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Abstract

Let Q be a smooth bounded domain in R”, 0 < s <co and 1 < p < co. We prove that C®(Q;S')
is dense in WP(Q;S') except when 1 < sp <2 and n = 2. The main ingredient is a new
approximation method for W%?-maps when s <1. With 0<s<1, 1<p <oo and sp < n,
Q a ball, and N a general compact connected manifold, we prove that C°°(Q;N) is dense in
W#P(Q2;N) if and only if 7[5,)(IN) = 0. This supplements analogous results obtained by Bethuel
when s =1, and by Bousquet, Ponce and Van Schaftingen when s =2,3,... [General domains
have been treated by Hang and Lin when s = 1; our approach allows to extend their result to
s < 1.] The case where s > 1, s N, is still open.

1 Introduction

Let (1 be a smooth bounded domain in R", n = 2. [The questions we will consider are already
interesting when Q is a cube or a ball.] The first topic that we will address is whether C®°(Q;S1)
is dense in W5P(Q;S?). Here, s >0 and 1 < p < 0o, and we let

WP (Q; SY) = {u € WHP(Q;R?); |u(x) =1 a.e);

for a set N c R, we define W*P(Q; N) similarly.
Of special interest to us is the case where 0 < s < 1. Recall that in this case a standard norm
on WP(Q)is u— |lullrr + |ulwsr, where

_ p
lulP :/ dedy.
QJQ

ws.p |x_y|N+sp

When s > 1 is not an integer, we write s=m+0, meN, 0 <o <1, and then a standard norm on
WSP is u — ||u||Lp + ||Dmu||W0,p.
In this direction, our main result is the following.

Theorem 1. C°°(§;§1_)is dense in W5P(Q;S') when sp <1 or sp = 2.
If 1 < sp <2, then C®°(Q;S') is not dense in WSP(Q;S1).

Many special cases were already known (see the beginning of Section 2), but the case where n =3,
s<1and 2 <sp <n was left open (see [12, Conjecture 2]). This is an interesting and unusual
situation where density holds and lifting fails; more precisely, there exists some u € W52(Q;S!)
which cannot be written as u = e'¥ with ¢ € WP ((Q;R) [5].

The proof of Theorem 1, which is presented in Section 2, relies on a new approximation result,
valid only when 0 < s < 1, which is discussed below (this is the content of Theorems 5 and 6). This
original construction has its own interest and we believe that it might be useful in other contexts.
An important feature of Theorem 5 is that it does not use any kind of smoothing or averaging.
Hence it is especially appropriate in situations where maps take values into an arbitrary given
set — not necessarily a manifold.



Remark 1.1. A completely different proof of Theorem 1 for the casen >3,s<1and 2<sp <n can
be found in [13]. The main ingredient is the (non trivial) factorization theorem which asserts that
each u € WoP(Q;S') can be written as u = e’?v, with ¢ € WSP(Q;R) and v €e WHP(Q;S1) [21], [13].

Remark 1.2. In the case where 1 < sp < 2, the reader may wonder what is the closure of C°(Q;S?)
into W*?. This question is answered in [13]. Roughly speaking, we are able to define a distribu-
tional Jacobian Ju for every u € WP(Q;S!) with 1 < sp <2, and then

fwap
Co(Q;SY)  ={ueWHP(Q;SY); Ju =0}.
This is the S! fractional counterpart of a result of Bethuel for maps in HY(B3;S2) [2].

In the range 1< sp < 2, the substitute of C°°(Q;S?') for density purposes is the following class,
inspired by the important work of Bethuel and Zheng [4] and Bethuel [3]:

KHsp={uecWP (Q:;SY); u is smooth outside some finite union of (n — 2) — manifolds}.

For completeness, we recall the following known result.
Theorem 2. Let n =2 and s > 0. Assume that 1 <sp <2. Then %, is dense in WSP(Q;Sh.

If s =1, Theorem 2 was obtained by Bethuel and Zheng [4] when n = 2 and by Bethuel [3] when
n = 3. Other special cases were treated by Hardt, Kinderlehrer and Lin [17] and by Riviere [23].

1
In [6], Theorem 2 was proved for s = 2 and p = 2; the argument in [6] extends readily to the full
range 0 <s <1, 1 <sp < 2; this is done in [13]. Finally, when s > 1 Theorem 2 was established by
Bousquet [7].

We next consider the more general situation where the target space S is replaced by a compact
connected manifold N without boundary, embedded in R™. To start with, we prove that when
n=1, C°(Q;N) is always dense in W%P(Q2;N); see Corollary 3.1. Our main result in Section 3
is a fractional version of a remarkable result of Bethuel [3], which asserts that, when n =2 and
1< p <n, the class

F1p={uc Wl’p(Q;N); u is smooth outside some finite union of (n —[p] — 1) — manifolds}
is dense in WHP(Q; N) (with [ ] denoting the integer part). When 0 < s < 1, we prove

Theorem 3. Assume that n =2, 0<s <1 and sp <n. Then
KHsp={u e W*P(Q;N) ; u is continuous outside a finite union of (n —[sp] — 1) — manifolds}
is dense in W5P(Q);N).

Remark 1.3. Let n =2 and s > 0. Assume that either sp <1 or sp =n. Then C®(Q;N) is dense
in W8P(Q;N). For the case sp < 1, see Section 3.2; the case sp =n is handled as in [25], [14]. On
the other hand, given any s >0 and p =1 such that 1 <sp < n, there exists some manifold N such
that C*°(Q;N) is not dense in WP (Q;N); it suffices to take N = S?1 and apply Theorem 4 below.

Remark 1.4. With more work, it is possible to improve the conclusion of Theorem 3 by replacing,
in the definition of the class % p,, “u continuous” by “u smooth”. This requires a smoothing proce-
dure. Such a procedure with s = 1 (in the spirit of the proof of the H = W theorem of Meyers and
Serrin) is described in [10]. This can be adapted to arbitrary s, but will not be detailed here.

1
Remark 1.5. When 1< p <oo and s = 1——, Theorem 3 was proved by Mucci [22], using a method

P
inspired by Bethuel [3] and completely different from ours. It is not clear whether this kind of
method might lead to a proof of Theorem 3.



Recall the following result due to Bethuel [3]: Assume that () is a ball (or a cube). For p <n,
C*®(Q;N)is dense in WP(Q;N) if and only if n[p1(N) = 0. The extension of this result to s =2,3,...
can be found in Bousquet, Ponce and Van Schaftingen [8]. A partial analog in our situation is

Theorem 4. Assume that 0 <s <1, sp < n and that Q is a ball. Then C®(Q;N) is dense in
W#P((;N) if and only if 75, (N) = 0.

For special target manifolds N, Theorem 4 was obtained by Bousquet, Ponce and Van Schaftin-
gen [9].

When Q is more complicated, one may still give necessary and sufficient conditions for the
density of C>®°(Q;N) in WP(Q;N). Indeed, when s = 1 such conditions (depending on [p]) were
discovered by Hang and Lin [16, Theorem 6.3]. The proof of Theorem 4 shows that the same
conditions govern the case s < 1, provided we replace [p] by [sp].

Two natural questions remain open:

Open Problem 1. Assume that s > 1 is not an integer and that sp < n. Is it true that % , is
dense in WP (Q2;N)?

By Theorem 2, the answer is positive when N = S!. This is also the case when N is arbitrary
and s =2,3,... (Bousquet, Ponce and Van Schaftingen [8]). However, the general case is still open
even for simple targets such as N = S2.

Open Problem 2. Assume that s > 1 is not an integer, sp <n and that Q is a ball. Is it true that
C®(Q;N) is dense in W*P(Q;N) if and only if Tsp1(IN) = 07

The main idea for the proof of Theorem 1. We describe here, without proof, the basic tool,
namely approximation by piecewise j-homogeneous maps.
For simplicity, we explain our construction first in 3-d. Let @ =[-1,1]° and let g : 0Q — R™.

We may extend g to a map A : Q — R™ through the formula A(x) =g (|x—|), where | | stands for the
X

sup norm. The map 4 is the “homogeneous” extension of g.

Let now K be the 1-dimensional skeleton (=union of edges) of @ and let g: K — R". One may ex-
tend g to @ in two steps: first, by homogeneous extension on each face of 0@, next by homogeneous
extension from 0@ to . This extension will be again called “homogeneous”.

Similarly, given a map defined on the 0-skeleton (=union of vertices) of @, one may extend it in
three steps “homogeneously” to @.

More generally, if K is the j-skeleton of the cube @ =[—1,1]"* and g : K — R™, then g has a “homo-
geneous” extension & : Q — R™, obtained in (n —j) steps. Such a map will be called j-homogeneous.
One can also consider the more general situation where the cube is replaced by a finite mesh
% = U;Q; and extend maps defined on the j-skeleton of % to “piecewise j-homogeneous” maps on

C.

We may now state our main approximation result.
Let F cR™ be an arbitrary set, 0 <s <1, sp <n. Let Q, w be two smooth open bounded subsets
of R" such that Q cw and let f € W5?(w; F).

Theorem 5. Assume that 0 <s <1 and sp <n. Let j be an integer such that [sp]<j<n-1
Then there exists a sequence {€*} of finite meshes, such that Qc%”*c w, and a sequence of maps
fr:€* — F such that:

a) Each f; is piecewise j-homogeneous on %*, i.e., f; is the j-homogeneous extension of its re-
striction to the j-dimensional skeleton .#* of €*.

b) Each f3 belongs to WSP(€*; F).

c) fr— fin W5P(Q) as k — co.



When j = n -1, the main ingredient in the proof of Theorem 5 is presented in Section 4; Section 5
treats the case where j <n —2 and contains the proof of Theorem 5.

Of special interest to us will be the case where j =[sp]. When sp is not an integer, the restriction
of f3 to .#* is continuous. In particular, each f3 is continuous on %* outside some finite union of
¢-dimensional cubes, with £ =n —[sp]—1. This need not be the case when sp is an integer.

When F is a compact manifold and j = [sp], Theorem 5 can be considerably improved:

Theorem 6. Assume that 0 <s<1,1<sp <n and that F is a compact manifold without boundary.
Let j = [sp]. Then there exist sequences {¥*} and {f3} such that a)-c) hold and, in addition,

d) For each £, the restriction to .#* of f}, is Lipschitz.
The proof, presented in Section 8, uses tools developed in Sections 6 and 7.

Remark 1.6. We emphasize the fact that these approximation results are specific to the case
where 0 < s < 1. For example, the map u(x1,x3) = x; cannot be approximated in W1((0,1)?)
by piecewise 1-homogeneous maps associated to meshes contained in (—1,2)%; see Lemma 4.9 in
Section 4. One may extend the argument given there in order to prove that, for any p and j,
non constant smooth maps cannot be approximated in WHP(Q) by piecewise j-homogeneous maps
associated to meshes contained in w.

On the other hand, although the use of homogeneous extensions appears already in Bethuel
[3] in connection with the approximation of W'? maps, our method is different from Bethuel’s
one. His method involves smoothing of u on a set A < Q2 such that Q\ A is small. Homogeneous
extensions are used only in Q\ A. In our approach, homogeneous extensions are used everywhere.

The main results of this paper have been mentioned in personal communications starting in
2003 and a sketch of proof can be found in [19] and [20]. Since then, several papers have addressed
related questions.
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8 Continuity of the map g — h. Proof of Theorem 6 44

2 Proof of Theorem 1 using Theorem 6
We start by presenting more details about the cases already known.

a) Assume that 1 <sp <2 and that 0 € Q c R2. Let u(x) = %; here, | | stands for the Euclidean
X

norm. One may check that u € W5?(Q;S'). Indeed, assume first that s < 1. We have u e W9 n
L, for each q < 2. To obtain that u € W*?  we take sp < ¢ < 2 and use the Gagliardo-Nirenberg-
Sobolev embedding W4 N L™ c WSP. Assume next that s > 1. Since Vu is homogeneous of
degree —1 and smooth outside the origin, we have Vu € W?? whenever (1 + 0)qg < 2; this is
obtained by arguing as in [24, proof of Lemma 1 (ii), p. 44]. In particular, Vu € W5~1P so that
ueWws?,

We claim that there is no sequence {u;} € C°(Q;S') such that up — u in WSP. Argue by
contradiction as in [25]. Then there is some small » > 0 such that, possibly after passing to a
subsequence, u; — u in W%?(C(0,r)); here, C(0,r) is the circle of radius r centered at the origin.

If sp > 1, this implies uniform convergence of uj; to u on C(0,r). Therefore, deg(uy,C(0,r)) —
deg(u,C(0,r))=1. However, deg(u,C(0,r)) =0 since uj is smooth in Q.

When sp = 1, convergence need not be uniform anymore. However, we know that W*?(C(0,r))c
VMO with continuous embedding, see e. g. [14]. We conclude as above using the continuity of
the degree under BMO convergence [14].

(x1,%2)
(1, x2)|°

When Q2 cR”, with n = 3, one argues similarly using the map u(x) = x=(x1,...,%n).

b) Assume that sp <1. Letu e WSP(Q;SY). By [5], one may write u = e'?, with ¢ € WSP(Q;R). If
{pr} < C®°(Q;R) converges to ¢ in W*P? it is immediate that uj := e'?* — u in WP (see e.g. [6,
proof of (5.43)]).

¢) Assume that s = 1 and sp = 2. Then we may write u = ve'?, with v € C°(Q;S') and Q€
WP A WLSP(Q;R) [12, Cases 2 and 3, pp. 128-129]. Let now {pr} C°°(§;R) converge to ¢
in WSP A WbLsP. Then 't — ¥ in WP [11, Theorem 1.1’], which immediately implies that
ve'Pt - pe'? =y in W52,

d) Assume that sp = n. Then density of C°(Q;SY) in WsP(Q;SY) is well-known [25] via the
Sobolev embeddings W5? c C° when sp > n and WP cVMO when sp = n. For further use, we
note that density holds also when S! is replaced by an arbitrary compact manifold.

We next turn to the case 0 <s <1 and 2 < sp < n, which is the only one really new.

Proof of Theorem 1. We assume that 0 <s <1 and 2<sp <n. Let ¢ =sp. Recall the Gagliardo-
Nirenberg type embedding [5, Appendix D]

WhinL® c WP (2.1)
(valid since g > 1). This embedding is continuous in the sense that
if f, — fin WY and || fzllz~ < C, then fz — f in WSP. (2.2)

On the other hand, since ¢ = 2, a result of Bethuel and Zheng [4] asserts that C®°(Q;S?) is dense
in WH9(Q;S'). Combining this with (2.1)-(2.2), we find that

— wla — WsP
Whe(Q; S =C®(Q;S1) <C=Q;Sh)




Let now u € WSP(Q;S'). We start by extending u to a neighborhood w of Q; this is achieved via
reflections and yields a map f € W2 (w;Sh).

We next claim that the maps f;, given by Theorem 6 are in W7 for each r < [sp]+ 1. In particular,
we have f, € Wb, To establish this fact we rely on the following

Lemma 2.1. Assume that n = 2 and let U c R” be an open set. Let K be a closed subset of U

such that #"1(K)=0. Let u € W,>'(U \ K) be such that / IVuu| < co. Then u € W5 '(U) and the
U\K
Sobolev gradient of u is the Sobolev gradient of u |/ \k.

This result is proved in [12, Lemma 2.15]. [For similar results, see e.g. [18, Lemma 3], [15,
Introduction].] We apply this lemma with U = €¢* and K = =¥, the set of discontinuity points of
fz; this is the “dual skeleton” of #*. Then 2F is a finite union of (n — j — 1)-dimensional cubes, and
thus #" 1(K) = 0. On the other hand, a straightforward calculation yields

Cr

—k  vYxeEr\zF, 2.3
dist(x, %) * (2.3)

V()] =

and thus Vfj € L” when r < j+1. We find that f; € W (¢"), and actually f, € W'"(6*) when
r<j+1.
Thus

D _WSP

N —
WSP(Q;SHcWle(Q;S1) <cC>(Q;Sh) . O

3 The case of a general target manifold

Here we will address several questions related to the space W*?(Q2;N), where Q is a smooth
bounded domain in R” and N is a compact manifold without boundary embedded in R™.

3.1 Proof of Theorem 3 using Theorems 5 and 6

We start by extending a map u € W%?(Q2;N) to a map f € WP (w;N).

If sp < 1, then the maps f;, given by Theorem 5 are piecewise constant, and thus in %, ,, and we
are done.

Assume next that sp = 1. Let ¢ be such that sp < ¢ <[sp]+1. Note that 1 < ¢ < n and that
[q] =[sp]. As in the proof of Theorem 1, (2.1) and (2.2) hold (since ¢ > 1 and q = sp). Combining
(2.1) and (2.2) with Bethuel’s density result for the class %1, (valid since q < n), we find that
‘%l,q CHs.p and

1 WP

wha WP
Wh(Q;N) =%, < Rig C<Rsp

Since the maps f given by Theorem 6 are in W¢ (this uses the fact that ¢ <[sp]+ 1), we obtain

S,P

WP W
WP(Q;N)c WLa(Q;N) Hsp - a

3.2 Proof of Theorem 4 using Theorems 5 and 6

We start with the case sp < 1; here, the topological condition is that N is connected, which is
satisfied by assumption. As we will see, in this case 2 could be any smooth domain.

If N is a curve, then N is diffeomorphic to S', and a straightforward argument reduces the
problem to the one of the density of C°°(§;§1) in W5P(Q;S1), which follows from Theorem 1.
Assume next that dim N = 2. Let u € WSP(Q;N). We first extend it near Q, next we consider



a map [ as in Theorem 5. It suffices to prove that such a map, which is piecewise constant,
can be approximated by smooth N-valued maps. Now f, assumes ony finitely many values, say
ai,...,a;. Let I' € N be a smooth simple curve that contains a1,...,a;. Then f, € WP(Q;T"). By
our discussion on curves, f, may be approximated by I'-valued (thus N-valued) smooth maps.

We now turn to the case 1 <sp <n.

Condition 7[;,)(N) = 0 is necessary. Let j = [sp]. Argue by contradiction and let v € C>®(S/;N)
such that v is not homotopic to a constant. Assume that 2 is the unit ball and let u : Q — N,
w(x) = v( (x1,---,%5+1)

(1, ... p20541)]
each g < j+1, and thus u € W%?, As in the proof of a) in Section 2, the stability of the homotopy

class under uniform (or BMO) convergence implies that there is no sequence {u} of smooth N-
valued maps such that u;, — u in WP,

); here, | | stands for the Euclidean norm. It is easy to see that u € WLa for

Condition 7, (N) = 0 is sufficient. It suffices to prove that each map f% given by Theorem 6
can be approximated by smooth maps. Let g be such that sp < g <[sp]+1, so that [¢g] =[sp]. Then
C°(Q;N) is dense in Wh4(Q;N), since mig1(N) = 0 and Q is a ball [3], [16]. The proof of Theorem
3 implies that C>®(Q;N) is dense in WSP(Q;N). O

Corollary 3.1. If I is a bounded interval, then C(I; N) is dense in WSP(I; N) for each s and p.

Proof. When sp <1, density follows from Theorem 4. When sp = 1, we are in case d) discussed in
Section 2 and we still have density. O

4 Approximation by homogeneous extensions

At the end of Section 5, we will present two proofs of Theorem 5. The first one is quite long, but
covers all the possible cases and has the advantage of introducing several calculations which will
prove useful in Sections 6-8.

The second proof, much shorter, is valid under the additional assumption j = 1. It relies on
two rather short calculations and on interpolation. While the same strategy could serve to prove
some of the auxiliary results in later sections, e.g. Lemma 8.1, it is unclear whether this approach
could be used in obtaining Lemmas 6.2 and 7.3, which are at the heart of the proof of Theorem
6. If interpolation could help in obtaining Lemmas 6.2 and 7.3, then this approach would lead to
significantly shorter proofs of Theorems 5 and 6.

For the convenience of the reader, the “long proof” of Theorem 5 is split into two parts: this
section is devoted to approximation by piecewise (n — 1)-homogeneous maps. Section 5 treats the
case of piecewise j-homogeneous maps, with j <n —2. The proofs of Theorem 5 are presented at
the end of Section 5.

Throughout the remaining sections, C will denote a constant depending only on n, s and p. If
necessary, we will enhance the dependence on the parameters by denoting C = C(n,s, p), etc.

If f:R" — R™, one may associate to f a family {f7 ¢}1err, >0 of piecewise (n — 1)-homogeneous
maps as follows: for each T € R", there exists exactly one horizontal (=with faces parallel to the
coordinate hyperplanes) mesh of size 2¢ having T as one of its centers. [The mesh consists of
the cubes 2¢K + (—¢,¢)", with K € Z".] We restrict f to the boundary of this mesh, next extend
homogeneously this restriction to the cubes of the mesh. The map obtained by this procedure will
be denoted f7  or simply fr when ¢ is fixed.

Analytically, fr  is defined as follows: let | | denote the sup norm in R". For £ >0, let

R:X)={Y eR"; |Y -X|<e}, Q: =Q:(0).
For a.e. X € R, there exists a unique K € Z" such that X € Q (T + 2¢K). Then

X-T-2eK

fT(X):fT,E(X):f T+2€K+€m .
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This section is essentially devoted to the proof of

Lemma 4.1. Let 0 <s <1,1 < p < oo be such that sp <n. For each f € W5P(R";R™) there are
sequences ¢, — 0 and {T;} < R" such that f7, ., — f in W*P(R").

Proof. We will establish the following estimate

1
- / If = FrelB,dT < ale) + ble), 4.1)
where
i b
a(s)—»Oase—»Oand/gd£<oo. 4.2)
0

Assume (4.1) proved for the moment. Then (4.2) implies that, for a sequence ¢, — 0, we have
a(ep) + b(er) — 0. The conclusion of Lemma 4.1 is then an immediate consequence of (4.1).

We next turn to the proof of (4.1). A warning about notation. The calculations below will
involve multiple integrals. In order to make these calculations easier to follow, an integral of the

form f(X,Y)dXdY will be denoted/dX/de(X,Y).
AxB A B

For the convenience of the reader, we split the proof of (4.1) into several steps.

Step 1. We have

=—/||f fTe”p dT —0ase—0. (4.3)

Indeed, since (Q (T + 2¢eK))kez» is an a.e. partition of R” and fr = fri9.x for T € R" and K € 7",
we have

1 1
Azg—n/dTZ / IF(X) - fr(X)IPdX = — /dX / If(X) = fr(XIPdT =

Kezn
|T|<e Q:(T+2¢K) R7 Q:(X)

1 » (4.4)
:g—n/dX/‘f(X)—f X+Y - 5m) :—/ fe) - f( +Y — 5m) dY.
R™ Qe
Y
Wenotethat Y e@Q, = Y — gmng Therefore,
A <2"sup{lf()-f( +Y)||€p; Y| <eh (4.5)

Inequality (4.5) implies (4.3) and completes Step 1.

In order to complete the proof of Lemma 4.1, it remains to estimate

:_/|f fT|Wsp

_1 ILf X)) - frCOI-[f(Y) - fr(IP °
= /dT//dXdY Ty .

R 7



and more specifically to obtain an upper bound of the form B < a(e) + b(¢e), with a and b as in (4.2).
To this end, we use the inequalities

CUfX) - frXOP +I1fX) - fr(X)IP), ifIX-Y|>¢

X) - frXD1-1fY) = fr(/P < .
PO = fr@I=7 00 =720l {C(|f(X)—f(Y)|p+|fT(X)—fT(Y)|p), ifIX-Y|se
We find that

B=<=CU+J+D), (4.6)

where

1 F O~ frX)IP
I—gn/dT ff dXdY X Y

I X-Y|>¢

S

If(X)-fF(X)IP

T XdY —/————
d f dXd X _y[or

|X-Y|<e

8

and
|f7(X) - fr(Y)IP

|X _Y|n+sp (4'7)

aT f dXdyY
|X-Y|<e

&€

Thus our purpose is to establish the estimates
I <a(e)+b(e), J <ale)+ble), D <ale)+b(e), (4.8)

with a(¢) and b(¢) as in (4.2).
Clearly,
If(X)-fF ()P

X Y| —0Qase—0.

J=2" f dXdyY
|X-Y|<e

Therefore, it remains to estimate I and D.

Step 2. Estimate of 1
We have

_ P
I:g%/dT/dX FX) = fr@EOF __C /dT/dX FX) = frXOIP.

£SP en+sp
Qe R” Q: R~

As in the proof of (4.4), we find that

1= / dx / 4y
en+sp

R7

p

F(X)- f(X+Y—£|§—I)

We next 1ntr0duce a change of variables widely used in what follows. We write Y = dw (or
Y =rw or Y = Aw elsewhere), where 6 = |Y| = max{|Yq],...,|Y;|} and |w| = 1. We will denote the
new variables 6 and w as polar coordinates.

In polar coordinates, the expression of I becomes

C

en+sp

I= /dX/é”‘ld(S / do |[fX)-F(X +6w—cw)P =

R™ 0 lwl=1

__ ¢ / dX / (e-AN""tdA / do |fX)-f(X - Aw)IP = (4.9)

en+sp

lw|=

n—1
_ /dX / ay E T ey - rx -y,

gh+sp |Y|n 1
R7 Y |<e




Since clearly

(e—ypt _
€n+sp|Y|rL—1 - |Y|n+sp

if[Y|<e<1, (4.10)

we find that

IfX) - f(2D)P
I<C ff dXdZ ——— X _Z[op —0ase—0,

|X—-Zl|<e

and thus I satisfies (4.8).

Step 3. Estimate of D
We start by noting that, if X € Q (T +2¢K) and |Y — X| < ¢, then

Ye | QT +2e(K +L)).

Lez™
IL|<1
Therefore,
X)— fr(Y)P
D<—/dT Ix / Ly VP2~ FrODIP.
K,LezZ™ |X_Y|n+sp
Qe IL|<1 Q:(T+2¢K) Q:(T+2e(K+L))
For L € 7", set
|fr(X)— fr(Y)IP
dTKZ" / ax / dy X -Y|rtsp (4.11)
Qs = Qe(T+2eK) Q. (T+2e(K+L))
so that
D < Z Dj.
Lez"
|LI<1

We estimate separately each D;,. We consider two cases: L =0 and |L| =

Step 3.1. Estimate of Dy
Since fr = friock, VT € R*, VK € 7", we have

|fr(X) - fr(IP
dTZ dX / dy X_ype

Kez QE(T+2eK ) Q:(T+2¢K)

- P
:—/dU / dX / gy o)~ fu@I”
|X —Y|n+sp
R" QW) Q)

In polar coordinates, we obtain

— p
6w — Ag|n*sp

lo|=

Since fy(U +6w) = f(U + ew) and fy(U + Ao) = f(U + €0), we find that

Do=— / U / do / do |f(U +ew) - (U +e0)Pkw, o), (4.12)

R™ lwl=1 lo|=1

10



where

t t

1
E S R T I Ll ) e —
(@) / / 6w — Ao |+sp
0 0

In order to complete Step 3.1, we will use
Lemma 4.2. Assume that sp <n. Then, for |w| =|o| =1, we have

an—sp

P —
k(a),O') - |w _ 0|n+sp—1 :

(4.13)

Remark 4.3. In the proof of Lemma 4.1, the condition sp < n is used only to obtain (4.13) and its
more general form (4.17).

Proof of Lemma 4.2. We have k(w,0) = E(a),a)+/§(a},a), where %(a),a) = ff e B(w,0) = f ... We

A<6 5<A
will establish (4.13) for k(w, o) replaced by k(w,0); a similar inequality holds for Z(w,o). We have

€ 0
— 1
k(w,a):/6”_1d5//1”_1d)t - =
0

|Ow — Ao |*+sp

1 1
1
_ n—1 n-1
_/(te) gdt/(tre) tedt TSP g 7o [T
0 0

Thus,

1 1 1
— _ e _ drt _ _ drt
k(w,o)=€""5P [ ¢"75P e [ 71— <P | 7 ——
lw—To|?tsP lw— 1o |?tsP
0 0 0

(here, we use the fact that sp < n).
We complete the proof of Lemma 4.2 by establishing the following inequality.

1
d c
Fi= [} LI —if o] = o] = 1. (4.14)
|w—‘r0‘|”+3p lw — a|?tsp 1
0

1
Indeed, if |w—0o| = 20° inequality (4.14) is clear, since in this case we have [w—10|=C,forO0<71<1.

1-3lw—0] 1
1
Let now |w—a|<%. We split F = F1 + Fg, where F1 = / ., Fo=
0 1-3|lw—a]

On the one hand, we have
lw—710|=Clw—-0|if |w|=|o|=1and T €R.

Therefore,

Clw -0l C
Fq < = .
_ r|n+sp — ylntsp—
lw— ot lw —g|rtsp-1

(4.15)

On the other hand, when 0 <7 <1 we have

lo—T10|l=|(1-T)w+T(W-0)|=z1-T—-Tlw—0|=1-7(1+|w—0O).

11



Thus
1-3|lw—a| 1

) dr 1 (1-p"!
7 < n-1 - = d¢
L= / " -t +lo—oD™ P A+[w—-o)" / tnrsp

0 2lw—0|+3|lw—0|2

1 (4.16)

dt C
< =< .
{ntsp |w_0-|n+sp—l

2lw—0o|+3lw—0c|?

1
We obtain (4.14) when | — 0| < 20 combining (4.15) with (4.16).
The proof of Lemma 4.2 is complete. O

Remark 4.4. For further use, we note that the proof of Lemma 4.2 shows that (4.14) holds under
more general assumptions on w and o. More specifically, if sp < n then we have

1

C
/T"—l dr ___ iflo]=1and1<|w|<3. (4.17)

|w_T0-|n+sp |w_0-|n+sp—1
0

Step 3.1 continued. Recall that we want to establish an estimate of the form Do < a(e) + b(e).
By (4.12) and Lemma 4.2, we have

If(U +ew)— fU +€0)|?

|w_o-|n+sp—1

C
D0<— dU/d /da
esP

R” lw|=1 lo|=
dU |f(U+a))—f(U+U)|p
En 1 Iw_o-|n+sp—1
|w|=¢ lo|=¢
4.18
/ / / U +w—-0) - FU)? 418
dU
gn 1 |w_0-|n+sp—1
|w|=¢ lo|=¢
IfU+2A)-fO)IP
En 1/dU / / dA |/1|n+sp—1 :
lw|=¢ N—w|=¢
Here is another lemma needed in Step 3.1.
Lemma 4.5. Let G(1) = 0 be any measurable function. Then
n 1
H:= / dw / dAG(/l)sC(e”‘zH0+en_lz Y H,,|, (4.19)
j=1 ¢g=-1

|lw|=¢€ [A-w|=¢

where

Hy:= / dAG\), H 4 := / d1;G).
[A]=2¢ 1Aj1<2¢
Aj=2q¢e

Here, we use the standard notation )ALJ- =A1, A L A 1, AR,

Proof of Lemma 4.5. We have

H=) > /da)j / dA G =Y Y E;,. (4.20)

. Y Jj=11=1
|djl<e [A-w;|<e

lw;l=€ (A—w);|=¢



We first estimate E;; for j #[. Assume e.g. j=1,/ =n. Then

Ei,= / di / dA, G(A)

lo1]<e A—wn,l<e

GIZEE An=onte (4.21)
<2 / dAG(A) / dws...dw, 1< Ce"? / dAGQ).

[Al=2¢ lwgl<e,Vke[2,n—1] [Al=2¢

Let now j=1[. Assume e.g. j =/ =n. Since w, = +¢ and 1, = w, + €, we have A, € {—2¢,0,2¢}.
Therefore,

Enp=2 / day, / dA, G(L)

|Onl=€ N—wn|<e
An€{0,+2¢)
1 (4.22)
<C / dAn / do, G =Ce" 1 Y dA, GA).
[Anl<2¢ lon|<e =t [Anl<2¢
A, €{0,+2¢} An=2qe
Lemma 4.5 follows from (4.20)-(4.22). O
Step 3.1 continued. Recall that we look for an estimate of the form Do < a(e) + b(e).
By (4.18) and Lemma 4.5 applied with
IfU+2A)-fO)IP
G(A):G(U,A): |/1|n+sp—1 >
we find that
1 n 1 R
DOSCZ/dU / dle(U,/l)+CZ Z dU / dA;GWU,A)
Re |A<2e L=t g IA;1=2¢
Aj=2qe (4.23)

n
= C(P() + Z (PJ',() +PJ',2£ +PJ',—2£)) .
j=1

In view of the above, we will establish estimates of the form P < a(e)+ b(¢), where P is one of
the Po, Pjo, Pj +2¢.

Estimate of Py. We have

/ds— /dU/dg / |f(U+)L)—f(U)|P
|Mn+sp—1
0 [A]<2¢

1
— b
:/dU / dl If{W+A)-fU) /g

|/1|n+sp—1
R" [Al=<2 [Al/2 (4.24)

<C/dU/(M U+ )= FOIP

|A|n+sp

R™ [A]=2

_C ff dXdYIf(X) f(Y)|P<
|IX =Y |n+sp

[ X-Y|<2
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Estimate of P; 5.. (A similar estimate holds for P; _s..) Assume e.g. j =n. Then

1 - p
Pn,QE:/dU / di, |f(U +(A,,2¢)— f(U)| ,

(25)n+sp—1

R™ Anl<2e

so that

/dU / d A, |f U + Ay, 2¢) — FU)IP
R" [An1<2¢
lf(U+M1)-fO)P

|A|n+sp

en+sp

O\H
QU
™
~
o S
&
[l
Q
O\H

(4.25)

:C/dU / dA
R* A=A, =2
sC/dU / dA

R7 [A]=2

IfU+1)-fO)P -
|A|n+sp

Estimate of P; (. Assume j =n. Then

p
Pn,O:/dU / i, f (U +(An,0) - f(U)I (4.26)

|/1 |n+sp 1

[Rn

[An]<2¢

In order to estimate P, o, we rely on a variant of a well-known lemma due to Besov [1, proof of
Lemma 7.44, p. 208], more precisely

Lemma 4.6. We have, for 1 </ <n,

p

l
f (U+ > /lkek) - f(U)

k=1

RZZZ/dU / dAi...dA; 7
[(A1,..., At *sP

R [Axl<e,V k<l 4.27)
— p
sC/dU / dl If(U+2)-fWU)I ‘
|A|7tsp
R” [A|<2¢

The standard form of Lemma 4.6 corresponds corresponds to [ = 1. The proof we present below
for arbitrary [ is essentially the same as for [ = 1.

J
Proof of Lemma 4.6. For ' = (A1,...,A4)) € R and U e R", let W = Wyy:=U+ Z Arer. Let @ =
k=1

1
Q17 be the cube centered at the midpoint of the segment [U, W] and of sidelength Zl/l’l. For any
V €@, we have

p
=CUfWM)=fOIP +If (V)= fFW)IP). (4.28)

l
f(U+ Z /lkek) - fU)
k=1

By taking the average integral of (4.28) in V over @ , we find that

dv
R <C / du / qx / e PO~ PO 1)~ FODP)

[V |<e
p
—2C/dU / dA /dV V)= F)I .
M/|l+sp+n
IV<e

14



Noting that [V —U| < 2|1/|, we obtain

aix
RlsC/dU / av If (V)= FO)IP / e

R™ [V-Ul|=2e 12|V-Uls|V|<e

lf(V)— )"
< /dU / aVv ———— Vo U|n+sp.
R” |V-U|<2¢

The proof of Lemma 4.6 is complete. O

Step 3.1. completed. Lemma 4.6 and (4.26) imply that
Pjo—0ase—0, Vje[1,n].
Step 3.1 is now complete.

Step 3.2. Estimate of Dy when L € 7" and |L| = 1. Similarly to Step 3.1, we will establish an
estimate of the form Dy, < a(e) + b(e).
Recall that

lfr(X)—fr(Y)IP
D dTKezn / dX / aY

Qg Q:(T+2¢K) Q:(T+2e(K+L))

X-U Y-V
IfwesetV:VU:U+2£L,XU:U+|X_U| and Yy = V+|Y 7k , then we have

L:i/dU/dX/dY |f(XU)_f(YV)|p.
en |X_Y|n+sp

R Q:(U) Q:(V)

In polar coordinates, we obtain

— p
:—/dU/éS” 1d6/)t” LdA / / do LU rew) =1V +e0)
[Ow — Ao — 2eL|**sP

lo|=

Zg—n/dU / dw / do |f(U +ew)— f(V +e0)l? k(w,0),

R lw|=1 lo|=1
where
& & 1
k(w,0)= [ 6" 'ds | 27 dA .
(@) / / [0 — Ao — 2eL|"5P
0 0

To estimate Dy, we rely on a variant of Lemma 4.2 (which formally corresponds to L =0 in
(4.29)).

Lemma 4.7. Assume that sp <n. For |w|=|o|=1and L € Z" with |L| =1 we have

an—sp
k(w,o) < . 4.29
(w 0) |w_0-_2L|rL+sp—1 ( )

15



Proof of Lemma 4.7. We have

1 1

1

_ .n—sp n—1 n—1

k(w,0)=¢ /t dt/r drt o —to —oLir (4.30)
0 0

We claim that
ltw—10—-2L|=Cltw—0—2L|. 4.31)

Indeed, when 0 < 7 < 1/2, inequality (4.31) is clear, since in this case we have |[tw — o0 —2L| <
4 and |[tw—10-2L|=2-t-1=1/2.
Assume now 7 = 1/2. We consider the map

¢:Q1U(Q1(2L)~Q1(2L)) — R",
defined by

{X, ifXe@;

pX) = X -2L ) — .

2L + ———— X 2L)~ 2L
+|X—2L|’ if X € @,(2L)~Q1/2(2L)

It is easy to check that ¢ is well-defined, in the sense that

X -2L - =
X =2L+ m for every X € Ql an(ZL)
Note that, in QI(ZL) ~@®12(2L), ¢ is the radial projection centered at 2L on 0Q1(2L). Clearly,
@ is Lipschitz. Inequality (4.31) for 1/2 < 7 < 1 is now obvious, since it reads

1
lp(tw) —p(to +2L)| < Eltw —(to +2L)|.

Combining (4.30) and (4.31), we obtain

1

dt
n—sp n—1
k(w,0)<Ce /t w0 2L (4.32)

0

Applying (4.17) with w replaced by o + 2L and o replaced by w (here, we use sp < n), we obtain
(4.29) from (4.17) and (4.32).
The proof of Lemma 4.7 is complete. O

Step 3.2 continued. We continue our way to an estimate of the form Dy, < a(e) + b(e).
By Lemma 4.7 we obtain

- p
DLSg%/dU/dw/da \f(U +ew) - f(U + €0 +2¢L)|

lw—o—2L|n*sp-1

R™ lw|=1 lo|=1

— —w)|P
_ C /dU/dw/do If(U)-fU+2eL+o0 w)|‘

gntl 126L + 0 — w|n*sp-1

R7 |lw|=¢€ |o|=¢

Thus
— p
DLSg,El/dU / dw / ap LD UL DE (4.33)

|Mn+sp—1
R lw|=¢€ |[A+w—2¢eL|=¢

We combine (4.33) with the following straightforward variant of Lemma 4.5, whose proof is left to
the reader:

16



Lemma 4.8. Let G(1) = 0 be any measurable function. Then for L € Z" with |L| =1 we have

n 2
H:= / dw / d/IG()L)sC(e’L‘2HO+e”‘1Z Y Hj,l, (4.34)

=1 g=—2
lw|=¢€ [A+w—2¢eL|=¢ J a

where

Hy:= / dAG\), H, 4 := / d1;G).

|A|=4e 1A;|=4e
Aj=2q¢e

Step 3.2 completed. By (4.33) and Lemma 4.8, we obtain

— b
DLsg/dU/ If(U+1)-fO) di

|/1|n+sp—1

R™ [A]|=4e

no 2 ~ IfFU+M)-FO)P (4.35)
+CZ Z dAj |A|ntsp-1
J=1g9=-2 |
IAj|<4e
Aj=2q¢e

Estimate (4.35) is similar to (4.23) and we handle it in the same way.
The proof of Lemma 4.1 is complete. O

We end this section by proving that, in W1, approximation by piecewise homogeneous maps
fails. The special case we treat below (p =1, n = 2) is easily generalized to any dimension or p.

Lemma 4.9. Let u(x1,x2) = x1. Then there is no sequence {uj} of piecewise 1-homogeneous maps
associated to meshes contained in (-1,2)? such that u; — u in W1((0,1)?).

Note that the conclusion of the lemma is that not only the estimates given by Lemma 4.1
do not hold when s = 1, but also that any possible approximation method relying on piecewise
homogeneous maps fails.

Proof. We argue by contradiction and assume that there exists a sequence {up} of piecewise 1-
homogeneous maps associated to meshes contained in (-1,2)? such that u; — u in W, Let uy, be
piecewise 1-homogeneous on the mesh €% with (0,1)2 c €% c(-1,2)%. Let 21, (with I; <2) be the
size of the squares in %6, and set

Dy ={Q €6 ; Q <(0,1)%.

Clearly, there is some [° > 0 such that

ifl, <1° then

U Q=12 (4.36)
Qe

We distinguish two possibilities:

Case 1.1, <1°
Let S be the center of @ = Q;,(S) € Z;,. For X e Q \ {S}, set V =V(X) =(X - S)/|| X - S|; here, || |

0
stands for the Euclidean norm. Since u, is constant along the segment [S, X], we have OLVk(X )=0
a.e. in X. Therefore,

0 0
(Vuy, — Vu)(X)| = #(X)—ﬁoo = V4. (4.37)

17



We find that

/wuk ~Vu| z/|vl| >Cl2=ClQ;

the last inequality follows by scaling. Using (4.36), we find that
”lLk - u||W1,1((0’1)2) >C. (438)

Thus, for large &, we are in

Case 2. [;, =1°
Possibly after passing to a subsequence, we may assume that:

a) I, — [ for some [ =1°,
b) All the meshes %6}, contain the same number of squares, say m.

c) The centers of the squares Q1p,...,Q@mr in 6r, say Sig,...,Smk, converge respectively to
S1,...,8m.

Set @ =Q;(S). By (4.37) and dominated convergence, we have

X-S X -8,
lim / Yy -l 2 lim 2 / '(|X §kk)|1l‘2 / |(|X S)|1|> o
J»

(0,12 Qj £N(0,1)2 Q;N(0,1)2

This contradiction completes the proof of Lemma 4.9. O

5 A more general approximation method

The approximation method described in Section 4 goes as follows: fix some € > 0 and 7T € R".
Consider the mesh %, of n-dimensional cubes of sidelength 2¢ having T as one of the centers.
Let %,-1 be the (n — 1)-dimensional skeleton associated to this mesh, i.e., %, _1 is the union of the
boundaries of the cubes in %,. Let H, be the mapping that associates to every g :%,_1 — R™ its
homogeneous extension (on each cube of %) to R". Lemma 4.1 asserts that, if 0 <s < 1,sp <n and
f e WSP(R™;R™), then H,(f %, ;) — f in W®P(R") for some suitable choice of €, — 0 and T, € R".

We will describe below a more general situation. We start by defining the lower dimensional
skeletons associated to %,. This is done by backward induction: %,_2 is the union of the (n —
2)-dimensional boundaries of the cubes in 4,_1, and so on. For g:%; — R™, let Hj,1(g) be its
homogeneous extension to 1.

Let 0<j<n. For e >0 and T € R", we associate to each map f :R" —R™ amap fr = fr,:R" —
R™ through the formula

fr=H,(Hy-1(---(Hjs1(flg) ).

We start by deriving a useful formula for f7. It will be convenient to denote by X/ the projection
of X € Q. onto the j-skeleton of @; in particular, we have X" = X. In order to keep notation easier
to follow, we will often denote a point in R” by X" rather than X.

Let K € 7" and set U =T + 2¢K. We consider the following a.e. partition of @.:

Qe = U U Qs,q,a- (5.1)

ge{-1,1)n"7 0€Sp_jn

Here, S,,_j, ={0o:{1,...,n—j}—{1,...,n};0 into }.
A point X™ € @, belongs to Q. 4., provided:

18



a) The o(i)!" coordinate of X", denoted (X™),;), has the sign of q;, for i € [1,n - j].
@)

b) In absolute value, the largest coordinate of X" is (X")4(1), the second largest is (X")4(2),..., the
(n— )" largest is (X™)y(n—j)-

Analytically, this means that Q. 4, is defined by the inequalities
1 XMy 2 2 qn—j( X" )o(n—j) 2 (X", VR £0Q),...,0(n - )).

Let, for K € 7", U = T + 2¢K. 1t is easy to check that, for a.e. X" € Q, 4, the radial projection of
U+X" onto 6,_1 is U + X"~ 1, where

_ _ (X™),
X" Yoy =eqr, XV =e—"— VI #0(1).
o= STe WA
Similary, the projection of U + X"~ onto €,_9 is U + X" 2, with
n—2 n—-2 n-2 (Xn)l
X" oy =91, X" o2 = €92, (X" ) =e————, VI #0(1),0(2),
I(X™)g(2)l
and so on. In particular, we have fp(U + X™) = f(U+X’), X" € Q¢ 4.0, Where
j . j (Xn)l .
XNy = €qo), VR E[L,n—j], X)) =6, VI #0(D),...,0(n~)).
(X))

This section is essentially devoted to the proof of the following generalization of Lemma 4.1.

Lemma 5.1. Let 0<j<n,0<s<1,sp<j+1 andlet f € W5P(R";R™). Then there are sequences
e — 0 and {T%} < R" such that f7, ., — f in WSP(R").

Note that Lemma 4.1 corresponds to j=n — 1.

Proof of Lemma 5.1. The proof of Lemma 5.1 is similar to that of Lemma 4.1, some computations
being essentially identical. An additional difficulty appears in the estimate of D (for the definition
of D, see (4.7)). In order to facilitate the presentation we use the same notation as in Section 4,
and follow the steps in Section 4. Let us recall that our goal is to obtain estimates of the form

I<a(e)+b(e), J <ale)+b(e), Dr, <ale)+b(e),

with I, J, D, analogous to the quantities introduced in the previous section, and a(e) and b(¢)
satisfying (4.2).

Step 1. We have

1
A:g—n/IIf—fT,gllfpdT—»Oase—»O. (5.2)
Qe

Indeed, as in proof of (4.3) we find that

1 .
A= [17O=FC+X"-XDIf,dx"
Qc

Since X" € Q. = X" — X’ € Q,, the argument used in the proof of (4.3) yields (5.2).

Step 2. Estimate of 1
In our situation, I is given by

= ¢ /dU/dX"'If(U)—f(U+X” _x0yP. 5.3)
R7 Q¢

en+sp
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It is convenient to split the integral / ...in (5.3) as
Qe

/...: >y Y /
qe{-1,1)n~J 0€Sy_jn

Qe Qf,q,U

We estimate, e.g., the integral I corresponding to ¢; =1, 0(i)=i,Vi€ [1,n - j], the other terms

being similar. If we set Z := X7/ — X", then

7-_C /dU / AX" |fU)— FU - Z)P

¥ X" S(X ™), Y I>n=
(Xn)n’jS(Xn)nfj—lS"'S(X”)lsg

and
e—(X"), ifl<sn-j
—1)(X”)l, ifl>n—j°

Z) = (
The following properties are straightforward:
0<Zy<-- SZn_j <¢ and |Zn_j+1|,...,|Zn| SZn_j,

(Xn)l :E—Zl,...,(Xn)n_j =€—Zn_j,

E—Zn_j €—Zn_j
X" n-j+1=—5—Zn-j ,---,Xnn: Zn,
(X)n—j+1 Zns) j41se--,(XT) Zns;
'dX” _(e—Zn_j)j
dZ | \ Z,_; |~
Thus
£ .
= C N E—Zn_j J »
Is€n+sp/dU dZ-; dzn_j( 7 ) FU)-FU-2)P.
R 0 Zp—j|<Zn-;

Since for any Z satisfying (5.4) we have

1 E—Zn_j J - 1 B 1
entsp Zn—j - (Z .)n+sp - |Z|n+3p>

n—j

(5.5) implies that

] PP o
IsC/dU/dz'f(U) -2 _ . ff dvaw FO =P

|Z|ntsp
R? |Z|<e U-Wi<e

|U — W|n+sp
Step 3. Estimate of D
With D, asin (4.11), we have

D < Z Dj.
Lez"
IL|<1
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Step 3.1. Estimate of Dy

Recall that
b :i/dU/an/dYn lfuU+X") - fuU+Y")]P
0 en |Xn_Yn|n+sp
R~ Q. Q.
|f(U+XJ) fWU+YH)P
R~ Q. Q.

If we take the partition (5.1) of @, into account, we find that

Dy= Z Z Z Z DO,q,U,r,T, (5.6)

qe{-1,1}~7 0€8Sp_jn re{-1,1}7"7 1€S,_j,

where

J )P
DOqU”_ /dU/dX”/dY” |f(U+X) f(U+Y)|. 5.7)

Yn|n+sp
R” qu o s,

We next consider a convenient parametrization of Q. 4 -, given by

(X™)s(1) =eqit1, 0<t1=<1
(X™M)o2) =eqotity, 0<tg<1
I : (5.8)
Xotn—j) =€Qn-jtita...tn—j, 0<t,_j=<1
(X"™), =¢eti1tg...th—jwr, ol <1, VI #0(1),...,0(n—))

We note that

(5.9)

- Ly ifL=060) f -
(X7, = {gqo q, if1=0() for some i
Ewy, else

In particular, X/ depends only on the w;’s, not on the ¢;’s; this will be used to give a meaning to
(5.10) below.
We consider a similar parametrization of C, , ;, the t’s being replaced by u’s and the w’s by A’s.
We use the following compact notations:

0 = (W1)1go([1,n-j]) @0d ¢ = (¢i)ie[1,n-5] (A, u are defined similarly).

Note that X/ depends only on w, o and g; similarly, Y is expressed in terms of A, 7 and r.
With the convention that 0 < ¢ <1 stands for 0 < ¢; <1 for each i, we find that

1 . .

Dogori=—p / dU / dw / dA k(w, DIfU+X) = fU+Y)P, (5.10)
R” lw|=1 [Al=1
where
L ; ghtsp
n—
k(a) A)— / dt / dut t Jul ...un_J. W
0<t<1 0<u

We rely on the following generalization of Lemma 4.2.
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Lemma 5.2. Let 0<s<1,sp<j+1<n. Then

(j€j+sp

k(w,ﬂ)f'——f———f—f——.
| XJ —YJ|j+sp

(5.11)

The case j =n —1 corresponds to Lemma 4.2.

Proof. We note that inequality (5.11) makes sense, since X7 (respectively Y/) depends only on @
(respectively 7).

On the other hand, the formula that gives k(w, ) does not depend on ¢; neither does the r.h.s. of
(5.11). Thus, when we estimate k(w, 1), we may assume that € = 1.

We proceed by induction on n: assuming that (5.11) holds for all integers m <n—-1andall j<m-1,
we prove it for n and each j <n — 1. Note that the case n =1 (and j = 0) is covered by Lemma 4.2.

Since X* =#; X" and Y* =u1Y" !, we have

. - 1
— n-1 J n-1 J
k(w,0)= / dt / du t] by UYLy X1y Y-l
0

Using the fact that 1X"1|=|Y"" | =1 and Lemma 4.2, we find that

1 1
1 C
n—-1 n—-1
/tl dtl/ul duy |t1Xn—1_u1Yn—1|n+sp = |Xn—1_Yn—1|n+sp—1' (5.12)
0 0

If j=n—-1, then (5.12) is the desired inequality. Assume j <n — 1. Then (5.12) implies that

: : 1
2 o =2 -2 ]
k(w,0)<C / dity / diaqgty “... n_jug Uy Xy i T (5.13)
0 1 0

<t1< <h1<1

Next we note that one of the three cases occurs.

Case 1. 0(1)=1(1),q1=r1.
Case 2. 0(1)=1(1),q1 # 1.
Case 3. o(1) # 1(1).
We will estimate the right-hand side of (5.13) in each of these cases.

Case 1. Assume e.g. 0(1)=1(1)=1,¢g; =r1 = 1. In this case, the first coordinate of X" or Y"1
is 1, so that

S G D TN CE

The vectors )?’:11 and ?ﬁl belong to R*~! and are obtained from w and A via (5.8), with an
obvious shift in the indices of the coordinates and with n replaced by n —1.

Thus, in this case, (5.11) follows from (5.13) and the fact that the conclusion of the lemma holds
forn—1 and j.

Case 2. In this case, we have [ X” 1 -Y" 1| =2 and |X/ - Y/| = 2. Inequality (5.11) follows easily
from (5.13).

Case 3. With no loss of generality, we may assume 0(1)=1,7(1)=2,91=1,r1 =1. Thus
X" l=ei+tov, vleq, lvl=1 (5.14)
and

Y™ =eg+uow, wles, lwl=1. (5.15)
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We rely on the fact that (5.14)-(5.15) imply
|(e1 +tov)—(eg +uow)| =Cl(e1 +tov)—(eg+w)l, 0<to,ug <1. (5.16)

The proof of this inequality is postponed (see Lemma 5.3 below).
Using (5.16), we obtain

1 1
1
- n—2 n—2
M.—/t2 dtz/uz duy Xy e
0 0
1 1
1
/ ? ? 2 ? l(e1 +tav) —(eg +w)|ntsp-1 ( )
0 0
1 C
1
<C | 27 %dty < .
(e1+t20) = (2 +w)I"*5P~1 = |(e1 +0) — (ez +w)|" P2
0

The last inequality in (5.17) is a consequence of (4.17).1
Since e1+v=X""2 and eg+w =Y" 2, we find that, with 7 = (t3,...,tn—j) and u = (us,...,up—j),
we have

n=J n—i B n-1 1
k(w,0)<C / dtgti /du lzl—l3ul | X2 —Yn-2|n+sp-2’

0<t<1 O=u=<l

If j = n -2, then we are done. Otherwise, we continue as in the estimate of (5.13), distinguishing
at each step the three cases mentioned before (and using again the induction assumption when
encountering Case 1). At the end of this process, we are led to

k(w, 1) < Vje[0,n—-1],

| X/ =Y J|i+sp’

assuming the same inequality valid up to n — 1.
The proof of Lemma 5.2 is complete. O

As promised, we now established (5.16).

Lemma 5.3. If 0 <¢,u <1 are real numbers, and if vleq, [v|=1, wleg, lw| =1, then

|(e1 +tv) —(eg +uw)| = Cl(eq + tv) — (eg + w)|. (5.18)

1
Proof of Lemma 5.3. Assume first that u < 2 Then

DN =

le1 +tv—(eg+uw)| =|{e; +tv—(eg+uw),e1)| =|1-uwil =

and e +tv —(eg +w)| <4, so that (5.18) is clear in this case.

1
We next consider the case u = 7 Consider the following compact subset of 0Q1:

K ={XeR"|X|=1}\{XeR"; Xy=1,1X9| < 1}.

IWe are in position to apply (4.17) since sp < n — 1.
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Let P be the radial projection centered at es of @1 \ {e2} onto # .2 Then

P is Lipschitz in @1\ Q1/2(e2), (5.19)
P(eg+uw)=eo+w and P(e1 +tv)=e +tv, (5.20)
e1+tv,es+uw Q1 \Qypler)if u =1/2. (5.21)

Inequality (5.18), which is equivalent to
1
|P(e1+tv)—Peg+uw)| < C l(e1 +tv)—(eg +uw)l,

is then a consequence of (5.19) - (5.21).
The proof of Lemma 5.3 is complete. O

Step 3.1 continued. Recall that we want to establish an estimate of the form Do < a(e) + b(e).
For this purpose, we start by establishing (5.25), which is the analog of (4.23) adapted to the
case of a general j.
By Lemma 5.2 and (5.10), we find that

. U+X)H=FU+YHP _— _
Dogyors <Cél / U / do / PPEACAS SO AL SOlPy s N (5.22)
Rn

| XJ —YJ|j+sp
lol<1  |Al<1

Estimate (5.22) leads to the following:
If (U +ew)-fU)IP

— C
Dy < -
|w|J+Sp

esp

dU / R dw

le(o,mh
R lw;1=2,V 1le(o,1)1

wl=qg,1(l)—rT,1(l),VZE(U,T)Q

(5.23)
— an(O',T)/dU / ® dwl |f(U+(,U)_f(U)|P
le(o,T) lwl 5P
R” lwp|=2¢,Vle(o,T)1
wr=¢e(q -1y~ -1(y)> VL€(0,T)2
Here,
(o,1)2=0(1,...,n—-jhnt({1,...,n—j}H c{l,...,n};
(o,7)1=1{1,...,n}\(0,7)9;
n(o,t)=j—n+#0,7)s.
Indeed, inequality (5.23) is easily proved by noting that
elqi—ry), ifl=0@)=1(m)e(0,1)
X Iy e(q; —Am), ?fl =o(i)eo(l,...,n —j?)\ (0,7)2
ew;—rpy), ifl=tm)et{l,...,n—jH\(0,7)2
ew;—-Ay), ifleodl,...,n—-jHut(l,...,n—j}
For further use, let us prove that
n-2j<#(o,t)9<n-—j. (5.24)

To see this, we note that on the one hand we have

#o({1,...,n—jHut(l,...,n—-j) =2n-2j-#(0,7)2 < n.

2p is given by the formula P(X) =e9 + 7(X —e2), where 71 is the only number = 1 such that |eg + 7(X —eg)| = 1.
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On the other hand, clearly #(o,7)s <n—j.
If we insert (5.23) into (5.22) and next take the sum over ¢,o0,r,7 and use (5.24), we obtain the
following analog of (4.23):

5 1 U+w U)|P
Do=<C Z Z — /dU ®d £ ( 3+SI]:( )|
FEminOn=2jy At n) ‘ R7 w;€{0,+2¢}, V€A leA @l
l yTLES,
sk lw;|<2¢,V ¢ A (5.25)

=C Z DO,k,A-
kA

We complete the proof of Step 3.1 by estimating each D¢ 4. By symmetry, it suffices to estimate
the integrals

1 (U +w)= FO)IP
Il,m - m/dU / dwl+m+1 ...dwn |w|j+sp ,
R™ w1=-=w;=2¢€
W] 41="=0 4, =0

lwp|<2e,YVk>l+m

with max{0,n -2j}<l+m=<n-j.

Casel./=0,m>0
In this case, we have

— p
Lo = — /dU / doms ... dewy, LU FO T (5.26)

en—Jj-m |w|/+sp
R7 w1="=wnp=0
|wp|<2¢,YVE>m

Casell.m=n—j

By Lemma 4.6, we have

! p — p
Ton ]_/dU / do , 1f U +(0, le , )= fU)] /dU / If(U+w)-fU)

|j+sp |w|n+sp
w'€R/ weR™
lw'|<2¢ lw|<4de

If(U)-f(V)P
|U -V |n+sp

=C ff audv —0ase—0.

|U-V|<4e

Casel2. m<n—j
Using again Lemma 4.6, we find

1
I o ")) — p
O—de / — /dU / do' [f (U +(0, ,Q,w)) f)l
gntl-j-m

lw!|/+sP
w'eR"™
|w'|<2¢
A p
- /dU / do , IfU+(0,...,0,0)) - f(U)
|w'|—m+sp
w'eR?™
lo'|<2
If (U +w)-fU)P ff IfU)-f(V)P
< dU =C dUdV ——
- / / TP u-vpr =%
weR™ |U-V|<4
lw'|<4
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Case2./>0
In this case we have || =2¢. We set V =U +2¢eq +---+2¢ee; and o' = (WE)re[1+m+1,]- Since

If(U+w)-fO)P <CUfWU +2¢eeq1)— FOIP +|f(U +2¢eeq1 +2¢ee9) — f(U +2¢ee1)”
+-+|f(V)=f(U +2¢ce1+---+2¢ee;_1)|P
+|f(V+(0,...,0,w")) = F(V)|P),

we find that

Iim=— Z dU |f(U +2¢e ) — FU)IP

m/dU / do' |f(U+(0,...,0,0"))— FU)P := (ZP +P0)

W' eR"™ —(+m) J=

lo'|<2¢

Estimate of Py. We have

1

1
/P_ :/ de /dU / do' |fU+(0,...,0,0")) - fO)P
0

£n+1 (I+m)+sp

E
R” wreRn—(l+m)
lw'|<2¢
o [av o FU+0,....0,0) O
- |w |7 (I+m)+sp
R” i Rn—(l+m)
! €Iw '|<2
fU+w)-FAODP FO)-fVIP
<C/dU / o= C ff AUV = <o
weR™ |U-V|<4
lwl=4

here, we used Lemma 4.6.

Estimate of P;. (The estimates of Po,...,P; are similar.) By Lemma 4.6, we have

1 1
/Plde:/gdg /dUIf(U+2£e1) far
0

? 1+sp
If (U +w)- fO)IP lF)- V)P
< /dU/ =€ ff AUV =y <0
weR™ |U-V|<4
lwl=4

Case3.l=m=0
In this case, the inequality

" wl P = 27| P if || < 2¢

yields
1 - p U - ()P
Iop= ./dU / ARt ACH sC/dU / do LU @)~ 1)
en—J |w|I+sp |w|?tsP
lw|=2¢ R” lw|<2¢
lF @) - V)P

=C ff dUdV ———— T v —0 ase—0.

U-V|<2¢e
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Step 3.1 is complete.
Step 3.2. Estimate of D;,,Le 7™, |L| =1

The proof is essentially the same as for Dy. One has to use instead of Lemma 5.2 its following
straightforward variant (which generalizes Lemma 4.7).

Lemma 5.4. Assume that sp < j+ 1. Let L € 7", with |L| =1. Set

X ; . i €n+sp
k(w, 1) = / dt / du ty mt”‘jul e Wnej | X7 —(2eL+Y")|*sp’
0<t<l O<u<l
Then
Celtsp
k(w,A) < £

X7 —(2eL+YJ)+sp”

Using this lemma, we estimate Dy, as in Step 3.2 in Section 4; the details are left to the reader.
The proof of Lemma 5.1 is complete. O

Remark 5.5. By Steps 3.1 and 3.2, we have an estimate of the form

Y Dy <a(e)+b(e).
Lez"
|L]<1

Here, Dy is as in (5.22), and the quantities Dy, are defined similarly (this is implicit in Step
3.2). The numbers a(e) and b(e) satisfy(4.2). If we take a closer look to the averaged estimates
leading to the existence of b(¢) (more specifically, to the estimates of Py, of P1, and of Iy, with
m < n-—j), we see that, for a fixed ¢, there exists some C(¢) such that

> DL < COIf [yspgny: (5.27)

Lez™
|L|<1

In order to justify the above, it suffices to examine e.g. the case of I ,, the other cases being
similar. By (5.26) and Lemma 4.6, we have

— p
Lo = — /dU / domsr...dw, T TOW __C

~ ~ < ——Ifyenmn)
en—Jj-m |w]J+sP en—j-m ' 'WPRY)

R7 W1="=Wn=0
lwp|<2¢,Vk>m

The conclusion of this remark will be needed in order to complete the proof of Lemma 6.1 below.

We end this section with the

Proof of Theorem 5. Let g € WP (R™;R™) be an extension of f, not necessarily F-valued. We apply
Lemma 5.1 to g. Let g3 = g7,,, and let € (k) be the mesh of size 2¢;, having T}, as one of its
centers. We take fr = gi 4, where %* is the union of cubes in € (k) which are contained in w.
Clearly, for large £ the maps f have all the desired properties. O

Short proof of Theorem 5 when 1 <sp <n. We consider the mappings f Fe, F.(f), where
Fe(f):Qe xR* = R™, Fe(f)T,X) = fr(X).

Here, fr, is the piecewise j-homogeneous extension associated to 7' and ¢ as in this section.
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Step 1. Estimate for s =0
By estimate (4.5) (which holds for an arbitrary j), for 1 < q < oo we have

IFe(llLa@, .Lamny < Ce"e I £ llLa@rn), With C independent of . (5.28)

Step 2. Estimate for s=1
Let 1<r<j+1. We claim that

IF (O L@, wir@ny < CeVr I £ lwir@gny, With C independent of € or f. (5.29)

In view of Step 1, in order to obtain (5.29) it suffices to establish, with C = C(n, j,r), the esti-
mate

/dT/dXIVfT(X)IrsCe”/XmVf(X)lr. (5.30)
Q R R"

We next observe that it suffices to prove (5.30) when f € C2°. Indeed, assuming for the moment
that (5.30) holds for such f, Step 1 combined with (5.30) for f € C° and with a standard limiting
argument implies that (5.30) holds for every f € Wb,

We finally turn to the proof of (5.30) when f € C°. We use the same notation as at the be-
ginning of this section: we set U = T + 2eK, with K € 7", and we let X" be a point in ., whose
projection on the j-skeleton of @, is denoted X7. Set gi7(X7) = f(U + X7). Then for a.e. X" € Q. we
have

ViU +X") = Vgy(X/). (5.31)

We claim that (5.31) holds also in the sense of distributions. Indeed, let 6,y . denote the /-
skeleton obtained from the mesh of cubes of radius € having V as one of its centers. With this
notation, the map fr is locally Lipschitz in R*\ 6€,,_;_1w ¢, where W =T +(g,...,¢). [The skeleton
& = 6n-j-1,w¢ is the “dual skeleton” of €; 1 ..] This observation leads to the validity of (5.31) in
the sense of distributions in R® \ &. On the other hand, as we will see in a moment, we have

~ 1
VguX) <C(f, . 5.32
IVgu (X)) (f g)dist(U+X"',<5") ( )
In view of (5.32) and the fact that f is compactly supported, we have
Vir e L'\R"\ &). (5.33)

[Here, we also use the fact that j =1 and thus & is a union of m-planes, withm=n—-j-1<n-2.]
In order to obtain (5.31), it then suffices to invoke (5.33) and Lemma 2.1. [Note that this lemma
applies to our situation since j = 1.]
In view of the above, it suffices to prove that

/dT > /dX”IVgT+28K(T+25K+Xj)|rsCen/dXIVf(X)I” (5.34)
Kezn
oF Q: R”

and to obtain, on the way, the estimate (5.32). Splitting, in (5.34), the integral in X™ as a sum over
q €{-1,1}""7 and over o € S,_j ,, it suffices, by symmetry, to consider the case where X" belongs
to Q¢ q,0, With

qi=1,00)=i,Vie[l,n-Jj].
With ¢ and o as above, every X" € Q. 4, satisfies

e2(X")1 2 =(X")p—j zmax{|(X");l;n—j+1<i<n} (5.35)
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and
(X™);

A A 7y, =
X = (X )p-j =&, (X7); g(X”)n_,-

,Vie[n—j+1,n]. (5.36)

By (5.31), (5.35) and (5.36), for a.e. X" € Q. 4, Wwe have

L (X ; € :
Vir(U+X™)|<C = T VAU +X))<C VFU +X). 5.37
IVfr(U +X™)| < gi;_j[(X”)n_j]Zl fU+X))| < (Xn)n_jl fU+X7)| (5.37)

In particular, (5.37) and the fact that
dist(U +X",8)=(X")p—j, VX" €Qr g0

lead to (5.32).
In view of (5.37), in order to prove (5.34) it suffices to prove that

I:/dT y —~ / dX”|Vf(K+2eT+Xj)|”sC/dXIVf(X)Ir. (5.38)
Kezn [(Xn)n—J]r

n
€ £,9,0 R

We let X' =(X;,...,X,—;j) and Z" =(Z,,_j+1,...,Z,), where

. (X");
XM

€l-¢,el, Vie[n—j+1,n].

We set

W=(T1+2¢eK1,...,Ty_j+2eK,_j,Typ ji1+2eKy_ji1+Zn_ji1,...,Th +2eK, +Zy).
Then with the change of variables

Qeq03X— X', Z"),

we have

I< / dT > / X' / dZ" e I [(X™)_ ¥ TIVFW)I. (5.39)
G T 0c@mtes@inze  1ZM<e

If we calculate, in (5.39), the integral with respect to X’ and use the assumption r < j+1, we
find (after summation in K) that

I< Cé‘n_j/dX / dZ"|Vf(X1,...,Xn_j,Xn_J‘+1 +Zn_j+1,...,Xn+Zn)|r
R? |1Z" <€
:Cen/dXIVf(X)Ir.
[Rn
Step 2 is now completed.

Step 3. Estimate for 0 <s <1 (provided sp=1and sp <j+1)
Let0<s<1l,1<p<ooandje[l,n—1] be such that sp <j+1. Pick1<g<ooand 1<r<j+1
such that

1 s

1_
—=5,208 (5.40)
p r q
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This is always possible. Indeed, since sp < j+1 we may pick some r such that

and for any such r the couple (q,r), with q determined by (5.40), has all the required properties.

We next recall three classical interpolation results. Given two Banach spaces X and Y, we use
the standard notation [X,Y]; ,; see e.g. [26, Section 1.5]. First, when (5.40) holds we have [26,
Section 2.4.2, Theorem 1 (a), eq. (2), p. 185]

WL, L9, = WP, (5.41)

Next, if X and Y are Banach spaces and s, p, q, r are as above, then [26, Section 1.18.4,
Theorem, eq. (3), p. 128]

[L7(Q;X), LU Y], = LP(Q[X, Y, ). (5.42)
By (5.41) and (5.42),
with r,q as in (5.40), we have [Lr(QE;Wl’r(IR"')),Lq(Qg;Lq(IR"’))]s,p =LP(Q:;W*P(R")). (5.43)

Final classical result. Let s, p, ¢, r, X and Y be as above. Let F' be a linear continuous operator
from X into L"(Q2;X) and from Y into LY(Q;Y). Then F is linear continuous from [X,Y]; , into
LP(Q;[X,Y]s ) and satisfies the norm inequality

IFN 2x,v1, i @i1x, 71,0 = WF o x.00:x) ||FII;(SY;Lq(Q;Y)). (5.44)
By (5.28), (5.29) and (5.44), we find that
IF (N Lr@,;wsr@ny) < Cevr I lws»@wn), with C independent of ¢. (5.45)

[In principle, the constant C in (5.45) may depend on &, since we apply the interpolation result
(5.43) in an e-dependent domain. The fact that C does not depend on ¢ is obtained by a straight-
forward scaling argument: we consider, instead of F'¢, the map

G(f):Q1xR" = R™, G NT,X) = ferX).

We obtain (5.45) by applying (5.44) to G.(f) in @1. Details are left to the reader.]
A clear consequence of (5.45) is

1
g_n / ”fT,E - f"%s,p(Rn)dT = C”f”"jvs,p([Rn) (546)
Qe

In order to complete the proof of Theorem 5, it suffices to obtain (5.47) below.
Step 4. We have

1
e / 1Fre = F I dT =0, ¥ f € WHPR"). (5.47)
Qe

Equation (5.47) is a version of (5.46) and is obtained as follows. We let g, r be as in Step 3.
In view of (5.46), it suffices to prove (5.47) when f € C°. For such f, we have fr  — f uniformly
in T when € — 0; this leads easily to

fre— [ in LY uniformly in T as € — 0. (5.48)

We obtain (5.47) via (5.48), (5.29) and (5.44). O
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6 Restrictions of Sobolev maps to good complexes

Sections 6 to 8 are devoted to the proof of Theorem 6.

The current section is partly inspired by [12, Appendix B, Appendix E]. The results we prove
here are fractional Sobolev versions of the following Fubini type result: if f € L1(R2), then for a.e.
y € R we have f(-,y) € L\(R).

As elsewhere in this paper, we let 0 <s <1 and 1< p <oo, and we let f € WP (R";R™).

We use notation consistent with Section 5, but we emphasize dependence of meshes on T' by
writing, instead of €;, €, 1, or (when ¢ is fixed) €; 7. A generic point of €; 7 is denoted X' Y., ..
(instead of U + X7 or U +Y7/). Also in order to be consistent with Section 5, the projection of X” on
€1 is denoted X7. Similarly, if j = 1, then the projection of X7 onto ;1,1 is denoted Xi_l; this
projection is defined #”-a.e. on 1.

Given a (say Borel and everywhere defined) map f : R* — R™, an integer j € [1,n—1] and a
point 7" € R*, we define the norm

. If(X’) P
p _ J J p J J p
1 Wyence, ) = / axlifachr+ [ axiay: i = Vs s
€T C;rx€; 1
X7 -V |<2¢

The above definition extends to j = 0 by replacing the integrals by sums.
We will prove later in this section two results on slicing, in which ¢ is fixed.

Lemma 6.1. We have

/ 1f 1yso(; 1y T < C@Nf Iggaps ¥ € [0,n—1]. (6.1)

Lemma 6.2. We have

F&XD - FxThe .
/dT/dX T < CON Wy Vi -1] 6.2)

For j e [1,n—1], we define an ad hoc space st’p = 7//;5,5’ . as follows: 7//J.s’p consists of the func-
tions g : € 7 — R™ such that

lgllwses, ;) <oo, YL E[1,J] (6.3)

and

0y _ /-1y p
/delf(X*) AX, )l oo, V€ [1,J]. (6.4)

COIXC-XC e
G,

The definition of W *P is inspired by Hang and Lin [16, Section 3]. Clearly, if f € W . and
¢ < j, then the restrlctlon of f to an /- d1mens1ona1 cube C of the mesh €, 1 belongs to Ws’p (C).
As we will see in the next section, the space WJ has additional properties that will be useful in
the proof of Lemma 7.1.

Let s, p be such that 1 <sp <n. Let j be an integer such that sp < j+1 <n. For such j, we
consider f7 . as in Section 5. Combining Lemmas 6.1 and 6.2 with the fact that, by the proof of
Lemma 5.1, there exists a sequence £, — 0 such that

II{,’Vs,p dT —0as k — oo,

we obtain the following
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Corollary 6.3. Let s, p, j be such that 1<sp <j+1<n. Let f € WSP(R";R™) be a Borel function.
Then there exist sequences €, — 0 and {T;} < R" such that:

1. The restriction f* of f to € 1,6, belongs to 7//J 7{’ e VEk.

2. If f3 is the j-homogeneous extension of f*, then f; — f in WP as k — co.

The remaining part of this section is devoted to the proofs of Lemmas 6.1 and 6.2.

A word about the proofs. Many of the calculations we need in Sections 6—8 are quite close to
the ones in Section 5. For such calculations, we point to the analog formulas in Section 5 and omit
part of details.

We will use the same notation as in Section 5, and more specifically as in Step 3.1 in the proof
of Lemma 5.1; see on the one hand (5.6) and (5.7), and on the other hand (5.8) and the derivation
of (5.10) starting from (5.8).

Proof of Lemma 6.1. Step 1. Averaged estimate of ||f IIQP(%T)
Js
We establish here the identity

/ 11, 1y &T = COLAE IF 12 gy (6.5)
Q:

Indeed, arguing as in the proof of (5.6) and (5.10) and with X7 as in (5.9), we have

/ VA1 ps ydT=2""" 3 e/ / do / dUIf(U +X7)P. 6.6)

4. qef-1,1)7J aesn I i1
[The constant 2/~ comes from the fact that on the right-hand side of (6.6) the integral over a
J-dimensional cube C of € r is counted 2"/ times.]

In order to obtain (6.5), it suffices to observe that the last integral in (6.6) does not depend on
w.

Step 2. Averaged estimate of |f I%s,p(%ﬂ)

We have
(XJ) (Yj)p
= [ axtar?LE2ZLE00_ pny e,
7. o IX —Y/|j+sp 6.7)
(Xi,Yi)E%j,Txcgj,T
X7 -V |<2¢
where
1(T) = ff o In(T) = ff
X7 -V |<e e<|X!-Y/|<2¢
We first note that
. . 1 . . .
In(T)=C / dX] / inmV(XiNPSC / dXIIfXDIP, (6.8)
€T e<|X!-Y|<2¢ i i Cj,r
since

. 1 .
dY] ————— <C<oo, VT, VXI.
|YJ XJ|j+sp

e<|X!-Y|<2¢
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By (6.8) and Step 1, we have

/ I(T)AT < CIF 12 gy (6.9)
Qe

We next note that (with notation as in (5.9) and (5.10))

\f(T +2eK +X7)— f(T +2eK +2eL +Y/)|P
| X/ —(2eL +Y/)|i+sp ’

Il(T)sCe2ji / dw / dA

lwl<1 =1

(6.10)

where

Y=Yy Yy ¥y ¥

LeZ™ KeZ™ ¢ re{-1,1}"J 0,T€S,_j
ILI<1

Integrating (6.10), we find that

If(U+X7)—f(U+2eL+Y7)P

2j
/Il(T)deCe Z /dw / dxl/ndU X7 —@eL LY OoP , (6.11)
Q: lw|<1 A<l

with

1= XX
o Lez™ q,re{-1,1}7~J O',TESn_J"n
IL|<1

By (6.11) and estimate (5.27) in Remark 5.5, we have

/ L(T)AT = CO\f e p ey (6.12)
Qe

We complete the proof of Lemma 6.1 using (6.7), (6.9) and (6.12). O

Proof of Lemma 6.2. Step 1. A dimensional reduction
Assume for the moment that we proved the following estimate (with X”?~! the projection of X”
onto €,-1,7):

XD - FXEHP If X - fADIP
- / dT / A iy = Cne) f AXldY! S (613)
[Rn

XT-YI|<e

Qe

Then we claim that the conclusion of the lemma holds. Indeed, if j € [1,n — 1] then (6.13)
applied with n = j and with R” replaced by the intersection of €; 7 with the j-dimensional plane

{(x1,...,xp); ;=T +2eK;,VIel}, with#l=n—-jand K; € Z

leads (after the use of the Fubini theorem in the variables T; with [ ¢ I and summation in I) to

J Jj-1 J J
/dT/ XJ |f(X ) AT <C(n,j,€)/dT ff dXJdYJ If(X )= FYOP . (6.14)

XJ 1| |X YJ|J+Sp
Qe (XLYDe6jrx6jr
X{-Y]|<e

We then obtain the conclusion of Lemma 6.2 using (6.14) and Lemma 6.1.
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Step 2. Proof of (6.13)
We follow Step 2 in the proof of Lemma 4.1 in Section 4. Following the calculation (4.9), the
left-hand side I of (6.13) satisfies

dX dY -1y X X-Y)P
|Y|n+sp 1 |f( )_f( - )l : (615)
R Y |<e
We obtain (6.13) by noting that
(e-lyp! .
W SC(g)|Y|n+sp lf|Y| < E. O

7 Approximation of maps defined on good skeletons

Throughout the next two sections, we take 0 <s <1, 1< p <oo, j€ [1,n—1] and we use the
same notation as in Sections 5 and 6. We consider a fixed finite submesh % of %, and a map
g:6,N¢ — R™. For such maps, we define the norm

||g||§p = ||g||€p(%}m%7) = / dXi|gXDIP
Cine
and the semi-norm

P _glP — J
|g|WS,p_|g|Ws,p(cgjm(€)_ /dX* /d
Cine Cine

Y/ Ig(XJ) g
X] - Y]prer

With the natural definition, we also consider the space st,p = st,p (€;NE).
In this section, we adapt to the fractional Sobolev case some approximation techniques of maps
defined on skeletons devised by Hang and Lin [16, Section 3]. The main result is the following

Lemma 7.1. Let 0<s<1,1<p<ooand jeN be such that 1 <j<sp <n. Let N be a compact
manifold without boundary embedded in R™. Let g € st,p (€;N¢’;N). Then there exists a sequence

{g"} cLip(€,; N €;N) such that g¥ — g in WSP(€;n%).

Two difficulties arise in the proof of Lemma 7.1. The first one is to show that R™-valued maps
gin st’p can be approximated by Lipschitz maps. This is already a non trivial task. An additional
difficulty occurs when g is N-valued. In this case, we have to prove approximation with N-valued

Lipschitz maps.
It will be convenient to start by reducing Lemma 7.1 to a slightly easier to prove statement.

Lemma 7.2. Let 0<s<1,1<p<ooand jeN be such that 1 <j<sp <n. Let N be a compact
manifold without boundary embedded in R”. Let § > 0 be sufficiently small and define

= {x e R™; dist(x,N) < 6}. (7.1)

Let g€ st,p((gj N%€;N). Then there exists a sequence {G*} c Lip(6; N €; M) such that G* — g
in WP (€, n6).

Lemma 7.2 implies Lemma 7.1. Let I1 : M — N denote the nearest point projection. Let g* =
[I(G*). We note that g = I1(g), and that g is clearly Lipschitz. In order to conclude, it suffices to
invoke the continuity of the map

WHP(€;in€;M)3G — II(G) e WHP(€;nE;N).

This is standard for maps in smooth domains; see e.g. [5, Proof of (5.43), p. 56] for a slightly more
general continuity result. The argument in [5] adapts readily to maps defined on €; N €. O
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We next turn our attention to the proof of Lemma 7.2. Since % and j are fixed, we will simplify
the notation and omit “¢; N %” in the norms and function spaces. With no loss of generality, we
may assume that € = 1. For the convenience of the reader, we start by stating the main technical
ingredients required in the proof of Lemma 7.2. Before proceeding, let us define “a cube in 6,” (or
“an /-dimensional cube in 6,”) by backward induction as follows. A cube in %, is any cube of the
mesh %6,. A cube in 6,,_1 is any of the 2" faces of a cube in €6,,. For ¢ <n —2, a cube in %, is any
of the 2¢*1 faces of any cube in 6y1.

Let g:€;,n¢ — R™. For € a j-dimensional cube in €; N €, we let O¢ be its center. Clearly, if

Xi € ¢, then the projection Xi_l oin on 6€;,_1N% is
. X/ -0

Xi = O¢g + ——— ¢ .

1 X —O¢|

We now define a convenient approximation g, of g. For 0 <u <1 and X/ e, we set

C(exIh, if | X7 - 0¢l 21— p
guX1)= ( X! -0¢
&|0c¢+

), if |X] ~0¢l <1-p

This definition is inspired by the “filling a hole” technique of Brezis and Li [10]. See also [16,
Lemma 3.1] and, in the context of fractional spaces, [12, Appendix D].
We have the following result, whose proof is postponed to the end of this section.

Lemma 7.3. Let g€ st’p. Then g, — g in W* as u— 0.
[Here, we do not require j <sp.] .
Let p € C°(Q) (with  the unit cube in R/) be a standard mollifier and set
1 :
p(x) = pr p(x/t), V>0, VxeR/.

Fix some function n € C°([0,1);[0,1]). We let € and O¢ be as above. Given g: 6, N € — R™, we
define, with a slight abuse of notation and after identifying the j-plane containing € with R/,

g#pi(X])= / dY?! g(Y)p (X! -Y!) for X! € € such that [X’ — 0¢| < 1—t¢. (7.2)
¢

We note that for small ¢ the quantity
g'(x) =n(1X! - 0¢h g * pu(X)
is well-defined in €; N €. We also let
g°x]) = (X - 0cD g(x?).
We now state a standard result on the approximation by smoothing in fractional Sobolev
spaces, whose straightforward proof is left to the reader.
Lemma 7.4. Let g € WP, Then g* — g% in WP as t — 0.

[Here, we do not require j <sp.]

We next present another auxiliary result, which is a rather easy consequence of Lemma 7.10
(which is fully proved below) and whose proof (granted Lemma 7.10) is left to the reader. Given
f :€j-1N€, we consider its homogeneous extension g to €;N €. Let n be as above. We assume in
addition that = 1 near the origin. This implies that the map

€06 3 X]— h(X]) = (1-10X] - 0¢D)) g(xX))

is well-defined in each point.
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Lemma 7.5. The mapping f — A is continuous from W*?(€;_1 N€) into W*P(€,;NE).

[Here, we do not require j <sp.]

The final auxiliary result is deeper, and was essentially observed by Schoen and Uhlenbeck
[25]. For the fractional version we present below, see [14, Example 2, p. 210, and eqn (7), p. 206].
The argument in [14] (where maps are defined in domains) adapts readily to the case of maps
defined on skeletons.

Lemma 7.6. Let 0<s<1and 1< p <oobesuch that sp <n. Let j €N be such that 1 <j<sp. Let
gEWSP(€;NE;N). Let 0<t<1andlet § >0 be arbitrarily small (but fixed). Let M be as in (7.1)
and g * p; be as in (7.2). Then, for sufficiently small ¢, we have

g% pi(X])e M, VX, € 6;n€ such that dist(X7, %, 1nE€)>¢. (7.3)

[Here, we do require j <sp.]

Proof of Lemma 7.2 using Lemmas 7.3-7.6. The proof relies on two ingredients: approximation of
maps as in Lemma 7.3 and induction on j.

Step 1. Proof of the lemma for j =1

By Lemma 7.3, it suffices to prove the lemma when g is replaced by g,. Since j =1 and thus
%oN % is a finite collection of points, this simply means that we may assume that g is constant
near each point in 6y N % there exists some y > 0 such that

g(Xh = g(X% if dist(X1,6yn6) < . (7.4)

Let now n € C*°([0,1];[0,1]) be such that

1, if0sx<1-p/2
n(x) = , .
0, ifx>1-p/3

When 0 < ¢ < /3, the map
Xi—G' (XD =n(X!-0eDg* o XD+ (1-n(XE-0¢D) g(X?)

is well-defined everywhere, and is clearly Lipschitz. Moreover, by Lemma 7.4 and the choice of 1,
we have

G'— gin WP ast — 0.
It remains to prove that, for small ¢, we have
G'XheM, vXletné. (7.5)

By Lemma 7.6, property (7.5) holds when | X! —0¢| < 1 - /2. Clearly, (7.5) holds also when
|X!—0¢| =1- /3. Finally, when 1 - /2 < | X} —0¢| <1-p/3 and ¢ < /3, we have

G'(XD) =g+ p(XD)

(this is easily checked using (7.4)). We complete this case using again Lemma 7.6.

Step 2. Proof of the lemma for j =2
Let f be the restriction of g to ¢;_.1 N €. By Lemma 7.3, we may assume that there exists some
e (0,1) such that

gX)) =fXI™), VEc€;nE,vYX] € € such that | X/ —0¢| > 1—p. (7.6)
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We argue by induction on j. By the induction hypothesis and the reduction of Lemma 7.1
to Lemma 7.2, the map f (which clearly belongs to 7//J.s_’11’(<€j_1 N%;N)) is the limit in W%? of a

sequence {F*} c Lip(€j-1N€;N). With n asin Step 1 and 0 < ¢ < u/3, we define the Lipschitz maps
XL = GMXD) =X - 0eD g * prX D)+ (1-n1X] - 0eD) FEXL),
By Lemmas 7.4 and 7.5, we have

lim limG* = g in W5P.
k—oot\,0

In order to complete Step 2 it remains to prove that, for large £ and sufficiently small ¢ (possibly
depending on k) we have

GP (X)) eM, VX]e€;n%. (7.7)

As in Step 1, (7.7) holds when IXi —0¢l<1-p/20r IXi —0¢|=1-p/3. When 1-p/2 < IXi —0¢| <
1 - /3, we argue as follows. Since j < sp, we have j—1 < sp. By the Sobolev embeddings, / and
F* are continuous and we have F* — f uniformly. Let ko be such that

IF* = fllze < 6/2, Y& = k. (7.8)
By (7.6) and the continuity of f, for every fixed £ we have

lm G (D) = 70X7 ~0eD F XU + (101X - 0eh) FHXIH

. . j j (7.9)
uniformly in the set | J {X]{e&;1-w2<|X]-0¢| <1-p/3}
Q:C<€jﬂ<€
We complete the proof of (7.7) using (7.8) and (7.9). O

In order to complete the proof of Lemma 7.2, it remains to proceed to the

Proof of Lemma 7.3. We may assume that e =1 and that 7'=0. We set
Q=6,n6,E=E, =X, e X, -X] ' |>w, F=F, =X, e 1X] -X]I<w.  (1.10)
If €is a cube in €, and 0 < 1 < pp <1, then we define
Cu=1X] e GIX] - XY > i, € = (XL €€ < IX] - X < poh, €=\ E, (7.11)

If ¢ is another cube in €}, we define similarly ¢, etc.
We clearly have

gu—8ginL? as u—0. (7.12)

[For a more general property, see (7.15) below.]
It thus remains to prove that

g WX - gXD1-[g,(¥) - g1
I:ﬁdXiinugu( )~g XD~ lg, D gD o 713

J J\j
JL 1X{ -y

We split

IZIE,E +2IE,F+IF,F, where IA,B:IA,B,y: ff
AxB
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We have to prove that Ig g — 0, Ig r — 0 and Ir p — 0 as p— 0.

Step 1. For every cube € in €,N€ we have I¢ ¢ —0as u—0
Indeed, we may assume that ¢ is open, and then we identify € with the unit cube @1 cR’/. We let
¢* = @2 denote the double of €, and set

gXxl), ifXlee

nXY) = : . :
e {g(Xi‘l), if X, ee*\¢

Lemma 7.7. We have h € WSP(C*).

Proof of Lemma 7.7. Clearly, since g € st,p , we have h € WSP(€) and h € WSP(¢* \ €). It thus
suffices to prove that A € W*? near each point of 0¢. After a bi-Lipschitz change of variables, and

taking the definition of #;* into account, we are then reduced to the following lemma, established
in [12, Appendix B, Lemma B.1]. O

Lemma 7.8. Let 0<s<1,1<p <oo, uecW>P((0,1)) and v € W5P((0,1) 1) be such that

lu(X1,...,. X)) -v(Xq,....X;_DIP
/Xm...de ! < I <oco.
0,1/ J
Define
Xi,...,X), if(Xy,...,X;))e(,1)
w(X1,...,X,) = u(Xy ) ?( 1 ) E( )._1 .
v(Xy,...,Xj-1), if(Xy,...,X;)€(0,1))7" x(-1,0]

Then w € W2((0,1)7~1 x (-1,1)).

[In the statement of Lemma B.1 in [12] it is assumed that 1 < p < oo, but the argument there still
holds for p =1.]

Step 1 completed. We may extend % to a map, still denoted 4, in WP (R/). Define
RUXT) = R(XL/0), VXL eR/, Vi >0. (7.14)
Note that
if h e WP for some ¢ =0, then the mapping ¢t — A’ € W*? defined by (7.14) is continuous. (7.15)

Using (7.15) with o = s, we obtain that

p
Ws.P(RJ)

o et

A XL -y

Step 2. For every cube € in €; N € and for every fixed g € (0,1) we have Ig,EpO —0asu—0
Indeed, by Step 1 it suffices to prove that for every cube ¢' # € in 6¢; we have, with ¢, asin (7.11),

IQ,Q:LO—’()aS,U—’O. (716)
We note that
X]-Y/Iz o, VX €€ VY. e, (7.17)

By (7.17), we have

Ig.q,, =<Cn,p,puo) / dX?|gu(X]) - gXDIP + / dY! g (Y- e |. (7.18)
¢ %o
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We obtain (7.16) using (7.18) and (7.12).

Step 3. We have I g —0as u—0
By Steps 1 and 2, Step 3 amounts to the following. Let ¢ > 0 be fixed arbitrarily small. Let € # ¢’
be two cubes in €. Then there exists some 0 < y9 < 1 such that

< ¢ for every 0 < u < . (7.19)

I /
Cuspgr S

In order to establish (7.19), we start from

Iyp=22t| [[ axiavi 8uXD -, YDIP | ax!ay’ Ig(XJ) gD | (7.20)
AB = * IX Y] |J+SP YJ|J+3P .

AxB

We next establish the following estimate.

Lemma 7.9. Let € # ¢’ be two cubes in €; N €. Then, for 0 < u < 1/2 and for Xi € ¢ and Yf ed’
such that

X! —0¢l<1-pand Y -0pl<1-p, (7.21)
we have
X/ -0 Y? -0 S
Oc +— L) ) “ll<coix/ -y (7.22)
_u —

Proof of Lemma 7.9. Recall that we assume that e =1 and T'=0. Write
0¢ =(Cy,...,Cp), 0¢r =(CY,...,C)). (7.23)

One may check the following properties of the C;’s:
a) Each C; is an integer.
b) Exactly n —j C;’s are odd.
c¢) The open cube € is given by the following system of equations and inequalities:

X, =C;,ifC;isodd, |X; —C;| <1, if C; is even.
d) Thus every point X i as in (7.21) is of the form
X7 =(Cy+x1,...,Cn +%p), with x; =0 if C; is odd and |x;| < 1 — p if C; is even.

Similarly if we write Y7 = (Ci+y1,...,Ch, + yn).

Estimate (7.22) will follows from the following estimate, valid for each coordinate:

In order to establish the validity of (7.24), we consider the following cases.

Case 1. |C;-C}|=3
Then we have

< CIC; +x;1-[C}+y 1l i 0 < < 1/2, |25 <1, yil <1-p. (7.24)

Cl+ -2
[ 1-p

1-p

Cl+ 2
1-p

[C; +x;1-[C;+y;11=|C; - C]| -2 and

X; ]
1-p

SlCi—C£|+2,

and thus (7.24) holds with C =5.

Case 2. |C; - C}|=2 and C; is odd
Then x; = y; = 0 and thus (7.24) holds with C = 1.
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The same argument applies to the next case.
Case 3. C; =C/ and C; is odd

Case 4. |C; - C}|=2 and C; is even
We may assume that C; =2, C! =0, and we have to prove that

<C|2+(x—y) when |[x|<1-pand|y|<1-p,

2+u
1-

which amounts to

2+%50[2+(x—y)] when |x| <1— g and |yl <1-p.

The above inequality holds with C =2 (provided 0 < u < 1/2).

Case 5. C; =C’ and C; is even
Then (7.24) holds with C =2 (provided 0 < u < 1/2).

Case 6. |C;-C|=1
We may assume that C; =1 and C : =0. As above, for 0 < u < 1/2 estimate (7.24) follows from

'1—% <2|1—y| when |y| <1—p. 0
—

Step 3 completed. We estimate [ Chsior Chpo using (7.20) with A =<, ,, and B = QL,NO. After the
changes of variables

€3 X 0g + K208 o ¢ ¥ 0 0 (7.25)
pio 3 X3 = Ot = = € €y G 2 Y = Dot == €€y :
in the first double integral in (7.20), Lemma 7.9 implies that for 0 < yg < 1/2 we have
X/ Y/)P
i SC0op [ axlar €S
o . e | X{ -Y]|rep
Q:(,u()—u)/(l—,u)Xe(uo—u)/(l—p)
XD - g(YHP
+C(n,p) f dx.,dy] A .) g-(. ) (7.26)
X = Y]|sp '

!
Cpipio * g

j Ig(X’ ) - g(Y])P
|X YJ |J+sp ’

<C(n,p) f dX’dY?

Q:C

/c
2 <€

2p0

We complete Step 3 by noting that the last double integral in (7.26) goes to 0 as o — 0 (since
gEWSP(€;NE)).
Step 4. We have Irp p —0as u—0

In view of Step 1, Step 4 is an immediate consequence of the fact that the restriction of g to
€j-1N %€ belongs to W*P and of the following

Lemma 7.10. Let 0<s<1,1<p<oo, j=1and h € WP(€;_1 N€). Then, with C = C(j,s,p,6),
we have

(X1~ 1) (Y HP
ff dxldy’ o = Clhln, ey (7.27)
e;ée:' e | X5 — Y| rep

1/2

1/2
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Proof of Lemma 7.10. Estimate (7.27) is a special case of the following more general inequality,
valid for nonegative measurable f:

-1 <,j-1 . . -1 <,j-1
f dX’d YJ f (X AC SIS R ff axitay/! f&X LY, ) . (7.28)
YJ|_]+sp IXi_l_Yi_llj_h_sP

o * €y (€NE;_1)x(ECNE;-1)

If we express the left-hand side of (7.28) using polar coordinates on € N €j-1 (respectively on
¢'N€;-1), then (7.28) amounts to the following

11

(7.29)

1 1
//dtdr — _ -C _ _
1/21/2 [(1-8)0¢+t X% 1-[A-7)0g+7Y] 1o X1 =Y je!

which is valid whenevera > 1, € #¢', X/ e €N%j_1 and v/t €' N%Gj1.

Clearly, estimate (7.29) holds when ¢n¢’ = @ (since both sides of (7.29) are bounded from above
and below by finite positive constants).

We may thus assume that

CNe #£@. (7.30)

In this case, the idea is to mimic the proof of the estimate (4.14).

Step 1 in the proof of (7.29). We claim that, assuming (7.30), there exists some C = C(n,j) such
that for X/ 1€ €N%;_1 and Y/ lew N%€j-1 and 1/2<¢,7 <1 we have

[(1=1)0¢+t X -[1-1)0e +7Y! 2 CIIA-1)0e +t X2 -Y/7L. (7.31)

The proof of (7.31) relies on the following geometrically clear inequality, whose proof is post-
poned.

Lemma 7.11. Assume that (7.30) holds. Then there exists some C = C(n,j) such that if Xi €¢
and Y/ € ¢/, then there exists some Z7 € ¢ N ¢’ such that

X7 -Z{|+1Y] - z{|<CI1X]-Y]|. (7.32)
Equivalently, if P : €U € — R’ is L-Lipschitz on € and on @, then P is CL-Lipschitz on €U €',

Assuming Lemma 7.11 established, we proceed as in the proof of Lemma 5.3: we let
P(X])=X{, VX, eC P(Y)=Y!", vy] ey,

We extend P from @i/z to ¢’ without increasing its Lipschitz constant (which is independent of
¢’). For this P, estimate (7.31) reads

. . 1 . . : ;
PX)-POYI< ZIXT -V, VX ey, VY e €y,

which follows from Lemma 7.11.

Step 2 in the proof of (7.29). In view of (7.31), we have reduced (7.29) to

1
1 1
/ dt < C————— (7.33)
Jo o MA=00e+eX1-Y{ e XL =Y et
Combining (7.30) with the fact that €n ¢’ = @, we find that
1<|Y/ 1 0gl<2and X/ 1-Y/ Y <2 (7.34)
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Using (7.34), we obtain that

[(1-8)0e+t X, =Y = [0 =Y7 1 =2[0¢—X7 11> 1~ when 1/2 <t < 1- X/ 1 -Y7 7 )/10 (7.35)

and
(1=8)0¢ +t XL =Y = 11X =Y+ - 9[0e - Y7
>txI -y -201-0) (7.36)
>OIX v/ when1-1X77 v/ Y10<t < 1.
Estimate (7.33) follows from (7.35) and (7.36). O

In order to complete Step 4, it remains to proceed to the

Proof of Lemma 7.11. Let € = €N ¢, and let ¢ be the Hausdorff dimension of €. Let us note that
¢ is a cube in ;. After translation and permutation of the coordinates, we may identify ¢ with a
cube in R’, and then we may write

C=Dx¢ =D"x¢
with ©, ©’ closed cubes in %j_g([RZ”_g ) such that
D ND'={Z'} for some point Z'.
We will split a point X i €Cas
X! =X, X"), with X' € ®, X" € &; similarly for a point Y7 € €.
Assume that we have established the estimate
X' —Z'|+Y' =Z'|<CIX'-Y'], VX' €D, VY €D, (7.37)
Then clearly (Z',X")e €N ¢ and
XJ -2, X"+1Y] - (2, X")| = CIX] -Y!|,

i.e. (7.32) holds.
It thus remains to prove (7.37). This is obtained by contradiction. Assume that there are
sequences {X *’k} c®\{Z'} and {Y*’k} c®©'\{Z'} such that

Xk Z Yk -2 = R Xk YR, (7.38)
By symmetry and after passing to a subsequence, we may assume that
XHh-z =5, Wk, Y F—Z = A, Tk, (WF =1, W W, ITF|=1, T% = T, 0< A <8s, Ap/Op — L.

Using (7.38), we obtain that W = T' (and u = 1). However, this cannot happen. Indeed, since
X'* €D, we have Z'+ Wk € D (check it on a picture). Thus Z'+W € D. Similarly, Z'+ T € ®'. Since
W =T, we obtain that ® N®’ contains Z’' + W, a contradiction. O

Step 4 is complete.
Step 5. We have I p —0as u—0
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In view of Steps 1 and 2, it suffices to establish the following. Let ¢ > 0 be fixed arbitrarily
small. Let € # ¢’ be two cubes in €;. Then there exists some 0 < yp < 1 such that

o 18X — g THp
Iy  gre= ff dXldy; Eu - g. : < 2¢ for every 0 < u < uo. (7.39)
o X7 -y
Cpio ¥ €S
By Step 4, we have
f P lgXI - g(¥{ HI
T xd-vlyre

— 0 uniformly in 0 < u < g as go — 0. (7.40)
Cpiio * il
Using (7.40), (7.39) amounts to the existence of some g such that
8u( X)) —gxIHIP
X -y

J= f dX’dy’

Ic
Cpupg *

< ¢ for every 0 < u < up. (7.41)

The key ingredient in the proof of (7.41) is the following

Lemma 7.12. Let a > j. Then for € # ¢’ cubes in ¢ N 6; and for X/ e ¢}, we have
; 1 1
/ dY] ——— <C(n,j,a,€)— — (7.42)
X -Y]| (X -X{"|a

Ic
Q:1/2

Proof of Lemma 7.12. When €N € = @, the left-hand side of (7.42) is bounded from above by a
positive constant, and the right-hand side of (7.42) is bounded from below by a positive constant,
so that the conclusion is clear. We may thus assume that ¢Ne # @. We are then in position to
apply estimate (7.31) (with the roles of X and Y} reversed) and infer that

X -yl <C1x] Y|, vX]e€,, VY] e, (7.43)
On the other hand, since €N ¢’ = @, we clearly have

X/ -xI < 1x2 -y, vXiee, vYlec. (7.44)
By (7.43) and (7.44), we have

X7 Y|z C0x/ - X+ 1xIT -y, vX e €S, VY e, (7.45)

If Z is the orthogonal projection of Xi_l on the j-dimensional affine plane II spanned by €', then
(7.45) leads to

X, -Y!|=Ccux/ - XN +1Z =YD, VXl e, VY] edl,. (7.46)
Using (7.46), we find that
: : 1 1
/deésC/de — —=C——————. 0
doxl-vle ) ux-x TN eiz-yie xo-x{Te

12

Step 5 completed. Using Lemma 7.12 and a change of variables as in (7.25), we obtain that the
left-hand side o of (7.41) satisfies, when 0 < pg < 1/2,

guXD - gXIHP : : X7) - g(XI P
Jsc/dXi LGS g._l | (- pyr / axi 8¢ -)_1g( )]
XL - X1 e (XL = X377+ pl(1— kP
g (o =1~
g(XD) - g(xIHp
sC/dXi lg( .) g(._1 )] 0 as g — 0,
& REED C
2u0

(here, we use the fact that g € st’p ) and thus (7.41) holds.
Step 5 and the proof of Lemma 7.3 are complete. O
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8 Continuity of the map g — h. Proof of Theorem 6

Let € be a finite submesh of 6, and let j € [0,n—1]. Let g: €;n€ — R™ and let & be its j-piecewise
homogeneous extension to €.
The main result in this section is the following

Lemma 8.1. Let 0<s <1, 1< p <oobe such that sp < j+1. Then we have
||h||§p(<g) = C”g”ip(cgjmcg) (8.1
and

Al =Clgl (8.2)

p p
Wb (%) WoP(€;06)"

[Here, || llzrz) and | lwsr(x) are naturally defined, and we allow constants depending on €.]
Equivalently, the map W*P(¢;n€) 3 g — h € WP (%) is continuous.

Proof. We may assume that T' = 0. We use the notation in Section 5. In particular, w and A will be
points in R/,

Step 1. Estimate of IIhIIZP(%)
As in Step 3.1 in the proof of Lemma 5.1 (more precisely, by mimicking the derivation of (5.10)
with the help of (5.8)), we have

o

A1 sy = 2 / dwki(w)|g2eL + X7)P,

0Sn-jn i1
ge(-1,1yn-

Lez"

where Z denotes a sum taken only over the L’s such that @, +2¢L € % and

EHw) =€ / dtt" .t =Cn, e

n—j
0=t<1
Thus
IRNE gy = C, E™ Y dwl|g2eL +X7)P < C(n,j)e" ™ / 1glP.
UESn_J"n
' lwls1 €inC
qe{-1,1}"7/
Le7"

Step 2. Estimate of 1.,
In the spirit of Step 1 above, we have

Blreny= 2 dw / dAR] (0,1 |g2eL +X7) - g(2eM + Y7,
0,7€Syjn
. lw|=1 [Al=1
q,re{-1,14"7/
L .Mez™

where Z denotes a sum taken only over the L’s and M’s such that Q. +2¢L € ¥ and Q. +2cM € €,
and we set

2n
b _ n-1 J n-1 J €
k1 y(w,A) = / dt /alut1 b U e o X S e A Y
0 0s<usl

<t<1

We rely on the following variant of Lemma 5.4.
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Lemma 8.2. Assume that sp < j+1. Then

C(¥6)

k% (w,A) < : N
L) S T e M Y )er

(8.3)

Proof. When L = M, the conclusion is given by Lemma 5.2. When |L — M| =1, this is Lemma 5.4.
Finaly, when |L — M| = 2, both sides of (8.3) are bounded from above and from below, with finite
positive bounds depending on % (and thus on €) but independent of L, M, X" and Y". O

Step 2 completed. Using Lemma 8.2, we find that

° 2¢L + X7)— g(2eM +Y7)|P
) dw/d)tlg(e +X7)-g2eM +Y)|

p <C(¥) - —
WP (€) mg ‘ |(2eL + X7)— (2eM + Y 7)|7*5P
LN TS| <1
q,re{-1,1}"7/

L .Mez7"

<C(€) |g|€Vs,p(%’jm%’)'
We end with the

Proof of Theorem 6. Theorem 6 is a straightforward consequence of Corollary 6.3, Lemma 7.1 and
Lemma 8.1. 0
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