 0 be any measurable function. Then

H :=

ˆ

|ω|=ε

dω

ˆ

|λ−ω|=ε

dλG(λ)≤ C

(
εn−2H0 +εn−1

n∑

j=1

1∑
q=−1

H j,q

)
, (4.19)

where

H0 :=

ˆ

|λ|≤2ε

dλG(λ), H j,q :=

ˆ

|λ̂ j|≤2ε
λ j=2qε

dλ̂ j G(λ).

Here, we use the standard notation λ̂ j = (λ1, . . . ,λ j−1,λ j+1, . . . ,λn).

Proof of Lemma 4.5. We have

H =
n∑

j=1

n∑

l=1

ˆ

|ω̂ j |≤ε

|ω j |=ε

dω̂ j

ˆ

|�λ−ωl |≤ε

|(λ−ω)l |=ε

dλ̂l G(λ) :=
n∑

j=1

n∑

l=1
E j,l . (4.20)
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We first estimate E j,l for j 6= l. Assume e.g. j = 1, l = n. Then

E1,n =

ˆ

|ω̂1|≤ε
ω1=±ε

dω̂1

ˆ

|�λ−ωn|≤ε

λn=ωn±ε

dλ̂n G(λ)

≤ 2

ˆ

|λ|≤2ε

dλG(λ)

ˆ

|ωk|≤ε,∀k∈J2,n−1K

dω2 . . .dωn−1 ≤ Cεn−2
ˆ

|λ|≤2ε

dλG(λ).

(4.21)

Let now j = l. Assume e.g. j = l = n. Since ωn = ±ε and λn = ωn ±ε, we have λn ∈ {−2ε,0,2ε}.
Therefore,

En,n = 2

ˆ

|ω̂n|≤ε

dω̂n

ˆ

|�λ−ωn|≤ε

λn∈{0,±2ε}

dλ̂n G(λ)

≤ C

ˆ

|λ̂n|≤2ε
λn∈{0,±2ε}

dλ̂n

ˆ

|ω̂n|≤ε

dω̂n G(λ)= Cεn−1
1∑

q=−1

ˆ

|λ̂n|≤2ε
λn=2qε

dλ̂n G(λ).

(4.22)

Lemma 4.5 follows from (4.20)-(4.22).

Step 3.1 continued. Recall that we look for an estimate of the form D0 ≤ a(ε)+b(ε).
By (4.18) and Lemma 4.5 applied with

G(λ)=G(U ,λ)=
| f (U +λ)− f (U)|p

|λ|n+sp−1 ,

we find that

D0 ≤ C
1

ε

ˆ

Rn

dU

ˆ

|λ|≤2ε

dλ G(U ,λ)+C
n∑

j=1

1∑
q=−1

ˆ

Rn

dU

ˆ

|λ̂ j|≤2ε
λ j=2qε

dλ̂ j G(U ,λ)

:= C(P0+
n∑

j=1

(
P j,0 +P j,2ε+P j,−2ε)

)
.

(4.23)

In view of the above, we will establish estimates of the form P ≤ a(ε)+ b(ε), where P is one of
the P0, P j,0, P j,±2ε.

Estimate of P0. We have

1
ˆ

0

dε
P0

ε
=

ˆ

Rn

dU

1
ˆ

0

dε

ε2

ˆ

|λ|≤2ε

dλ
| f (U +λ)− f (U)|p

|λ|n+sp−1

=

ˆ

Rn

dU

ˆ

|λ|≤2

dλ
| f (U +λ)− f (U)|p

|λ|n+sp−1

1
ˆ

|λ|/2

dε

ε2

≤ C

ˆ

Rn

dU

ˆ

|λ|≤2

dλ
| f (U +λ)− f (U)|p

|λ|n+sp

= C

Ï

|X−Y |<2

dX dY
| f (X )− f (Y )|p

|X −Y |n+sp
<∞.

(4.24)
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Estimate of P j,2ε. (A similar estimate holds for P j,−2ε.) Assume e.g. j = n. Then

Pn,2ε =

ˆ

Rn

dU

ˆ

|λ̂n|≤2ε

dλ̂n

| f (U + (λ̂n,2ε))− f (U)|p

(2ε)n+sp−1 ,

so that

1
ˆ

0

dε
Pn,2ε

ε
= C

1
ˆ

0

dε

εn+sp

ˆ

Rn

dU

ˆ

|λ̂n|≤2ε

dλ̂n | f (U + (λ̂n,2ε))− f (U)|p

= C

ˆ

Rn

dU

ˆ

|λ|=λn≤2

dλ
| f (U +λ)− f (U)|p

|λ|n+sp

≤ C

ˆ

Rn

dU

ˆ

|λ|≤2

dλ
| f (U +λ)− f (U)|p

|λ|n+sp
<∞.

(4.25)

Estimate of P j,0. Assume j = n. Then

Pn,0 =

ˆ

Rn

dU

ˆ

|λ̂n|≤2ε

dλ̂n

| f (U + (λ̂n,0))− f (U)|p

|λ̂n|
n+sp−1

. (4.26)

In order to estimate Pn,0, we rely on a variant of a well-known lemma due to Besov [1, proof of
Lemma 7.44, p. 208], more precisely

Lemma 4.6. We have, for 1≤ l ≤ n,

Rl :=

ˆ

Rn

dU

ˆ

|λk|≤ε,∀k≤l

dλ1 . . .dλl

∣∣∣∣∣ f

(
U +

l∑

k=1
λkek

)
− f (U)

∣∣∣∣∣

p

|(λ1, . . . ,λl)|l+sp

≤ C

ˆ

Rn

dU

ˆ

|λ|≤2ε

dλ
| f (U +λ)− f (U)|p

|λ|n+sp
.

(4.27)

The standard form of Lemma 4.6 corresponds corresponds to l = 1. The proof we present below
for arbitrary l is essentially the same as for l = 1.

Proof of Lemma 4.6. For λ′ = (λ1, . . . ,λl) ∈ R
l and U ∈ R

n, let W = Wλ′,U := U +

j∑

k=1
λk ek. Let Q =

Qλ′,U be the cube centered at the midpoint of the segment [U ,W] and of sidelength
1

4
|λ′|. For any

V ∈Q, we have
∣∣∣∣∣ f

(
U +

l∑

k=1
λk ek

)
− f (U)

∣∣∣∣∣

p

≤ C(| f (V )− f (U)|p +| f (V )− f (W)|p). (4.28)

By taking the average integral of (4.28) in V over Q , we find that

Rl ≤ C

ˆ

Rn

dU

ˆ

|λ′|≤ε

dλ′

ˆ

Q

dV

|λ′|l+sp
{| f (V )− f (U)|p +| f (V )− f (W)|p}

= 2C

ˆ

Rn

dU

ˆ

|λ′|≤ε

dλ′

ˆ

Q

dV
| f (V )− f (U)|p

|λ′|l+sp+n
.
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Noting that |V −U | ≤ 2|λ′|, we obtain

Rl ≤ C

ˆ

Rn

dU

ˆ

|V−U |≤2ε

dV | f (V )− f (U)|p
ˆ

1/2|V−U |≤|λ′|≤ε

dλ′

|λ′|l+sp+n

≤ C

ˆ

Rn

dU

ˆ

|V−U |≤2ε

dV
| f (V )− f (U)|n

|V −U |n+sp
.

The proof of Lemma 4.6 is complete.

Step 3.1. completed. Lemma 4.6 and (4.26) imply that

P j,0 −→ 0 as ε−→ 0, ∀ j ∈ J1, nK.

Step 3.1 is now complete.

Step 3.2. Estimate of DL when L ∈ Z
n and |L| = 1. Similarly to Step 3.1, we will establish an

estimate of the form DL ≤ a(ε)+b(ε).
Recall that

DL =
1

εn

ˆ

Qε

dT
∑

K∈Zn

ˆ

Qε(T+2εK)

dX

ˆ

Qε(T+2ε(K+L))

dY
| fT (X )− fT (Y )|p

|X −Y |n+sp
.

If we set V =VU =U +2εL, XU =U +
X −U

|X −U |
and YV =V +

Y −V

|Y −V |
, then we have

DL =
1

εn

ˆ

Rn

dU

ˆ

Qε(U)

dX

ˆ

Qε(V )

dY
| f (XU )− f (YV )|p

|X −Y |n+sp
.

In polar coordinates, we obtain

DL =
1

εn

ˆ

Rn

dU

ε
ˆ

0

δn−1dδ

ε
ˆ

0

λn−1dλ

ˆ

|ω|=1

dω

ˆ

|σ|=1

dσ
| f (U +εω)− f (V +εσ)|p

|δω−λσ−2εL|n+sp

=
1

εn

ˆ

Rn

dU

ˆ

|ω|=1

dω

ˆ

|σ|=1

dσ | f (U +εω)− f (V +εσ)|p k(ω,σ),

where

k(ω,σ)=

ε
ˆ

0

δn−1dδ

ε
ˆ

0

λn−1dλ
1

|δω−λσ−2εL|n+sp
.

To estimate DL, we rely on a variant of Lemma 4.2 (which formally corresponds to L = 0 in
(4.29)).

Lemma 4.7. Assume that sp < n. For |ω| = |σ| = 1 and L ∈Z
n with |L| = 1 we have

k(ω,σ)≤
Cεn−sp

|ω−σ−2L|n+sp−1
. (4.29)
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Proof of Lemma 4.7. We have

k(ω,σ)= εn−sp

1
ˆ

0

tn−1dt

1
ˆ

0

τn−1dτ
1

|tω−τσ−2L|n+sp
. (4.30)

We claim that

|tω−τσ−2L| ≥ C|tω−σ−2L|. (4.31)

Indeed, when 0 ≤ τ ≤ 1/2, inequality (4.31) is clear, since in this case we have |tω−σ− 2L| ≤

4 and |tω−τσ−2L| ≥ 2− t−τ≥ 1/2.
Assume now τ≥ 1/2. We consider the map

ϕ : Q1 ∪ (Q1(2L)àQ1/2(2L))−→R
n,

defined by

ϕ(X ) =





X , if X ∈Q1

2L+
X −2L

|X −2L|
, if X ∈Q1(2L)àQ1/2(2L)

.

It is easy to check that ϕ is well-defined, in the sense that

X = 2L+
X −2L

|X −2L|
for every X ∈Q1 ∩Q1(2L).

Note that, in Q1(2L)àQ1/2(2L), ϕ is the radial projection centered at 2L on ∂Q1(2L). Clearly,
ϕ is Lipschitz. Inequality (4.31) for 1/2≤ τ≤ 1 is now obvious, since it reads

|ϕ(tω)−ϕ(τσ+2L)| ≤
1

C
|tω− (τσ+2L)|.

Combining (4.30) and (4.31), we obtain

k(ω,σ)≤ Cεn−sp

1
ˆ

0

tn−1 dt

|tω−σ−2L|n+sp
. (4.32)

Applying (4.17) with ω replaced by σ+2L and σ replaced by ω (here, we use sp < n), we obtain
(4.29) from (4.17) and (4.32).

The proof of Lemma 4.7 is complete.

Step 3.2 continued. We continue our way to an estimate of the form DL ≤ a(ε)+b(ε).
By Lemma 4.7 we obtain

DL ≤
C

εsp

ˆ

Rn

dU

ˆ

|ω|=1

dω

ˆ

|σ|=1

dσ
| f (U +εω)− f (U +εσ+2εL)|p

|ω−σ−2L|n+sp−1

=
C

εn−1

ˆ

Rn

dU

ˆ

|ω|=ε

dω

ˆ

|σ|=ε

dσ
| f (U)− f (U +2εL+σ−ω)|p

|2εL+σ−ω|n+sp−1
.

Thus

DL ≤
C

εn−1

ˆ

Rn

dU

ˆ

|ω|=ε

dω

ˆ

|λ+ω−2εL|=ε

dλ
| f (U)− f (U +λ)|p

|λ|n+sp−1
. (4.33)

We combine (4.33) with the following straightforward variant of Lemma 4.5, whose proof is left to
the reader:
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Lemma 4.8. Let G(λ)≥ 0 be any measurable function. Then for L ∈Z
n with |L| = 1 we have

H :=

ˆ

|ω|=ε

dω

ˆ

|λ+ω−2εL|=ε

dλG(λ)≤ C

(
εn−2H0 +εn−1

n∑

j=1

2∑
q=−2

H j,q

)
, (4.34)

where

H0 :=

ˆ

|λ|≤4ε

dλG(λ), H j,q :=

ˆ

|λ̂ j|≤4ε
λ j=2qε

dλ̂ j G(λ).

Step 3.2 completed. By (4.33) and Lemma 4.8, we obtain

DL ≤
C

ε

ˆ

Rn

dU

ˆ

|λ|≤4ε

| f (U +λ)− f (U)|p

|λ|n+sp−1 dλ

+C
n∑

j=1

2∑
q=−2

ˆ

|λ̂ j|≤4ε
λ j=2qε

dλ̂ j

| f (U +λ)− f (U)|p

|λ|n+sp−1 .
(4.35)

Estimate (4.35) is similar to (4.23) and we handle it in the same way.
The proof of Lemma 4.1 is complete.

We end this section by proving that, in W1,p, approximation by piecewise homogeneous maps
fails. The special case we treat below (p = 1, n = 2) is easily generalized to any dimension or p.

Lemma 4.9. Let u(x1, x2) = x1. Then there is no sequence {uk} of piecewise 1-homogeneous maps
associated to meshes contained in (−1,2)2 such that uk → u in W1,1((0,1)2).

Note that the conclusion of the lemma is that not only the estimates given by Lemma 4.1
do not hold when s = 1, but also that any possible approximation method relying on piecewise
homogeneous maps fails.

Proof. We argue by contradiction and assume that there exists a sequence {uk} of piecewise 1-
homogeneous maps associated to meshes contained in (−1,2)2 such that uk → u in W1,1. Let uk be
piecewise 1-homogeneous on the mesh C

k, with (0,1)2 ⊂C
k ⊂ (−1,2)2. Let 2lk (with lk ≤ 2) be the

size of the squares in Ck and set

Dk = {Q ∈Ck ; Q ⊂ (0,1)2}.

Clearly, there is some l0 > 0 such that

if lk < l0, then
∣∣∣

⋃
Q∈Dk

Q
∣∣∣≥ 1/2. (4.36)

We distinguish two possibilities:

Case 1. lk < l0

Let S be the center of Q = Qlk
(S) ∈ Dk. For X ∈ Q \ {S}, set V = V (X ) = (X −S)/‖X −S‖; here, ‖ ‖

stands for the Euclidean norm. Since uk is constant along the segment [S, X ], we have
∂uk

∂V
(X )= 0

a.e. in X . Therefore,

|(∇uk −∇u)(X )| ≥

∣∣∣∣
∂uk

∂V
(X )−

∂u

∂V
(X )

∣∣∣∣= |V1|. (4.37)
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We find that
ˆ

Q

|∇uk −∇u| ≥

ˆ

Q

|V1| ≥ Cl2
k = C|Q|;

the last inequality follows by scaling. Using (4.36), we find that

‖uk −u‖W1,1((0,1)2) ≥ C. (4.38)

Thus, for large k, we are in

Case 2. lk ≥ l0

Possibly after passing to a subsequence, we may assume that:

a) lk → l for some l ≥ l0.

b) All the meshes Ck contain the same number of squares, say m.

c) The centers of the squares Q1,k, . . . ,Qm,k in Ck, say S1,k, . . . ,Sm,k, converge respectively to
S1, . . . ,Sm.

Set Q j =Ql(S j). By (4.37) and dominated convergence, we have

lim
k

ˆ

(0,1)2

|∇(uk −u)| ≥ lim
k

∑

j

ˆ

Q j,k∩(0,1)2

|(X −S j,k)1|

|X −S j,k|
=

∑

j

ˆ

Q j∩(0,1)2

|(X −S j)1|

|X −S j|
> 0.

This contradiction completes the proof of Lemma 4.9.

5 A more general approximation method

The approximation method described in Section 4 goes as follows: fix some ε > 0 and T ∈ R
n.

Consider the mesh Cn of n-dimensional cubes of sidelength 2ε having T as one of the centers.
Let Cn−1 be the (n−1)-dimensional skeleton associated to this mesh, i.e., Cn−1 is the union of the
boundaries of the cubes in Cn. Let Hn be the mapping that associates to every g : Cn−1 → R

m its
homogeneous extension (on each cube of Cn) to R

n. Lemma 4.1 asserts that, if 0< s< 1, sp < n and
f ∈W s,p(Rn;Rm), then Hn( f |Cn−1)→ f in W s,p(Rn) for some suitable choice of εk → 0 and Tk ∈R

n.

We will describe below a more general situation. We start by defining the lower dimensional
skeletons associated to Cn. This is done by backward induction: Cn−2 is the union of the (n−

2)-dimensional boundaries of the cubes in Cn−1, and so on. For g : C j → R
m, let H j+1(g) be its

homogeneous extension to C j+1.
Let 0≤ j < n. For ε> 0 and T ∈R

n, we associate to each map f :Rn →R
m a map fT = fT,ε :Rn →

R
m through the formula

fT = Hn(Hn−1(· · · (H j+1( f |C j
)) · · · )).

We start by deriving a useful formula for fT . It will be convenient to denote by X j the projection
of X ∈Qε onto the j-skeleton of Qε; in particular, we have X n = X . In order to keep notation easier
to follow, we will often denote a point in R

n by X n rather than X .
Let K ∈Z

n and set U = T +2εK . We consider the following a.e. partition of Qε:

Qε =
⋃

q∈{−1,1}n− j

⋃
σ∈Sn− j,n

Qε,q,σ. (5.1)

Here, Sn− j,n = {σ : {1, . . ., n− j}→ {1, . . ., n}; σ into }.
A point X n ∈Qε belongs to Qε,q,σ provided:
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a) The σ(i)th coordinate of X n, denoted (X n)σ(i), has the sign of q i, for i ∈ J1, n− jK.

b) In absolute value, the largest coordinate of X n is (X n)σ(1), the second largest is (X n)σ(2),. . ., the
(n− j)th largest is (X n)σ(n− j).

Analytically, this means that Qε,q,σ is defined by the inequalities

q1(X n)σ(1) ≥ ·· · ≥ qn− j(X
n)σ(n− j) ≥ |(X n)k|,∀k 6=σ(1), . . . ,σ(n− j).

Let, for K ∈ Z
n, U = T +2εK . It is easy to check that, for a.e. X n ∈ Qε,q,σ, the radial projection of

U + X n onto Cn−1 is U + X n−1, where

(X n−1)σ(1) = εq1, (X n−1)l = ε
(X n)l

|(X n)σ(1)|
, ∀ l 6=σ(1).

Similary, the projection of U + X n−1 onto Cn−2 is U + X n−2, with

(X n−2)σ(1) = εq1, (X n−2)σ(2) = εq2, (X n−2)l = ε
(X n)l

|(X n)σ(2)|
, ∀ l 6=σ(1),σ(2),

and so on. In particular, we have fT (U + X n)= f (U + X j), X n ∈Qε,q,σ, where

(X j)σ(k) = εqσ(k), ∀k ∈ J1, n− jK, (X j)l = ε
(X n)l

|(X n)σ(n− j)|
, ∀ l 6=σ(1), . . .,σ(n− j).

This section is essentially devoted to the proof of the following generalization of Lemma 4.1.

Lemma 5.1. Let 0 ≤ j < n,0< s < 1, sp < j+1 and let f ∈W s,p(Rn ;Rm). Then there are sequences
εk → 0 and {Tk}⊂R

n such that fTk,εk
→ f in W s,p(Rn).

Note that Lemma 4.1 corresponds to j = n−1.

Proof of Lemma 5.1. The proof of Lemma 5.1 is similar to that of Lemma 4.1, some computations
being essentially identical. An additional difficulty appears in the estimate of D (for the definition
of D, see (4.7)). In order to facilitate the presentation we use the same notation as in Section 4,
and follow the steps in Section 4. Let us recall that our goal is to obtain estimates of the form

I ≤ a(ε)+b(ε), J ≤ a(ε)+b(ε), DL ≤ a(ε)+b(ε),

with I, J, DL analogous to the quantities introduced in the previous section, and a(ε) and b(ε)
satisfying (4.2).

Step 1. We have

A =
1

εn

ˆ

Qε

‖ f − fT,ε‖
p

Lp dT → 0 as ε→ 0. (5.2)

Indeed, as in proof of (4.3) we find that

A =
1

εn

ˆ

Qε

‖ f (·)− f (·+ X n − X j)‖p

Lp dX n.

Since X n ∈Qε ⇒ X n − X j ∈Qε, the argument used in the proof of (4.3) yields (5.2).

Step 2. Estimate of I

In our situation, I is given by

I =
C

εn+sp

ˆ

Rn

dU

ˆ

Qε

dX n| f (U)− f (U + X n − X j)|p. (5.3)
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It is convenient to split the integral

ˆ

Qε

. . . in (5.3) as

ˆ

Qε

. . .=
∑

q∈{−1,1}n− j

∑

σ∈Sn− j,n

ˆ

Qε,q,σ

. . .

We estimate, e.g., the integral I corresponding to q i = 1, σ(i) = i, ∀ i ∈ J1, n− jK, the other terms
being similar. If we set Z := X j − X n, then

I =
C

εn+sp

ˆ

Rn

dU

ˆ

|(X n)l |≤(X n)n− j ,∀ l>n− j

(X n)n− j≤(X n)n− j−1≤···≤(X n)1≤ε

dX n | f (U)− f (U −Z)|p

and

Zl =





ε− (X n)l , if l ≤ n− j(
ε

(X n)n− j

−1
)
(X n)l , if l > n− j

.

The following properties are straightforward:

0≤ Z1 ≤ ·· · ≤ Zn− j ≤ ε and |Zn− j+1|, . . . , |Zn| ≤ Zn− j, (5.4)

(X n)1 = ε−Z1, . . . , (X n)n− j = ε−Zn− j ,

(X n)n− j+1 =
ε−Zn− j

Zn− j

Zn− j+1, . . . , (X n)n =
ε−Zn− j

Zn− j

Zn,

∣∣∣∣
dX n

dZ

∣∣∣∣=
(
ε−Zn− j

Zn− j

) j

.

Thus

I ≤
C

εn+sp

ˆ

Rn

dU

ε
ˆ

0

dZn− j

ˆ

|Ẑn− j |≤Zn− j

dẐn− j

(
ε−Zn− j

Zn− j

) j

| f (U)− f (U −Z)|p. (5.5)

Since for any Z satisfying (5.4) we have

1

εn+sp

(
ε−Zn− j

Zn− j

) j

≤
1

(
Zn− j

)n+sp =
1

|Z|n+sp
,

(5.5) implies that

I ≤ C

ˆ

Rn

dU

ˆ

|Z|≤ε

dZ
| f (U)− f (U −Z)|p

|Z|n+sp
= C

Ï

|U−W|<ε

dUdW
| f (U)− f (W)|p

|U −W |n+sp
→ 0 as ε→ 0.

Step 3. Estimate of D

With DL as in (4.11), we have

D ≤
∑

L∈Zn

|L|≤1

DL.
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Step 3.1. Estimate of D0

Recall that

D0 =
1

εn

ˆ

Rn

dU

ˆ

Qε

dX n

ˆ

Qε

dY n | fU (U + X n)− fU (U +Y n)|p

|X n −Y n|n+sp

=
1

εn

ˆ

Rn

dU

ˆ

Qε

dX n

ˆ

Qε

dY n | f (U + X j)− f (U +Y j)|p

|X n −Y n|n+sp
.

If we take the partition (5.1) of Qε into account, we find that

D0 =
∑

q∈{−1,1}n− j

∑

σ∈Sn− j,n

∑

r∈{−1,1}n− j

∑

τ∈Sn− j,n

D0,q,σ,r,τ, (5.6)

where

D0,q,σ,r,τ =
1

εn

ˆ

Rn

dU

ˆ

Qε,q,σ

dX n

ˆ

Qε,r,τ

dY n | f (U + X j)− f (U +Y j)|p

|X n −Y n|n+sp
. (5.7)

We next consider a convenient parametrization of Qε,q,σ, given by





(X n)σ(1) = εq1t1, 0≤ t1 ≤ 1

(X n)σ(2) = εq2t1t2, 0≤ t2 ≤ 1
...

(X n)σ(n− j) = εqn− j t1t2 . . . tn− j, 0≤ tn− j ≤ 1

(X n)l = εt1t2 . . . tn− jωl , |ωl | ≤ 1, ∀ l 6=σ(1), . . .,σ(n− j)

. (5.8)

We note that

(X j)l =

{
εqσ−1(l), if l =σ(i) for some i

εωl , else
. (5.9)

In particular, X j depends only on the ωl ’s, not on the t i ’s; this will be used to give a meaning to
(5.10) below.

We consider a similar parametrization of Cε,r,τ, the t’s being replaced by u’s and the ω’s by λ’s.
We use the following compact notations:

ω= (ωl)l 6∈σ(J1,n− jK) and t = (t i)i∈J1,n− jK (λ, u are defined similarly).

Note that X j depends only on ω, σ and q; similarly, Y j is expressed in terms of λ, τ and r.
With the convention that 0≤ t ≤ 1 stands for 0≤ t i ≤ 1 for each i, we find that

D0,q,σ,r,τ =
1

εsp

ˆ

Rn

dU

ˆ

|ω|≤1

dω

ˆ

|λ|≤1

dλ k(ω,λ) | f (U + X j)− f (U +Y j)|p, (5.10)

where

k(ω,λ)=

ˆ

0≤t≤1

dt

ˆ

0≤u≤1

du tn−1
1 . . . t

j

n− j
un−1

1 . . .u j

n− j

εn+sp

|X n −Y n|n+sp
.

We rely on the following generalization of Lemma 4.2.
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Lemma 5.2. Let 0< s< 1, sp < j+1≤ n. Then

k(ω,λ)≤
Cε j+sp

|X j −Y j| j+sp
. (5.11)

The case j = n−1 corresponds to Lemma 4.2.

Proof. We note that inequality (5.11) makes sense, since X j (respectively Y j) depends only on ω

(respectively λ).
On the other hand, the formula that gives k(ω,λ) does not depend on ε; neither does the r.h.s. of
(5.11). Thus, when we estimate k(ω,λ), we may assume that ε= 1.
We proceed by induction on n: assuming that (5.11) holds for all integers m≤ n−1 and all j ≤ m−1,
we prove it for n and each j ≤ n−1. Note that the case n = 1 (and j = 0) is covered by Lemma 4.2.
Since X n = t1X n−1 and Y n = u1Y n−1, we have

k(ω,σ)=

ˆ

0≤t≤1

dt

ˆ

0≤u≤1

du tn−1
1 . . . t

j

n− j
un−1

1 . . .u j

n− j

1

|t1X n−1 −u1Y n−1|n+sp
.

Using the fact that |X n−1| = |Y n−1| = 1 and Lemma 4.2, we find that

1
ˆ

0

tn−1
1 dt1

1
ˆ

0

un−1
1 du1

1

|t1X n−1 −u1Y n−1|n+sp
≤

C

|X n−1 −Y n−1|n+sp−1
. (5.12)

If j = n−1, then (5.12) is the desired inequality. Assume j < n−1. Then (5.12) implies that

k(ω,σ)≤ C

ˆ

0≤t̂1≤1

dt̂1

ˆ

0≤û1≤1

dû1 tn−2
2 . . . t

j

n− j
un−2

2 . . .u j

n− j

1

|X n−1 −Y n−1|n+sp−1
. (5.13)

Next we note that one of the three cases occurs.

Case 1. σ(1)= τ(1), q1 = r1.
Case 2. σ(1)= τ(1), q1 6= r1.
Case 3. σ(1) 6= τ(1).

We will estimate the right-hand side of (5.13) in each of these cases.

Case 1. Assume e.g. σ(1) = τ(1) = 1, q1 = r1 = 1. In this case, the first coordinate of X n−1 or Y n−1

is 1, so that

|X n−1 −Y n−1| = |�X n−1
1 −

�Y n−1
1|.

The vectors �X n−1
1 and �Y n−1

1 belong to R
n−1 and are obtained from ω and λ via (5.8), with an

obvious shift in the indices of the coordinates and with n replaced by n−1.
Thus, in this case, (5.11) follows from (5.13) and the fact that the conclusion of the lemma holds
for n−1 and j.

Case 2. In this case, we have |X n−1 −Y n−1| = 2 and |X j −Y j| = 2. Inequality (5.11) follows easily
from (5.13).

Case 3. With no loss of generality, we may assume σ(1)= 1,τ(1)= 2, q1 = 1, r1 = 1. Thus

X n−1 = e1 + t2v, v⊥e1, |v| = 1 (5.14)

and

Y n−1 = e2 +u2w, w⊥e2, |w| = 1. (5.15)
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We rely on the fact that (5.14)-(5.15) imply

|(e1 + t2v)− (e2 +u2w)| ≥ C|(e1 + t2v)− (e2 +w)|, 0≤ t2, u2 ≤ 1. (5.16)

The proof of this inequality is postponed (see Lemma 5.3 below).
Using (5.16), we obtain

M :=

1
ˆ

0

tn−2
2 dt2

1
ˆ

0

un−2
2 du2

1

|X n−1 −Y n−1|n+sp−1

≤ C

1
ˆ

0

tn−2
2 dt2

1
ˆ

0

un−2
2 du2

1

|(e1 + t2v)− (e2 +w)|n+sp−1

≤ C

1
ˆ

0

tn−2
2 dt2

1

|(e1 + t2v)− (e2 +w)|n+sp−1 ≤
C

|(e1 +v)− (e2 +w)|n+sp−2 .

(5.17)

The last inequality in (5.17) is a consequence of (4.17).1

Since e1 +v = X n−2 and e2 +w =Y n−2, we find that, with t = (t3, . . . , tn− j) and u = (u3, . . . , un− j),
we have

k(ω,σ)≤ C

ˆ

0≤t≤1

dt
n− j∏

i=3
tn−i

i

ˆ

0≤u≤1

du
n− j∏

l=3
un−l

l

1

|X n−2 −Y n−2|n+sp−2 .

If j = n−2, then we are done. Otherwise, we continue as in the estimate of (5.13), distinguishing
at each step the three cases mentioned before (and using again the induction assumption when
encountering Case 1). At the end of this process, we are led to

k(ω,λ)≤
C

|X j −Y j| j+sp
, ∀ j ∈ J0, n−1K,

assuming the same inequality valid up to n−1.
The proof of Lemma 5.2 is complete.

As promised, we now established (5.16).

Lemma 5.3. If 0≤ t, u ≤1 are real numbers, and if v⊥e1, |v| = 1, w⊥e2, |w| = 1, then

|(e1 + tv)− (e2 +uw)| ≥ C|(e1 + tv)− (e2 +w)|. (5.18)

Proof of Lemma 5.3. Assume first that u ≤
1

2
. Then

|e1 + tv− (e2 +uw)| ≥ |〈e1 + tv− (e2 +uw), e1〉| = |1−uw1| ≥
1

2

and |e1 + tv− (e2 +w)| ≤ 4, so that (5.18) is clear in this case.

We next consider the case u ≥
1

2
. Consider the following compact subset of ∂Q1:

K = {X ∈R
n; |X | = 1}\ {X ∈R

n; X2 = 1, |X̂2| < 1}.

1We are in position to apply (4.17) since sp< n−1.
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Let P be the radial projection centered at e2 of Q1 \{e2} onto K .2 Then

P is Lipschitz in Q1 \Q1/2(e2), (5.19)

P(e2 +uw)= e2 +w and P(e1 + tv)= e1 + tv, (5.20)

e1 + tv, e2+uw ∈Q1 \Q1/2(e2) if u ≥ 1/2. (5.21)

Inequality (5.18), which is equivalent to

|P(e1 + tv)−P(e2+uw)| ≤
1

C
|(e1 + tv)− (e2 +uw)|,

is then a consequence of (5.19) - (5.21).
The proof of Lemma 5.3 is complete.

Step 3.1 continued. Recall that we want to establish an estimate of the form D0 ≤ a(ε)+b(ε).
For this purpose, we start by establishing (5.25), which is the analog of (4.23) adapted to the

case of a general j.
By Lemma 5.2 and (5.10), we find that

D0,q,σ,r,τ ≤ Cε j

ˆ

Rn

dU

ˆ

|ω|≤1

dω

ˆ

|λ|≤1

dλ
| f (U + X j)− f (U +Y j)|p

|X j −Y j| j+sp
:= D0,q,σ,r,τ := D0. (5.22)

Estimate (5.22) leads to the following:

D0 ≤
C

εsp

ˆ

Rn

dU

ˆ

|ωl |≤2,∀ l∈(σ,τ)1
ωl=q

σ−1(l)−r
τ−1(l),∀ l∈(σ,τ)2

⊗

l∈(σ,τ)1

dωl

| f (U +εω)− f (U)|p

|ω| j+sp

= Cεn(σ,τ)
ˆ

Rn

dU

ˆ

|ωl |≤2ε,∀ l∈(σ,τ)1
ωl=ε(q

σ−1(l)−r
τ−1(l)),∀ l∈(σ,τ)2

⊗

l∈(σ,τ)1

dωl

| f (U +ω)− f (U)|p

|ω| j+sp
.

(5.23)

Here,

(σ,τ)2 =σ({1, . . . , n− j})∩τ({1, . . ., n− j})⊂ {1, . . ., n};

(σ,τ)1 = {1, . . . , n}\ (σ,τ)2;

n(σ,τ)= j−n+#(σ,τ)2.

Indeed, inequality (5.23) is easily proved by noting that

(X j −Y j)l =





ε(q i − rm), if l =σ(i)= τ(m) ∈ (σ,τ)2

ε(q i −λm), if l =σ(i) ∈σ({1, . . . , n− j})\ (σ,τ)2

ε(ωl − rm), if l = τ(m) ∈ τ({1, . . . , n− j})\ (σ,τ)2

ε(ωl −λl), if l ∉σ({1, . . . , n− j})∪τ({1, . . ., n− j})

.

For further use, let us prove that

n−2 j ≤ #(σ,τ)2 ≤ n− j. (5.24)

To see this, we note that on the one hand we have

#σ({1, . . ., n− j})∪τ({1, . . ., n− j})= 2n−2 j−#(σ,τ)2 ≤ n.

2P is given by the formula P(X )= e2 +τ(X − e2), where τ is the only number ≥ 1 such that |e2 +τ(X − e2)| = 1.
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On the other hand, clearly #(σ,τ)2 ≤ n− j.
If we insert (5.23) into (5.22) and next take the sum over q,σ, r,τ and use (5.24), we obtain the

following analog of (4.23):

D0 ≤ C
n− j∑

k=min(0,n−2 j)

∑

A⊂{1,...,n}
#A=k

1

εn− j−k

ˆ

Rn

dU

ˆ

ωl∈{0,±2ε},∀ l∈A

|ωl |≤2ε,∀ l∉A

⊗

l∉A

dωl

| f (U +ω)− f (U)|p

|ω| j+sp

:= C
∑

k,A
D0,k,A .

(5.25)

We complete the proof of Step 3.1 by estimating each D0,k,A . By symmetry, it suffices to estimate
the integrals

I l,m =
1

εn− j−(l+m)

ˆ

Rn

dU

ˆ

ω1=···=ωl=2ε
ωl+1=···=ωl+m=0
|ωk|≤2ε,∀k>l+m

dωl+m+1 . . .dωn

| f (U +ω)− f (U)|p

|ω| j+sp
,

with max{0, n−2 j}≤ l+m≤ n− j.

Case 1. l = 0, m> 0
In this case, we have

I0,m =
1

εn− j−m

ˆ

Rn

dU

ˆ

ω1=···=ωm=0
|ωk|≤2ε,∀k>m

dωm+1 . . .dωn

| f (U +ω)− f (U)|p

|ω| j+sp
. (5.26)

Case 1.1. m= n− j

By Lemma 4.6, we have

I0,n− j =

ˆ

Rn

dU

ˆ

ω′∈R j

|ω′|≤2ε

dω′ | f (U + (0, . . .0,ω′))− f (U)|p

|ω′| j+sp
≤ C

ˆ

Rn

dU

ˆ

ω∈Rn

|ω|≤4ε

dω
| f (U +ω)− f (U)|p

|ω|n+sp

= C

Ï

|U−V |<4ε

dU dV
| f (U)− f (V )|p

|U −V |n+sp
→ 0 as ε→ 0.

Case 1.2. m< n− j

Using again Lemma 4.6, we find

1
ˆ

0

I0,m

ε
dε=

1
ˆ

0

dε

εn+1− j−m

ˆ

Rn

dU

ˆ

ω′∈Rn−m

|ω′|≤2ε

dω′ | f (U + (0, . . . ,0,ω′))− f (U)|p

|ω′| j+sp

≤ C

ˆ

Rn

dU

ˆ

ω′∈Rn−m

|ω′|≤2

dω′ | f (U + (0, . . . ,0,ω′))− f (U)|p

|ω′|n−m+sp

≤ C

ˆ

Rn

dU

ˆ

ω∈Rn

|ω′|≤4

dω
| f (U +ω)− f (U)|p

|ω|n+sp
= C

Ï

|U−V |<4

dUdV
| f (U)− f (V )|p

|U −V |n+sp
<∞.
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Case 2. l > 0
In this case we have |ω| = 2ε. We set V =U +2εe1 +·· ·+2εel and ω′ = (ωk)k∈Jl+m+1,nK. Since

| f (U +ω)− f (U)|p ≤ C(| f (U +2εe1)− f (U)|p +| f (U +2εe1 +2εe2)− f (U +2εe1)|p

+·· ·+ | f (V )− f (U +2εe1+·· ·+2εel−1)|p

+| f (V + (0, . . . ,0,ω′))− f (V )|p),

we find that

I l,m ≤
C

εsp

l∑

j=1

ˆ

Rn

dU | f (U +2εe j)− f (U)|p

+
C

εn−(l+m)+sp

ˆ

Rn

dU

ˆ

ω′∈Rn−(l+m)

|ω′|≤2ε

dω′ | f (U + (0, . . . ,0,ω′))− f (U)|p := C

(
l∑

j=1
P j +P0

)
.

Estimate of P0. We have

1
ˆ

0

P0

ε
dε=

1
ˆ

0

dε

εn+1−(l+m)+sp

ˆ

Rn

dU

ˆ

ω′∈Rn−(l+m)

|ω′|≤2ε

dω′ | f (U + (0, . . . ,0,ω′))− f (U)|p

≤ C

ˆ

Rn

dU

ˆ

ω′∈Rn−(l+m)

|ω′|≤2

dω′ | f (U + (0, . . . ,0,ω′))− f (U)|p

|ω′|n−(l+m)+sp

≤ C

ˆ

Rn

dU

ˆ

ω∈Rn

|ω|≤4

dω
| f (U +ω)− f (U)|p

|ω|n+sp
= C

Ï

|U−V |<4

dUdV
| f (U)− f (V )|p

|U −V |n+sp
<∞;

here, we used Lemma 4.6.

Estimate of P1. (The estimates of P2, . . . ,Pl are similar.) By Lemma 4.6, we have

1
ˆ

0

P1

ε
dε=

1
ˆ

0

dε

ε1+sp

ˆ

Rn

dU | f (U +2εe1)− f (U)|p

≤ C

ˆ

Rn

dU

ˆ

ω∈Rn

|ω|≤4

dω
| f (U +ω)− f (U)|p

|ω|n+sp
= C

Ï

|U−V |<4

dUdV
| f (U)− f (V )|p

|U −V |n+sp
<∞.

Case 3. l = m= 0
In this case, the inequality

εn− j |ω| j+sp ≥ 2 j−n|ω|n+sp if |ω| ≤ 2ε

yields

I0,0 =
1

εn− j

ˆ

Rn

dU

ˆ

|ω|≤2ε

dω
| f (U +ω)− f (U)|p

|ω| j+sp
≤ C

ˆ

Rn

dU

ˆ

|ω|≤2ε

dω
| f (U +ω)− f (U)|p

|ω|n+sp

= C

Ï

|U−V |≤2ε

dUdV
| f (U)− f (V )|p

|U −V |n+sp
→ 0 as ε→ 0.
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Step 3.1 is complete.

Step 3.2. Estimate of DL,L ∈Z
n, |L| = 1

The proof is essentially the same as for D0. One has to use instead of Lemma 5.2 its following
straightforward variant (which generalizes Lemma 4.7).

Lemma 5.4. Assume that sp < j+1. Let L ∈Z
n, with |L| = 1. Set

k(ω,λ)=

ˆ

0≤t≤1

dt

ˆ

0≤u≤1

du tn−1
1 . . . t

j

n− j
un−1

1 . . .u j

n− j

εn+sp

|X n − (2εL+Y n)|n+sp
.

Then

k(ω,λ)≤
Cε j+sp

|X j − (2εL+Y j)| j+sp
.

Using this lemma, we estimate DL as in Step 3.2 in Section 4; the details are left to the reader.
The proof of Lemma 5.1 is complete.

Remark 5.5. By Steps 3.1 and 3.2, we have an estimate of the form

∑

L∈Zn

|L|≤1

DL ≤ a(ε)+b(ε).

Here, D0 is as in (5.22), and the quantities DL are defined similarly (this is implicit in Step
3.2). The numbers a(ε) and b(ε) satisfy(4.2). If we take a closer look to the averaged estimates
leading to the existence of b(ε) (more specifically, to the estimates of P0, of P1, and of I0,m with
m< n− j), we see that, for a fixed ε, there exists some C(ε) such that

∑

L∈Zn

|L|≤1

DL ≤ C(ε)| f |p
W s,p(Rn). (5.27)

In order to justify the above, it suffices to examine e.g. the case of I0,m, the other cases being
similar. By (5.26) and Lemma 4.6, we have

I0,m =
1

εn− j−m

ˆ

Rn

dU

ˆ

ω1=···=ωm=0
|ωk|≤2ε,∀k>m

dωm+1 . . .dωn

| f (U +ω)− f (U)|p

|ω| j+sp
≤

C

εn− j−m
| f |

p

W s,p(Rn).

The conclusion of this remark will be needed in order to complete the proof of Lemma 6.1 below.

We end this section with the

Proof of Theorem 5. Let g ∈W s,p(Rn ;Rm) be an extension of f , not necessarily F-valued. We apply
Lemma 5.1 to g. Let gk = gTk,εk

and let C (k) be the mesh of size 2εk having Tk as one of its
centers. We take fk = gk|C k , where C

k is the union of cubes in C (k) which are contained in ω.
Clearly, for large k the maps fk have all the desired properties.

Short proof of Theorem 5 when 1≤ sp < n. We consider the mappings f
Fε
7−→ Fε( f ), where

Fε( f ) : Qε×R
n →R

m, Fε( f )(T, X )= fT,ε(X ).

Here, fT,ε is the piecewise j-homogeneous extension associated to T and ε as in this section.
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Step 1. Estimate for s= 0
By estimate (4.5) (which holds for an arbitrary j), for 1≤ q <∞ we have

‖Fε( f )‖Lq(Qε;Lq(Rn)) ≤ C εn/q‖ f ‖Lq(Rn), with C independent of ε. (5.28)

Step 2. Estimate for s= 1
Let 1≤ r < j+1. We claim that

‖Fε( f )‖Lr(Qε;W1,r (Rn)) ≤C εn/r‖ f ‖W1,r(Rn), with C independent of ε or f . (5.29)

In view of Step 1, in order to obtain (5.29) it suffices to establish, with C = C(n, j, r), the esti-
mate

ˆ

Qε

dT

ˆ

Rn

dX |∇ fT (X )|r ≤ Cεn

ˆ

Rn

dX |∇ f (X )|r. (5.30)

We next observe that it suffices to prove (5.30) when f ∈C∞
c . Indeed, assuming for the moment

that (5.30) holds for such f , Step 1 combined with (5.30) for f ∈ C∞
c and with a standard limiting

argument implies that (5.30) holds for every f ∈W1,r.
We finally turn to the proof of (5.30) when f ∈ C∞

c . We use the same notation as at the be-
ginning of this section: we set U = T +2εK , with K ∈ Z

n, and we let X n be a point in Qε, whose
projection on the j-skeleton of Qε is denoted X j. Set gU (X j)= f (U+X j). Then for a.e. X n ∈Qε we
have

∇ fT (U + X n)=∇gU (X j). (5.31)

We claim that (5.31) holds also in the sense of distributions. Indeed, let Cℓ,V ,ε denote the ℓ-
skeleton obtained from the mesh of cubes of radius ε having V as one of its centers. With this
notation, the map fT is locally Lipschitz in R

n \Cn− j−1,W,ε, where W = T + (ε, . . . ,ε). [The skeleton
E = Cn− j−1,W,ε is the “dual skeleton” of C j,T,ε.] This observation leads to the validity of (5.31) in
the sense of distributions in R

n \E . On the other hand, as we will see in a moment, we have

|∇gU (X j)| ≤ C( f ,ε)
1

dist(U + X n,E )
. (5.32)

In view of (5.32) and the fact that f is compactly supported, we have

∇ fT ∈ L1(Rn \E ). (5.33)

[Here, we also use the fact that j ≥ 1 and thus E is a union of m-planes, with m= n− j−1≤ n−2.]
In order to obtain (5.31), it then suffices to invoke (5.33) and Lemma 2.1. [Note that this lemma

applies to our situation since j ≥ 1.]
In view of the above, it suffices to prove that
ˆ

Qε

dT
∑

K∈Zn

ˆ

Qε

dX n |∇gT+2εK (T +2εK + X j)|r ≤ Cεn

ˆ

Rn

dX |∇ f (X )|r (5.34)

and to obtain, on the way, the estimate (5.32). Splitting, in (5.34), the integral in X n as a sum over
q ∈ {−1,1}n− j and over σ ∈ Sn− j,n, it suffices, by symmetry, to consider the case where X n belongs
to Qε,q,σ, with

q i = 1, σ(i)= i, ∀ i ∈ J1, n− jK.

With q and σ as above, every X n ∈Qε,q,σ satisfies

ε≥ (X n)1 ≥ ·· · = (X n)n− j ≥max{|(X n)i|; n− j+1≤ i ≤ n} (5.35)
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and

(X j)1 = ·· · = (X j)n− j = ε, (X j)i = ε
(X n)i

(X n)n− j

, ∀ i ∈ Jn− j+1, nK. (5.36)

By (5.31), (5.35) and (5.36), for a.e. X n ∈Qε,q,σ we have

|∇ fT (U + X n)| ≤ C ε
n∑

i=n− j

|(X n)i|

[(X n)n− j]2 |∇ f (U + X j)| ≤ C
ε

(X n)n− j

|∇ f (U + X j)|. (5.37)

In particular, (5.37) and the fact that

dist(U + X n,E )= (X n)n− j, ∀X n ∈Qε,q,σ,

lead to (5.32).
In view of (5.37), in order to prove (5.34) it suffices to prove that

I =

ˆ

Qε

dT
∑

K∈Zn

εr

[(X n)n− j]r

ˆ

Qε,q,σ

dX n |∇ f (K +2εT + X j)|r ≤ C

ˆ

Rn

dX |∇ f (X )|r. (5.38)

We let X ′ = (X1, . . . , Xn− j) and Z′′ = (Zn− j+1, . . . , Zn), where

Zi = ε
(X n)i

(X n)n− j

∈ [−ε,ε], ∀ i ∈ Jn− j+1, nK.

We set

W = (T1 +2εK1, . . . ,Tn− j +2εKn− j,Tn− j+1 +2εKn− j+1 +Zn− j+1, . . . ,Tn +2εKn +Zn).

Then with the change of variables

Qε,q,σ ∋ X 7→ (X ′, Z′′),

we have

I ≤

ˆ

Qε

dT
∑

K∈Zn

ˆ

0<(X n)n− j≤···≤(X n)1≤ε

dX ′

ˆ

|Z′′|<ε

dZ′′εr− j [(X n)n− j]
j−r |∇ f (W)|r. (5.39)

If we calculate, in (5.39), the integral with respect to X ′ and use the assumption r < j+1, we
find (after summation in K ) that

I ≤ C εn− j

ˆ

Rn

dX

ˆ

|Z′′|<ε

dZ′′ |∇ f (X1, . . . , Xn− j, Xn− j+1 +Zn− j+1, . . . , Xn +Zn)|r

= Cεn

ˆ

Rn

dX |∇ f (X )|r.

Step 2 is now completed.

Step 3. Estimate for 0< s< 1 (provided sp ≥ 1 and sp < j+1)
Let 0 < s < 1, 1 ≤ p <∞ and j ∈ J1, n−1K be such that sp < j+1. Pick 1 < q <∞ and 1 < r < j+1
such that

1

p
=

s

r
+

1− s

q
. (5.40)
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This is always possible. Indeed, since sp < j+1 we may pick some r such that

max
{

1

j+1
,

1

sp
−

1

s
+1

}
<

1

r
<

1

sp
,

and for any such r the couple (q, r), with q determined by (5.40), has all the required properties.
We next recall three classical interpolation results. Given two Banach spaces X and Y , we use

the standard notation [X ,Y ]s,p; see e.g. [26, Section 1.5]. First, when (5.40) holds we have [26,
Section 2.4.2, Theorem 1 (a), eq. (2), p. 185]

[W1,r,Lq]s,p =W s,p. (5.41)

Next, if X and Y are Banach spaces and s, p, q, r are as above, then [26, Section 1.18.4,
Theorem, eq. (3), p. 128]

[Lr(Ω; X ),Lq(Ω;Y )]s,p = Lp(Ω; [X ,Y ]s,p). (5.42)

By (5.41) and (5.42),

with r, q as in (5.40), we have [Lr(Qε;W
1,r(Rn)),Lq(Qε;L

q(Rn))]s,p = Lp(Qε;W
s,p(Rn)). (5.43)

Final classical result. Let s, p, q, r, X and Y be as above. Let F be a linear continuous operator
from X into Lr(Ω; X ) and from Y into Lq(Ω;Y ). Then F is linear continuous from [X ,Y ]s,p into
Lp(Ω; [X ,Y ]s,p) and satisfies the norm inequality

‖F‖L ([X ,Y ]s,p;Lp(Ω;[X ,Y ]s,p)) ≤ ‖F‖s
L (X ;Lr(Ω;X )) ‖F‖1−s

L (Y ;Lq(Ω;Y )). (5.44)

By (5.28), (5.29) and (5.44), we find that

‖Fε( f )‖Lp(Qε;W s,p(Rn)) ≤ C εn/p‖ f ‖W s,p(Rn), with C independent of ε. (5.45)

[In principle, the constant C in (5.45) may depend on ε, since we apply the interpolation result
(5.43) in an ε-dependent domain. The fact that C does not depend on ε is obtained by a straight-
forward scaling argument: we consider, instead of Fε, the map

Gε( f ) : Q1 ×R
n →R

m, Gε( f )(T, X )= fεT,ε(X ).

We obtain (5.45) by applying (5.44) to Gε( f ) in Q1. Details are left to the reader.]
A clear consequence of (5.45) is

1

εn

ˆ

Qε

‖ fT,ε− f ‖
p

W s,p(Rn) dT ≤ C‖ f ‖
p

W s,p(Rn). (5.46)

In order to complete the proof of Theorem 5, it suffices to obtain (5.47) below.

Step 4. We have

lim
ε→0

1

εn

ˆ

Qε

‖ fT,ε− f ‖
p

W s,p(Rn) dT = 0, ∀ f ∈W s,p(Rn). (5.47)

Equation (5.47) is a version of (5.46) and is obtained as follows. We let q, r be as in Step 3.
In view of (5.46), it suffices to prove (5.47) when f ∈C∞

c . For such f , we have fT,ε → f uniformly
in T when ε→ 0; this leads easily to

fT,ε → f in Lq uniformly in T as ε→ 0. (5.48)

We obtain (5.47) via (5.48), (5.29) and (5.44).
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6 Restrictions of Sobolev maps to good complexes

Sections 6 to 8 are devoted to the proof of Theorem 6.
The current section is partly inspired by [12, Appendix B, Appendix E]. The results we prove

here are fractional Sobolev versions of the following Fubini type result: if f ∈ L1(R2), then for a.e.
y ∈R we have f (·, y) ∈ L1(R).

As elsewhere in this paper, we let 0< s< 1 and 1≤ p <∞, and we let f ∈W s,p(Rn;Rm).
We use notation consistent with Section 5, but we emphasize dependence of meshes on T by

writing, instead of C j, C j,T,ε or (when ε is fixed) C j,T . A generic point of C j,T is denoted X
j
∗, Y

j
∗ , . . .

(instead of U+X j or U+Y j). Also in order to be consistent with Section 5, the projection of X n
∗ on

C j,T is denoted X
j
∗. Similarly, if j ≥ 1, then the projection of X

j
∗ onto C j−1,T is denoted X

j−1
∗ ; this

projection is defined H
j-a.e. on C j,T .

Given a (say Borel and everywhere defined) map f : Rn → R
m, an integer j ∈ J1, n−1K and a

point T ∈R
n, we define the norm

‖ f ‖
p

W s,p(C j,T ) =

ˆ

C j,T

dX
j
∗ | f (X j

∗)|p+
Ï

C j,T×C j,T

|X
j
∗−Y

j
∗ |<2ε

dX
j
∗dY

j
∗

| f (X j
∗)− f (Y j

∗ )|p

|X
j
∗−Y

j
∗ |

j+sp
= ‖ f ‖

p

Lp(C j,T )+| f |
p

W s,p(C j,T ).

The above definition extends to j = 0 by replacing the integrals by sums.
We will prove later in this section two results on slicing, in which ε is fixed.

Lemma 6.1. We have
ˆ

Qε

‖ f ‖
p

W s,p(C j,T ) dT ≤ C(ε)‖ f ‖
p

W s,p , ∀ j ∈ J0, n−1K. (6.1)

Lemma 6.2. We have
ˆ

Qε

dT

ˆ

C j,T

dX
j
∗

| f (X j
∗)− f (X j−1

∗ )|p

|X
j
∗− X

j−1
∗ |sp

≤ C(ε)‖ f ‖
p

W s,p , ∀ j ∈ J1, n−1K. (6.2)

For j ∈ J1, n−1K, we define an ad hoc space W
s,p
j

=W
s,p
j,T,ε as follows: W

s,p
j

consists of the func-
tions g : C j,T →R

m such that

‖g‖W s,p(Cℓ,T ) <∞, ∀ℓ ∈ J1, jK (6.3)

and
ˆ

Cℓ,T

dXℓ
∗

| f (Xℓ
∗)− f (Xℓ−1

∗ )|p

|Xℓ
∗− Xℓ−1

∗ |sp
<∞, ∀ℓ ∈ J1, jK. (6.4)

The definition of W
s,p
j

is inspired by Hang and Lin [16, Section 3]. Clearly, if f ∈ W
s,p
j,T,ε and

ℓ≤ j, then the restriction of f to an ℓ-dimensional cube C of the mesh Cℓ,T,ε belongs to W s,p(C).
As we will see in the next section, the space W

s,p
j

has additional properties that will be useful in
the proof of Lemma 7.1.

Let s, p be such that 1 ≤ sp < n. Let j be an integer such that sp < j+1 ≤ n. For such j, we
consider fT,ε as in Section 5. Combining Lemmas 6.1 and 6.2 with the fact that, by the proof of
Lemma 5.1, there exists a sequence εk → 0 such that

1

(εk)n

ˆ

Qεk

‖ f − fT,εk
‖

p

W s,p dT → 0 as k →∞,

we obtain the following
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Corollary 6.3. Let s, p, j be such that 1≤ sp < j+1≤ n. Let f ∈W s,p(Rn;Rm) be a Borel function.
Then there exist sequences εk → 0 and {Tk}⊂R

n such that:
1. The restriction f k of f to C j,Tk ,εk

belongs to W
s,p
j,Tk ,εk

, ∀k.

2. If fk is the j-homogeneous extension of f k, then fk → f in W s,p as k →∞.

The remaining part of this section is devoted to the proofs of Lemmas 6.1 and 6.2.
A word about the proofs. Many of the calculations we need in Sections 6–8 are quite close to

the ones in Section 5. For such calculations, we point to the analog formulas in Section 5 and omit
part of details.

We will use the same notation as in Section 5, and more specifically as in Step 3.1 in the proof
of Lemma 5.1; see on the one hand (5.6) and (5.7), and on the other hand (5.8) and the derivation
of (5.10) starting from (5.8).

Proof of Lemma 6.1. Step 1. Averaged estimate of ‖ f ‖
p

Lp(C j,T )
We establish here the identity

ˆ

Qε

‖ f ‖
p

Lp(C j,T ) dT = C(n, j)ε j ‖ f ‖
p

Lp(Rn). (6.5)

Indeed, arguing as in the proof of (5.6) and (5.10) and with X j as in (5.9), we have
ˆ

Qε

‖ f ‖
p

Lp(C j,T ) dT = 2 j−n
∑

q∈{−1,1}n− j

∑

σ∈Sn− j,n

ε j

ˆ

|ω|≤1

dω

ˆ

Rn

dU | f (U + X j)|p. (6.6)

[The constant 2 j−n comes from the fact that on the right-hand side of (6.6) the integral over a
j-dimensional cube C of C j,T is counted 2n− j times.]

In order to obtain (6.5), it suffices to observe that the last integral in (6.6) does not depend on
ω.

Step 2. Averaged estimate of | f |p
W s,p(C j,T )

We have

| f |
p

W s,p(C j,T ) =

Ï

(X j
∗ ,Y j

∗ )∈C j,T×C j,T

|X
j
∗−Y

j
∗ |<2ε

dX
j
∗dY

j
∗

| f (X j
∗)− f (Y j

∗ )|p

|X
j
∗−Y

j
∗ |

j+sp
= I1(T)+ I2(T),

(6.7)

where

I1(T)=
Ï

|X
j
∗−Y

j
∗ |<ε

. . . , I2(T)=
Ï

ε≤|X
j
∗−Y

j
∗ |<2ε

. . .

We first note that

I2(T)≤ C

ˆ

C j,T

dX
j
∗

ˆ

ε≤|X
j
∗−Y

j
∗ |<2ε

dY
j
∗

1

|Y
j
∗ − X

j
∗|

j+sp
| f (X j

∗)|p ≤ C

ˆ

C j,T

dX
j
∗ | f (X j

∗)|p, (6.8)

since
ˆ

ε≤|X
j
∗−Y

j
∗ |<2ε

dY
j
∗

1

|Y
j
∗ − X

j
∗|

j+sp
≤ C <∞, ∀T, ∀X

j
∗.
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By (6.8) and Step 1, we have
ˆ

Qε

I2(T) dT ≤ C‖ f ‖
p

Lp(Rn). (6.9)

We next note that (with notation as in (5.9) and (5.10))

I1(T)≤ C ε2 j
◦∑ ˆ

|ω|≤1

dω

ˆ

|λ|≤1

dλ
| f (T +2εK + X j)− f (T +2εK +2εL+Y j)|p

|X j − (2εL+Y j)| j+sp
, (6.10)

where

◦∑
=

∑

L∈Zn

|L|≤1

∑

K∈Zn

∑

q,r∈{−1,1}n− j

∑

σ,τ∈Sn− j,n

.

Integrating (6.10), we find that

ˆ

Qε

I1(T) dT ≤ C ε2 j
∑
◦

ˆ

|ω|≤1

dω

ˆ

|λ|≤1

dλ

ˆ

Rn

dU
| f (U + X j)− f (U +2εL+Y j)|p

|X j − (2εL+Y j)| j+sp
, (6.11)

with

∑
◦

=
∑

L∈Zn

|L|≤1

∑

q,r∈{−1,1}n− j

∑

σ,τ∈Sn− j,n

.

By (6.11) and estimate (5.27) in Remark 5.5, we have
ˆ

Qε

I1(T) dT ≤ C(ε)| f |p
W s,p(Rn). (6.12)

We complete the proof of Lemma 6.1 using (6.7), (6.9) and (6.12).

Proof of Lemma 6.2. Step 1. A dimensional reduction
Assume for the moment that we proved the following estimate (with X n−1

∗ the projection of X n
∗

onto Cn−1,T,ε):

I =

ˆ

Qε

dT

ˆ

Rn

dX n
∗

| f (X n
∗ )− f (X n−1

∗ )|p

|X n
∗ − X n−1

∗ |sp
≤ C(n,ε)

Ï

|X n
∗−Y n

∗ |<ε

dX n
∗dY n

∗

| f (X n
∗ )− f (Y n

∗ )|p

|X n
∗ −Y n

∗ |n+sp
. (6.13)

Then we claim that the conclusion of the lemma holds. Indeed, if j ∈ J1, n− 1K then (6.13)
applied with n = j and with R

n replaced by the intersection of C j,T with the j-dimensional plane

{(x1, . . . , xn); xl = Tl +2εK l ,∀ l ∈ I}, with #I = n− j and K l ∈Z

leads (after the use of the Fubini theorem in the variables Tl with l 6∈ I and summation in I) to

ˆ

Qε

dT

ˆ

C j,T

dX
j
∗

| f (X j
∗)− f (X j−1

∗ )|p

|X
j
∗− X

j−1
∗ |sp

≤ C(n, j,ε)

ˆ

Qε

dT

Ï

(X j
∗,Y j

∗ )∈C j,T×C j,T

|X
j
∗−Y

j
∗ |<ε

dX
j
∗dY

j
∗

| f (X j
∗)− f (Y j

∗ )|p

|X
j
∗−Y

j
∗ |

j+sp
. (6.14)

We then obtain the conclusion of Lemma 6.2 using (6.14) and Lemma 6.1.
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Step 2. Proof of (6.13)
We follow Step 2 in the proof of Lemma 4.1 in Section 4. Following the calculation (4.9), the
left-hand side I of (6.13) satisfies

I =

ˆ

Rn

dX

ˆ

|Y |<ε

dY
(ε−|Y |)n−1

|Y |n+sp−1 | f (X )− f (X −Y )|p. (6.15)

We obtain (6.13) by noting that

(ε−|Y |)n−1

|Y |n+sp−1 ≤ C(ε)
1

|Y |n+sp
if |Y | < ε.

7 Approximation of maps defined on good skeletons

Throughout the next two sections, we take 0 < s < 1, 1 ≤ p < ∞, j ∈ J1, n− 1K and we use the
same notation as in Sections 5 and 6. We consider a fixed finite submesh C of Cn and a map
g : C j ∩C →R

m. For such maps, we define the norm

‖g‖
p

Lp = ‖g‖
p

Lp(C j∩C ) =

ˆ

C j∩C

dX
j
∗ |g(X j

∗)|p

and the semi-norm

|g|
p

W s,p = |g|
p

W s,p(C j∩C ) =

ˆ

C j∩C

dX
j
∗

ˆ

C j∩C

dY
j
∗

|g(X j
∗)− g(Y j

∗ )|p

|X
j
∗−Y

j
∗ |

j+sp
.

With the natural definition, we also consider the space W
s,p
j

=W
s,p
j

(C j ∩C ).
In this section, we adapt to the fractional Sobolev case some approximation techniques of maps

defined on skeletons devised by Hang and Lin [16, Section 3]. The main result is the following

Lemma 7.1. Let 0 < s < 1, 1 ≤ p <∞ and j ∈ N be such that 1 ≤ j ≤ sp < n. Let N be a compact
manifold without boundary embedded in R

m. Let g ∈W
s,p
j

(C j∩C ; N). Then there exists a sequence

{gk}⊂Lip(C j ∩C ; N) such that gk → g in W s,p(C j ∩C ).

Two difficulties arise in the proof of Lemma 7.1. The first one is to show that Rm-valued maps
g in W

s,p
j

can be approximated by Lipschitz maps. This is already a non trivial task. An additional
difficulty occurs when g is N-valued. In this case, we have to prove approximation with N-valued
Lipschitz maps.

It will be convenient to start by reducing Lemma 7.1 to a slightly easier to prove statement.

Lemma 7.2. Let 0 < s < 1, 1 ≤ p <∞ and j ∈ N be such that 1 ≤ j ≤ sp < n. Let N be a compact
manifold without boundary embedded in R

m. Let δ> 0 be sufficiently small and define

M = {x ∈R
m; dist(x, N)≤ δ}. (7.1)

Let g ∈W
s,p
j

(C j ∩C ; N). Then there exists a sequence {Gk} ⊂ Lip(C j ∩C ; M) such that Gk → g

in W s,p(C j ∩C ).

Lemma 7.2 implies Lemma 7.1. Let Π : M → N denote the nearest point projection. Let gk =

Π(Gk). We note that g =Π(g), and that gk is clearly Lipschitz. In order to conclude, it suffices to
invoke the continuity of the map

W s,p(C j ∩C ; M)∋G 7→Π(G) ∈W s,p(C j ∩C ; N).

This is standard for maps in smooth domains; see e.g. [5, Proof of (5.43), p. 56] for a slightly more
general continuity result. The argument in [5] adapts readily to maps defined on C j ∩C .
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We next turn our attention to the proof of Lemma 7.2. Since C and j are fixed, we will simplify
the notation and omit “C j ∩C ” in the norms and function spaces. With no loss of generality, we
may assume that ε= 1. For the convenience of the reader, we start by stating the main technical
ingredients required in the proof of Lemma 7.2. Before proceeding, let us define “a cube in Cℓ” (or
“an ℓ-dimensional cube in Cℓ”) by backward induction as follows. A cube in Cn is any cube of the
mesh Cn. A cube in Cn−1 is any of the 2n faces of a cube in Cn. For ℓ≤ n−2, a cube in Cℓ is any
of the 2ℓ+1 faces of any cube in Cℓ+1.

Let g : C j ∩C → R
m. For C a j-dimensional cube in C j ∩C , we let 0C be its center. Clearly, if

X
j
∗ ∈C, then the projection X

j−1
∗ of X

j
∗ on C j−1 ∩C is

X
j−1
∗ = 0C+

X
j
∗−0C

|X
j
∗−0C|

.

We now define a convenient approximation gµ of g. For 0<µ< 1 and X j ∈C, we set

gµ(X j
∗)=





g(X j−1
∗ ), if |X j

∗−0C| ≥ 1−µ

g

(
0C+

X
j
∗−0C
1−µ

)
, if |X j

∗−0C| < 1−µ
.

This definition is inspired by the “filling a hole” technique of Brezis and Li [10]. See also [16,
Lemma 3.1] and, in the context of fractional spaces, [12, Appendix D].

We have the following result, whose proof is postponed to the end of this section.

Lemma 7.3. Let g ∈W
s,p
j

. Then gµ → g in W s,p as µ→ 0.

[Here, we do not require j ≤ sp.]
Let ρ ∈C∞

c (Q) (with Q the unit cube in R
j) be a standard mollifier and set

ρt(x)=
1

t j
ρ(x/t), ∀ t > 0, ∀ x ∈R

j.

Fix some function η ∈ C∞
c ([0,1); [0,1]). We let C and 0C be as above. Given g : C j ∩C → R

m, we
define, with a slight abuse of notation and after identifying the j-plane containing C with R

j,

g∗ρt(X
j
∗)=

ˆ

C

dY
j
∗ g(Y j

∗ )ρt(X
j
∗−Y

j
∗ ) for X

j
∗ ∈C such that |X j

∗−0C| < 1− t. (7.2)

We note that for small t the quantity

gt(X j
∗)= η(|X j

∗−0C|) g∗ρt(X
j
∗)

is well-defined in C j ∩C . We also let

g0(X j
∗)= η(|X j

∗−0C|) g(X j
∗).

We now state a standard result on the approximation by smoothing in fractional Sobolev
spaces, whose straightforward proof is left to the reader.

Lemma 7.4. Let g ∈W s,p. Then gt → g0 in W s,p as t → 0.

[Here, we do not require j ≤ sp.]

We next present another auxiliary result, which is a rather easy consequence of Lemma 7.10
(which is fully proved below) and whose proof (granted Lemma 7.10) is left to the reader. Given
f : C j−1∩C , we consider its homogeneous extension g to C j ∩C . Let η be as above. We assume in
addition that η= 1 near the origin. This implies that the map

C j ∩C ∋ X
j
∗ 7→ h(X j

∗)=
(
1−η(|X j

∗−0C|)
)

g(X j
∗)

is well-defined in each point.
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Lemma 7.5. The mapping f 7→ h is continuous from W s,p(C j−1 ∩C ) into W s,p(C j ∩C ).

[Here, we do not require j ≤ sp.]
The final auxiliary result is deeper, and was essentially observed by Schoen and Uhlenbeck

[25]. For the fractional version we present below, see [14, Example 2, p. 210, and eqn (7), p. 206].
The argument in [14] (where maps are defined in domains) adapts readily to the case of maps
defined on skeletons.

Lemma 7.6. Let 0< s< 1 and 1≤ p <∞ be such that sp < n. Let j ∈N be such that 1≤ j ≤ sp. Let
g ∈W s,p(C j ∩C ; N). Let 0< t < 1 and let δ> 0 be arbitrarily small (but fixed). Let M be as in (7.1)
and g∗ρt be as in (7.2). Then, for sufficiently small t, we have

g∗ρt(X
j
∗) ∈ M, ∀X

j
∗ ∈C j ∩C such that dist(X j

∗,C j−1 ∩C )> t. (7.3)

[Here, we do require j ≤ sp.]

Proof of Lemma 7.2 using Lemmas 7.3–7.6. The proof relies on two ingredients: approximation of
maps as in Lemma 7.3 and induction on j.

Step 1. Proof of the lemma for j = 1
By Lemma 7.3, it suffices to prove the lemma when g is replaced by gµ. Since j = 1 and thus
C0 ∩C is a finite collection of points, this simply means that we may assume that g is constant
near each point in C0 ∩C : there exists some µ> 0 such that

g(X1
∗)= g(X0

∗) if dist(X1
∗,C0 ∩C )≤µ. (7.4)

Let now η ∈C∞([0,1]; [0,1]) be such that

η(x)=

{
1, if 0≤ x≤ 1−µ/2

0, if x> 1−µ/3
.

When 0< t <µ/3, the map

X1
∗ 7→G t(X1

∗)= η(|X1
∗−0C|) g∗ρt(X

1
∗)+

(
1−η(|X1

∗−0C|)
)

g(X0
∗)

is well-defined everywhere, and is clearly Lipschitz. Moreover, by Lemma 7.4 and the choice of η,
we have

G t → g in W s,p as t → 0.

It remains to prove that, for small t, we have

G t(X1
∗) ∈ M, ∀X1

∗ ∈C1 ∩C . (7.5)

By Lemma 7.6, property (7.5) holds when |X1
∗−0C| ≤ 1−µ/2. Clearly, (7.5) holds also when

|X1
∗−0C| ≥ 1−µ/3. Finally, when 1−µ/2< |X1

∗−0C| < 1−µ/3 and t <µ/3, we have

G t(X1
∗)= g∗ρt(X

1
∗)

(this is easily checked using (7.4)). We complete this case using again Lemma 7.6.

Step 2. Proof of the lemma for j ≥ 2
Let f be the restriction of g to C j−1 ∩C . By Lemma 7.3, we may assume that there exists some
µ∈ (0,1) such that

g(X j
∗)= f (X j−1

∗ ), ∀C⊂C j ∩C ,∀X
j
∗ ∈C such that |X j

∗−0C| > 1−µ. (7.6)
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We argue by induction on j. By the induction hypothesis and the reduction of Lemma 7.1
to Lemma 7.2, the map f (which clearly belongs to W

s,p
j−1(C j−1 ∩C ; N)) is the limit in W s,p of a

sequence {Fk}⊂Lip(C j−1∩C ; N). With η as in Step 1 and 0< t <µ/3, we define the Lipschitz maps

X
j
∗ 7→Gk,t(X j

∗)= η(|X j
∗−0C|) g∗ρt(X

j
∗)+

(
1−η(|X j

∗−0C|)
)

Fk(X j−1
∗ ).

By Lemmas 7.4 and 7.5, we have

lim
k→∞

lim
tց0

Gk,t = g in W s,p.

In order to complete Step 2 it remains to prove that, for large k and sufficiently small t (possibly
depending on k) we have

Gk,t(X j
∗) ∈ M, ∀X

j
∗ ∈C j ∩C . (7.7)

As in Step 1, (7.7) holds when |X
j
∗−0C| ≤ 1−µ/2 or |X

j
∗−0C| ≥ 1−µ/3. When 1−µ/2< |X

j
∗−0C| <

1−µ/3, we argue as follows. Since j ≤ sp, we have j−1 < sp. By the Sobolev embeddings, f and
Fk are continuous and we have Fk → f uniformly. Let k0 be such that

‖Fk − f ‖L∞ ≤ δ/2, ∀k ≥ k0. (7.8)

By (7.6) and the continuity of f , for every fixed k we have

lim
tց0

Gk,t(X j
∗)= η(|X j

∗−0C|) f (X j−1
∗ )+

(
1−η(|X j

∗−0C|)
)

Fk(X j−1
∗ )

uniformly in the set
⋃

C⊂C j∩C

{X j
∗ ∈C; 1−µ/2< |X

j
∗−0C| < 1−µ/3}.

(7.9)

We complete the proof of (7.7) using (7.8) and (7.9).

In order to complete the proof of Lemma 7.2, it remains to proceed to the

Proof of Lemma 7.3. We may assume that ε= 1 and that T = 0. We set

Ω=C j ∩C , E = Eµ = {X j
∗ ∈Ω; |X j

∗− X
j−1
∗ | >µ}, F = Fµ = {X j

∗ ∈Ω; |X j
∗− X

j−1
∗ | <µ}. (7.10)

If C is a cube in C j and 0<µ<µ0 < 1, then we define

Cµ = {X j
∗ ∈C; |X j

∗− X
j−1
∗ | >µ}, Cµ,µ0 = {X j

∗ ∈C; µ< |X
j
∗− X

j−1
∗ | <µ0}, Cc

µ =C\Cµ. (7.11)

If C′ is another cube in C j, we define similarly C
′
µ, etc.

We clearly have

gµ → g in Lp as µ→ 0. (7.12)

[For a more general property, see (7.15) below.]
It thus remains to prove that

I =

Ï

Ω×Ω

dX
j
∗dY

j
∗

|[gµ(X j
∗)− g(X j

∗)]− [gµ(Y j
∗ )− g(Y j

∗ )]|p

|X
j
∗−Y

j
∗ |

j+sp
→ 0 as µ→ 0. (7.13)

We split

I = IE,E +2IE,F + IF,F , where IA,B = IA,B,µ =

Ï

A×B

· · ·
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We have to prove that IE,E → 0, IE,F → 0 and IF,F → 0 as µ→ 0.

Step 1. For every cube C in C j ∩C we have IC,C → 0 as µ→ 0
Indeed, we may assume that C is open, and then we identify C with the unit cube Q1 ⊂R

j. We let
C
∗ =Q2 denote the double of C, and set

h(X j
∗)=

{
g(X j

∗), if X
j
∗ ∈C

g(X j−1
∗ ), if X

j
∗ ∈C

∗ \C
.

Lemma 7.7. We have h ∈W s,p(C∗).

Proof of Lemma 7.7. Clearly, since g ∈ W
s,p
j

, we have h ∈ W s,p(C) and h ∈ W s,p(C∗ \C). It thus
suffices to prove that h ∈W s,p near each point of ∂C. After a bi-Lipschitz change of variables, and
taking the definition of W

s,p
j

into account, we are then reduced to the following lemma, established
in [12, Appendix B, Lemma B.1].

Lemma 7.8. Let 0< s< 1, 1≤ p <∞, u ∈W s,p((0,1) j) and v ∈W s,p((0,1) j−1) be such that
ˆ

(0,1) j

dX1 . . .dX j

|u(X1, . . . , X j)−v(X1, . . . , X j−1)|p

X
sp

j

<∞.

Define

w(X1, . . . , X j)=

{
u(X1, . . . , X j), if (X1, . . . , X j) ∈ (0,1) j

v(X1, . . . , X j−1), if (X1, . . . , X j) ∈ (0,1) j−1× (−1,0]
.

Then w ∈W s,p((0,1) j−1× (−1,1)).

[In the statement of Lemma B.1 in [12] it is assumed that 1< p <∞, but the argument there still
holds for p = 1.]

Step 1 completed. We may extend h to a map, still denoted h, in W s,p(R j). Define

ht(X j
∗)= h(X j

∗/t), ∀X
j
∗ ∈R

j, ∀ t > 0. (7.14)

Note that

if h ∈Wσ,p for some σ≥ 0, then the mapping t 7→ ht ∈Wσ,p defined by (7.14) is continuous. (7.15)

Using (7.15) with σ= s, we obtain that

IC,C =

Ï

C×C

dX
j
∗dY

j
∗

∣∣∣
[
h1−µ(X j

∗)−h1(X j
∗)

]
−

[
h1−µ(Y j

∗ )−h1(Y j
∗ )

]∣∣∣
p

|X
j
∗−Y

j
∗ |

j+sp
≤

∣∣h1−µ−h1∣∣p

W s,p(R j) → 0 as µ→ 0.

Step 2. For every cube C in C j ∩C and for every fixed µ0 ∈ (0,1) we have IC,Eµ0
→ 0 as µ→ 0

Indeed, by Step 1 it suffices to prove that for every cube C
′ 6=C in C j we have, with Cµ0 as in (7.11),

IC,C′
µ0

→ 0 as µ→ 0. (7.16)

We note that

|X
j
∗−Y

j
∗ | ≥µ0, ∀X

j
∗ ∈C, ∀Y

j
∗ ∈C′

µ0
. (7.17)

By (7.17), we have

IC,C′
µ0

≤ C(n, p,µ0)



ˆ

C

dX
j
∗ |gµ(X j

∗)− g(X j
∗)|p +

ˆ

C′
µ0

dY
j
∗ |gµ(Y j

∗ )− g(Y j
∗ )|p


 . (7.18)
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We obtain (7.16) using (7.18) and (7.12).

Step 3. We have IE,E → 0 as µ→ 0
By Steps 1 and 2, Step 3 amounts to the following. Let ξ> 0 be fixed arbitrarily small. Let C 6= C

′

be two cubes in C j. Then there exists some 0<µ0 < 1 such that

ICµ,µ0 ,C′
µ,µ0

< ξ for every 0<µ<µ0. (7.19)

In order to establish (7.19), we start from

IA,B ≤ 2p−1




Ï

A×B

dX
j
∗dY

j
∗

|gµ(X j
∗)− gµ(Y j

∗ )|p

|X
j
∗−Y

j
∗ |

j+sp
+

Ï

A×B

dX
j
∗dY

j
∗

|g(X j
∗)− g(Y j

∗ )|p

|X
j
∗−Y

j
∗ |

j+sp


 . (7.20)

We next establish the following estimate.

Lemma 7.9. Let C 6= C
′ be two cubes in C j ∩C . Then, for 0 < µ < 1/2 and for X

j
∗ ∈ C and Y

j
∗ ∈ C

′

such that

|X
j
∗−0C| < 1−µ and |Y

j
∗ −0C′| < 1−µ, (7.21)

we have
∣∣∣∣∣

[
0C+

X
j
∗−0C
1−µ

]
−

[
0C′ +

Y
j
∗ −0C′

1−µ

]∣∣∣∣∣≤ C |X
j
∗−Y

j
∗ |. (7.22)

Proof of Lemma 7.9. Recall that we assume that ε= 1 and T = 0. Write

0C = (C1, . . . ,Cn), 0C′ = (C′
1, . . . ,C′

n). (7.23)

One may check the following properties of the C i ’s:
a) Each C i is an integer.
b) Exactly n− j C i ’s are odd.
c) The open cube C is given by the following system of equations and inequalities:

X i = C i, if C i is odd, |X i −C i| < 1, if C i is even.

d) Thus every point X
j
∗ as in (7.21) is of the form

X
j
∗ = (C1 + x1, . . . ,Cn + xn), with xi = 0 if C i is odd and |xi | < 1−µ if C i is even.

Similarly if we write Y
j
∗ = (C′

1+ y1, . . . ,C′
n + yn).

Estimate (7.22) will follows from the following estimate, valid for each coordinate:
∣∣∣∣
[
C i +

xi

1−µ

]
−

[
C′

i +
yi

1−µ

]∣∣∣∣≤ C |[C i+xi]−[C′
i+ yi]| if 0<µ< 1/2, |xi | < 1−µ, |yi| < 1−µ. (7.24)

In order to establish the validity of (7.24), we consider the following cases.

Case 1. |C i −C′
i
| ≥ 3

Then we have

|[C i + xi]− [C′
i + yi]| ≥ |C i −C′

i|−2 and

∣∣∣∣
[
C i +

xi

1−µ

]
−

[
C′

i +
yi

1−µ

]∣∣∣∣≤ |C i −C′
i|+2,

and thus (7.24) holds with C = 5.

Case 2. |C i −C′
i
| = 2 and C i is odd

Then xi = yi = 0 and thus (7.24) holds with C = 1.
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The same argument applies to the next case.

Case 3. C i = C′
i

and C i is odd

Case 4. |C i −C′
i
| = 2 and C i is even

We may assume that C i = 2, C′
i
= 0, and we have to prove that

∣∣∣∣2+
x− y

1−µ

∣∣∣∣≤ C |2+ (x− y)| when |x| < 1−µ and |y| < 1−µ,

which amounts to

2+
x− y

1−µ
≤ C [2+ (x− y)] when |x| < 1−µ and |y| < 1−µ.

The above inequality holds with C = 2 (provided 0<µ< 1/2).

Case 5. C i = C′
i

and C i is even
Then (7.24) holds with C = 2 (provided 0<µ< 1/2).

Case 6. |C i −C′
i
| = 1

We may assume that C i = 1 and C′
i
= 0. As above, for 0<µ< 1/2 estimate (7.24) follows from

∣∣∣∣1−
y

1−µ

∣∣∣∣≤ 2 |1− y| when |y| < 1−µ.

Step 3 completed. We estimate ICµ,µ0 ,C′
µ,µ0

using (7.20) with A = Cµ,µ0 and B = C
′
µ,µ0

. After the
changes of variables

Cµ,µ0 ∋ X
j
∗ 7→ 0C+

X
j
∗−0C
1−µ

∈Cc
(µ0−µ)/(1−µ), C

′
µ,µ0

∋Y
j
∗ 7→ 0C′ +

Y
j
∗ −0C′

1−µ
∈C′ c

(µ0−µ)/(1−µ) (7.25)

in the first double integral in (7.20), Lemma 7.9 implies that for 0<µ0 < 1/2 we have

ICµ,µ0 ,C′
µ,µ0

≤C(n, p)
Ï

C
c
(µ0−µ)/(1−µ)×C

′ c
(µ0−µ)/(1−µ)

dX
j
∗dY

j
∗

|g(X j
∗)− g(Y j

∗ )|p

|X
j
∗−Y

j
∗ |

j+sp

+C(n, p)
Ï

Cµ,µ0×C
′
µ,µ0

dX
j
∗dY

j
∗

|g(X j
∗)− g(Y j

∗ )|p

|X
j
∗−Y

j
∗ |

j+sp

≤C(n, p)
Ï

C
c
2µ0

×C′ c
2µ0

dX
j
∗dY

j
∗

|g(X j
∗)− g(Y j

∗ )|p

|X
j
∗−Y

j
∗ |

j+sp
.

(7.26)

We complete Step 3 by noting that the last double integral in (7.26) goes to 0 as µ0 → 0 (since
g ∈W s,p(C j ∩C )).

Step 4. We have IF,F → 0 as µ→ 0
In view of Step 1, Step 4 is an immediate consequence of the fact that the restriction of g to
C j−1 ∩C belongs to W s,p and of the following

Lemma 7.10. Let 0 < s < 1, 1 ≤ p <∞, j ≥ 1 and h ∈ W s,p(C j−1 ∩C ). Then, with C = C( j, s, p,C ),
we have

∑

C 6=C′

Ï

C
c
1/2×C

′ c
1/2

dX
j
∗dY

j
∗

|h(X j−1
∗ )−h(Y j−1

∗ )|p

|X
j
∗−Y

j
∗ |

j+sp
≤ C |h|

p

W s,p(C j−1∩C ). (7.27)
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Proof of Lemma 7.10. Estimate (7.27) is a special case of the following more general inequality,
valid for nonegative measurable f :

Ï

C
c
1/2×C

′ c
1/2

dX
j
∗dY

j
∗

f (X j−1
∗ ,Y j−1

∗ )

|X
j
∗−Y

j
∗ |

j+sp
≤ C

Ï

(C∩C j−1)×(C′∩C j−1)

dX
j−1
∗ dY

j−1
∗

f (X j−1
∗ ,Y j−1

∗ )

|X
j−1
∗ −Y

j−1
∗ | j−1+sp

. (7.28)

If we express the left-hand side of (7.28) using polar coordinates on C∩C j−1 (respectively on
C′∩C j−1), then (7.28) amounts to the following

1
ˆ

1/2

1
ˆ

1/2

dtdτ
1

|[(1− t)0C+ t X
j−1
∗ ]− [(1−τ)0C′ +τY

j−1
∗ ]|a

≤ C
1

|X
j−1
∗ −Y

j−1
∗ |a−1

, (7.29)

which is valid whenever a> 1, C 6=C
′, X

j−1
∗ ∈C∩C j−1 and Y

j−1
∗ ∈C′∩C j−1.

Clearly, estimate (7.29) holds when C∩C′ =; (since both sides of (7.29) are bounded from above
and below by finite positive constants).

We may thus assume that

C∩C′ 6= ;. (7.30)

In this case, the idea is to mimic the proof of the estimate (4.14).

Step 1 in the proof of (7.29). We claim that, assuming (7.30), there exists some C = C(n, j) such
that for X

j−1
∗ ∈C∩C j−1 and Y

j−1
∗ ∈C′∩C j−1 and 1/2≤ t,τ≤ 1 we have

|[(1− t)0C+ t X
j−1
∗ ]− [(1−τ)0C′ +τY

j−1
∗ ]| ≥ C |[(1− t)0C+ t X

j−1
∗ ]−Y

j−1
∗ |. (7.31)

The proof of (7.31) relies on the following geometrically clear inequality, whose proof is post-
poned.

Lemma 7.11. Assume that (7.30) holds. Then there exists some C = C(n, j) such that if X
j
∗ ∈ C

and Y
j
∗ ∈C′, then there exists some Z

j
∗ ∈C∩C

′ such that

|X
j
∗−Z

j
∗|+ |Y

j
∗ −Z

j
∗| ≤ C |X

j
∗−Y

j
∗ |. (7.32)

Equivalently, if P :C∪C′ →R
ℓ is L-Lipschitz on C and on C′, then P is CL-Lipschitz on C∪C′.

Assuming Lemma 7.11 established, we proceed as in the proof of Lemma 5.3: we let

P(X j
∗)= X

j
∗, ∀X

j
∗ ∈C,P(Y j

∗ )=Y
j−1
∗ , ∀Y

j
∗ ∈C′

c

1/2.

We extend P from C′
c

1/2 to C′ without increasing its Lipschitz constant (which is independent of
C
′). For this P, estimate (7.31) reads

|P(X j
∗)−P(Y j

∗ )| ≤
1

C
|X

j
∗−Y

j
∗ |, ∀X

j
∗ ∈C

c
1/2, ∀Y

j
∗ ∈C′ c

1/2,

which follows from Lemma 7.11.

Step 2 in the proof of (7.29). In view of (7.31), we have reduced (7.29) to

1
ˆ

1/2

dt
1

|[(1− t)0C+ t X
j−1
∗ ]−Y

j−1
∗ |a

≤ C
1

|X
j−1
∗ −Y

j−1
∗ |a−1

. (7.33)

Combining (7.30) with the fact that C∩C
′ =;, we find that

1≤ |Y
j−1
∗ −0C| ≤ 2 and |X

j−1
∗ −Y

j−1
∗ | ≤ 2. (7.34)
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Using (7.34), we obtain that

|[(1−t)0C+t X
j−1
∗ ]−Y

j−1
∗ | = |[0C−Y

j−1
∗ ]−t[0C−X

j−1
∗ ]| ≥ 1−t when 1/2≤ t ≤ 1−|X j−1

∗ −Y
j−1
∗ |/10 (7.35)

and

|[(1− t)0C+ t X
j−1
∗ ]−Y

j−1
∗ | = |t[X j−1

∗ −Y
j−1
∗ ]+ (1− t)[0C−Y

j−1
∗ ]|

≥ t|X
j−1
∗ −Y

j−1
∗ |−2(1− t)

≥ C|X
j−1
∗ −Y

j−1
∗ | when 1−|X

j−1
∗ −Y

j−1
∗ |/10≤ t ≤ 1.

(7.36)

Estimate (7.33) follows from (7.35) and (7.36).

In order to complete Step 4, it remains to proceed to the

Proof of Lemma 7.11. Let E= C∩C′, and let ℓ be the Hausdorff dimension of E. Let us note that
E is a cube in Cℓ. After translation and permutation of the coordinates, we may identify E with a
cube in R

ℓ, and then we may write

C=D×E, C′ =D
′×E

with D, D′ closed cubes in C j−ℓ(Rn−ℓ) such that

D∩D
′ = {Z′} for some point Z′.

We will split a point X
j
∗ ∈C as

X
j
∗ = (X ′, X ′′), with X ′ ∈D, X ′′ ∈E; similarly for a point Y

j
∗ ∈C′.

Assume that we have established the estimate

|X ′−Z′|+ |Y ′−Z′| ≤ C|X ′−Y ′|, ∀X ′ ∈D, ∀Y ′ ∈D′. (7.37)

Then clearly (Z′, X ′′) ∈C∩C′ and

|X
j
∗− (Z′, X ′′)|+ |Y

j
∗ − (Z′, X ′′)| ≤ C|X

j
∗−Y

j
∗ |,

i.e. (7.32) holds.
It thus remains to prove (7.37). This is obtained by contradiction. Assume that there are

sequences {X
′,k
∗ }⊂D\{Z′} and {Y

′,k
∗ }⊂D

′ \{Z′} such that

|X
′,k −Z′|+ |Y

′ ,k −Z′| ≥ k|X
′,k −Y

′,k|. (7.38)

By symmetry and after passing to a subsequence, we may assume that

X
′,k−Z′ = δkWk, Y

′,k−Z′ =λkTk, |Wk| = 1, Wk →W , |Tk| = 1, Tk → T, 0≤λk ≤ δk, λk/δk →µ.

Using (7.38), we obtain that W = T (and µ = 1). However, this cannot happen. Indeed, since
X

′,k ∈D, we have Z′+Wk ∈D (check it on a picture). Thus Z′+W ∈D. Similarly, Z′+T ∈D′. Since
W = T, we obtain that D∩D

′ contains Z′+W , a contradiction.

Step 4 is complete.

Step 5. We have IE,F → 0 as µ→ 0
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In view of Steps 1 and 2, it suffices to establish the following. Let ξ > 0 be fixed arbitrarily
small. Let C 6=C

′ be two cubes in C j. Then there exists some 0<µ0 < 1 such that

ICµ,µ0 ,C′ c
µ
=

Ï

Cµ,µ0×C
′ c
µ

dX
j
∗dY

j
∗

|gµ(X j
∗)− g(Y j−1

∗ )|p

|X
j
∗−Y

j
∗ |

j+sp
< 2ξ for every 0<µ<µ0. (7.39)

By Step 4, we have
Ï

Cµ,µ0×C
′ c
µ

dX
j
∗dY

j
∗

|g(X j−1
∗ )− g(Y j−1

∗ )|p

|X
j
∗−Y

j
∗ |

j+sp
→ 0 uniformly in 0<µ<µ0 as µ0 → 0. (7.40)

Using (7.40), (7.39) amounts to the existence of some µ0 such that

J =

Ï

Cµ,µ0×C
′ c
µ

dX
j
∗dY

j
∗

|gµ(X j
∗)− g(X j−1

∗ )|p

|X
j
∗−Y

j
∗ |

j+sp
< ξ for every 0<µ<µ0. (7.41)

The key ingredient in the proof of (7.41) is the following

Lemma 7.12. Let a> j. Then for C 6=C
′ cubes in C ∩C j and for X

j
∗ ∈C

c
1/2 we have

ˆ

C
′ c
1/2

dY
j
∗

1

|X
j
∗−Y

j
∗ |

a
≤ C(n, j,a,C )

1

|X
j
∗− X

j−1
∗ |a− j

. (7.42)

Proof of Lemma 7.12. When C∩C′ = ;, the left-hand side of (7.42) is bounded from above by a
positive constant, and the right-hand side of (7.42) is bounded from below by a positive constant,
so that the conclusion is clear. We may thus assume that C∩C′ 6= ;. We are then in position to
apply estimate (7.31) (with the roles of X

j
∗ and Y

j
∗ reversed) and infer that

|X
j−1
∗ −Y

j
∗ | ≤ C|X

j
∗−Y

j
∗ |, ∀X

j
∗ ∈C

c
1/2, ∀Y

j
∗ ∈C′ c

1/2. (7.43)

On the other hand, since C∩C
′ =;, we clearly have

|X j − X
j−1
∗ | ≤ |X

j
∗−Y

j
∗ |, ∀X

j
∗ ∈C, ∀Y

j
∗ ∈C

′

. (7.44)

By (7.43) and (7.44), we have

|X
j
∗−Y

j
∗ | ≥ C(|X j − X

j−1
∗ |+ |X

j−1
∗ −Y

j
∗ |), ∀X

j
∗ ∈C

c
1/2, ∀Y

j
∗ ∈C′c

1/2. (7.45)

If Z is the orthogonal projection of X
j−1
∗ on the j-dimensional affine plane Π spanned by C

′, then
(7.45) leads to

|X
j
∗−Y

j
∗ | ≥ C(|X j − X

j−1
∗ |+ |Z−Y

j
∗ |), ∀X

j
∗ ∈C

c
1/2, ∀Y

j
∗ ∈C′ c

1/2. (7.46)

Using (7.46), we find that
ˆ

C
′ c
1/2

dY
j
∗

1

|X
j
∗−Y

j
∗ |

a
≤ C

ˆ

Π

dY
j
∗

1

[|X j − X
j−1
∗ |+ |Z−Y

j
∗ |]a

= C
1

|X j − X
j−1
∗ |a− j

.

Step 5 completed. Using Lemma 7.12 and a change of variables as in (7.25), we obtain that the
left-hand side J of (7.41) satisfies, when 0<µ0 < 1/2,

J ≤ C

ˆ

Cµ,µ0

dX
j
∗

|gµ(X j
∗)− g(X j−1

∗ )|p

|X
j
∗− X

j−1
∗ |sp

= C (1−µ) j−sp

ˆ

C
c
(µ0−µ)/(1−µ)

dX
j
∗

|g(X j
∗)− g(X j−1

∗ )|p

[|X j
∗− X

j−1
∗ |+µ/(1−µ)]sp

≤ C

ˆ

C
c
2µ0

dX
j
∗

|g(X j
∗)− g(X j−1

∗ )|p

|X
j
∗− X

j−1
∗ |sp

→ 0 as µ0 → 0,

(here, we use the fact that g ∈W
s,p
j

) and thus (7.41) holds.
Step 5 and the proof of Lemma 7.3 are complete.

43



8 Continuity of the map g 7→ h. Proof of Theorem 6

Let C be a finite submesh of Cn and let j ∈ J0, n−1K. Let g : C j∩C →R
m and let h be its j-piecewise

homogeneous extension to C .
The main result in this section is the following

Lemma 8.1. Let 0< s< 1, 1≤ p <∞ be such that sp < j+1. Then we have

‖h‖
p

Lp(C ) ≤ C‖g‖
p

Lp(C j∩C ) (8.1)

and

|h|
p

W s,p(C ) ≤ C|g|
p

W s,p(C j∩C ). (8.2)

[Here, ‖ ‖Lp(C ) and | |W s,p(C ) are naturally defined, and we allow constants depending on C .]
Equivalently, the map W s,p(C j ∩C ) ∋ g 7→ h ∈W s,p(C ) is continuous.

Proof. We may assume that T = 0. We use the notation in Section 5. In particular, ω and λ will be
points in R

j.

Step 1. Estimate of ‖h‖
p

Lp(C )
As in Step 3.1 in the proof of Lemma 5.1 (more precisely, by mimicking the derivation of (5.10)
with the help of (5.8)), we have

‖h‖
p

Lp(C ) =
◦∑

σ∈Sn− j,n

q∈{−1,1}n− j

L∈Zn

ˆ

|ω|≤1

dωk♯(ω) |g(2εL+ X j)|p,

where
◦∑

denotes a sum taken only over the L’s such that Qε+2εL ∈C and

k♯(ω)= εn

ˆ

0≤t≤1

dt tn−1
1 . . . t j

n− j
= C(n, j)εn.

Thus

‖h‖
p

Lp(C ) = C(n, j)εn
◦∑

σ∈Sn− j,n

q∈{−1,1}n− j

L ∈Z
n

ˆ

|ω|≤1

dω |g(2εL+ X j)|p ≤ C(n, j)εn− j

ˆ

C j∩C

|g|p.

Step 2. Estimate of |h|p
W s,p(C )

In the spirit of Step 1 above, we have

|h|
p

W s,p(C ) =
∗∑

σ,τ∈Sn− j,n

q,r∈{−1,1}n− j

L,M∈Zn

ˆ

|ω|≤1

dω

ˆ

|λ|≤1

dλk♭
L,M(ω,λ) |g(2εL+ X j)− g(2εM+Y j)|p,

where
∗∑

denotes a sum taken only over the L’s and M’s such that Qε+2εL ∈C and Qε+2εM ∈C ,
and we set

k♭
L,M(ω,λ)=

ˆ

0≤t≤1

dt

ˆ

0≤u≤1

du tn−1
1 . . . t j

n− j
un−1

1 . . .u j

n− j

ε2n

|(2εL+ X n)− (2εM+Y n)|n+sp
.

We rely on the following variant of Lemma 5.4.
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Lemma 8.2. Assume that sp < j+1. Then

k♭
L,M(ω,λ)≤

C(C )

|(2εL+ X j)− (2εM+Y j)| j+sp
. (8.3)

Proof. When L = M, the conclusion is given by Lemma 5.2. When |L−M| = 1, this is Lemma 5.4.
Finaly, when |L− M| ≥ 2, both sides of (8.3) are bounded from above and from below, with finite
positive bounds depending on C (and thus on ε) but independent of L, M, X n and Y n.

Step 2 completed. Using Lemma 8.2, we find that

|h|
p

W s,p(C ) ≤C(C )
◦∑

σ,τ∈Sn− j,n

q,r∈{−1,1}n− j

L,M∈Zn

ˆ

|ω|≤1

dω

ˆ

|λ|≤1

dλ
|g(2εL+ X j)− g(2εM+Y j)|p

|(2εL+ X j)− (2εM+Y j)| j+sp

≤C(C ) |g|p
W s,p(C j∩C ).

We end with the

Proof of Theorem 6. Theorem 6 is a straightforward consequence of Corollary 6.3, Lemma 7.1 and
Lemma 8.1.
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