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A Berry-Esseen result for the billiard transformation

Francoise Péne

Abstract. We consider billiard systems in the two dimensional torus with convex obstacles and finite
horizon. In this paper, we prove a rate of convergence in n=% in the central limit theorem in the case
of the billiard transformation. For one-dimensional functions, we control the marimal decay between the
distribution functions. For multi-dimensional functions, we control the Prokhorov metric. This result
gives some tmprovement to those of [13] and completes those of [14] in which the speed of convergence
is envisaged in the sense of the Kantorovich metric. We use the construction of the Young towers [18]
and Fourier calculations. A consequence of our result is a rate of convergence in O(t_%+°‘) in the central
limit theorem for the billiard flow.

1 Introduction

Let us fix some integer £ > 1. We endow R¢ with the supremum norm : |(z1, ..., 2¢)|co := max;—=1, ¢ ||
For any probability space (2, F,v), any measurable space (E,7T) and any random variable X : Q — F,
we denote by v, (X) the image probability of v by X, i.e. for all A € T, we have : v, (X)(A) = v({X €
A}) = v(X7HA)).

1.1 Central limit theorem, rate of convergence

Let a probability dynamical system (Q, F, v, T) be given, i.e. a probability space (Q, F,v) and a measur-
able transformation T' of Q preserving the probability measure v. Let us fix some measurable function
f:Q — R® with null expectation. We will use the following notations :

n—1

Vw € Q, So(f)(w) :=0ge and Vn > 1, S, (f,T)(w) := > F(T*w)).

k=0

We say that ((X,, := f o T™),>0, v) satisfies a central limit theorem if the sequence of random variables

(Mfﬁ’—Tl) converges in distribution to some (eventually generalised) gaussian variable Z. Once such
n>1

a result established, it is natural to study the speed in this convergence. If £ = 1 and if Z has nonnull
variance, a classical way to do this is to control the following quantity :

DF, ::igﬂ% 1/(%§m) —P(Z < z)|.

In higher dimension, we can estimate :

P, =11 <V* (M\/ﬁ) ,p*(z)) ;

where II is the Prokhorov metric defined on the set of probability measures on R¥.



1.2 Recalls about the Prokhorov metric

For a general reference on the Prokhorov metric, we refer to [6]. For any probability measures P and @
on RY, we define :

I(P,Q) :=inf {¢ >0 : VB € BRY), (P(B)-Q(B)) <¢}

where B¢ is the open e-neighbourhood of B, i.e. B® := {z € R* : Jy € R* |z — y|o, < €}. With this
definition, II is a metric on the set of probability measures on R?. It is called the Prokhorov metric. Let
us recall the link between the Prokhorov metric and the Ky-Fan metric K. The Ky-Fan metric between
two R%valued random variables X and Y defined on a same probability space (F,.A4, p) is given by :

K(X,Y):=inf{e >0 : p(|X —Y]w >¢) < &}.

We recall that II(P, Q) corresponds to the infimum of the Ky-Fan metric £(X,Y) between two random
variables X and Y defined on the same probability space such that X has the distribution P and such
that Y has the distribution @.

Let us notice that, if £ = 1 and if Z has a nonnull variance, then a rate of convergence P, in O (n_%)

implies a rate of convergence DF), in O (n_ %) . Let us recall that, if (X, ), >0 is a sequence of independent
identically distributed random variables admitting moments of the third order, the rate of convergence
(in DF,) is in O(n_%) and it is optimal in the sense that there exists such a sequence (Xp), for which
DF,, is equivalent to Cn=% for some C' > 0 (cf. [1, 7).

1.3 Billiard transformation : definitions and results

We consider the billiard system in the two-dimensional torus with convex scatterers with finite horizon.
Since the earliest article of Sinai [16] concerning ergodicity, a lot of articles have contributed to a better
understanding of this system. The early proofs of central limit theorems in this context can be found in
[4], [3]- A new approach is the method developped by Young in [18] extended by Chernov in [5] to the
case of infinite horizon. We will use this aproach here.

Let us now introduce more precisely the system we are considering here. In the two-dimensional torus
T2, we put a finite number of scatterers Oy, ..., O (with I > 1) which are nonvoid, convex and open and
the boundary of which is C3. We also make the asumption that the closures of these sets are pairwise

disjoint. The domain of our billiard is Q := T?\ (Uf:1 Oi). Examples of such @ are given in figure 1.
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We are interested in the behaviour of a point particle moving in ¢ with unit speed. We suppose that
it respects the classical reflection law at each collision off a scatterer (reflected angle and incident angle
are equal). We consider the billiard system (M, v, T) corresponding to the times of collision :



e We consider the set M : Uz i} x ﬁ x |—%; Z[, where [; is the length of d0;. Let d; be the
metric induced on by the metric on R given by the absolute value. We endow M with a metric

d such that, for all i={l,..., I} forall r,v' € 11_Z and for all ¢, ¢’ € ]—5, 5[ we have :

d((i,r,9), (4,7, ¢")) = Vdi(r,1")? + |0 — @'

e The configuration (i,7,¢) € M corresponds to the collision of the scatterer O; at the point ¢ of JO;
of curvilinear absciss r and with an outgoing vector ¢ making angle ¢ with the unit normal vector
to 0; at ¢ oriented to the inside of @ (see figure II).

e v is the Borel probability measure on M proportional to Zgzl (cos(p) dr dpd;).

e The billiard transformation 7" maps a configuration & € M of a particle at the time just after a
collision off Q) to the configuration T(z) = 2’ of this particle at the time just after the next
collision off 9@ (see figure III).




We also define the function 7: M — [0; +o00[ as follows : for all # € M, 7(z) is the distance covered
by a particle with configuration & until the next collision.

The billiard is said to have finite horizon if the function 7 is uniformly bounded by some positive
constant. It is said to have infinite horizon if 7 is unbounded. In figure I, the first billiard domain
has infinite horizon whereas the second one has finite horizon. The results we state here hold for
billiards with finite horizon. The billiard transformation is discontinuous but it is regular on each
one of its “continuous components”. More precisely, let us define Ry as the subset of M corresponding to
vectors that are tangent to 9@Q) :

Ry = {(i,r,go)EM : go::l:g}.

For any k > 1, T* defines a C'-diffeomorphism from M \ Ul;zo(T_j(Ro)) onto M \ U?IO(Tj(Ro))~ In
the finite horizon case, the sets M \ U?IO(T_j(Ro)) have a finite number of connected components.

Let us fix 7 €]0; 1] and an integer K > 0. As in [13], we consider the set #, k) of bounded functions
¢ : M — R such that the following quantity is finite :

) = sup [9(z) — 4(y)]

sup )
Ceck zeCyeC.azy (Max(d(z,y), .., d(T(z), TX(y)))"

where Ck is the set of connected component of M \ U]K:o (T=9(Ro)). Let f € H(, k) be v-centered.
Because of exponential rate of decorrelation, we already know that the following limit exists :

20 = i | (240

and is equal to : o%(f) = > wen iy [f.foTk] . We also know that, if o?(f) = 0, then (S,(f, 7)), is
bounded in L%(v).

In [13], we establish a rate of convergence DF,, = O(n_%‘”) (for any € > 0).

In [14], we establish a rate of convergence in O(n~ %) in the sense of Kantorovich (i.e. for the quantity

I, {1/} (%)} —E[l/)(N)]‘ , where £; is the set of functions ¢ : R? — R such that, for all
z,y € R4 |¢(z) — ¥(y)| < |z — y|oo). This rate is better than the previous one but we cannot deduce
from it a result of convergence in O(n_%) for DF,, or for P,.

SUPyer,

Theorem 1 (Onedimensional result) We suppose that sup 7 < +o00. Let H be any function belonging
to H(y i) with v-ezpectation equal to 1 and such that minyy H > 0. Let f € Hy k) be v-centered and

such that o?(f) > 0. Then (M\/%_Tl) converges n distribution to a random variable 7 with normal
distribution N'(0,0%(f)) and there exists A > 0 such that we have

) (2D <o) - Pz <0

Yn > 1, sup
zeR

A direct consequence of this is a central limit theorem for £-dimensional f, the coordinates of which are
all in H(, ) and v-centered. The variance matrix of the limit random variable will be given by the

following formula :
Sa(£,T)\ ™
v/n

with, forall A, Be R, A® B := (aibj)i j=1,. ¢ and A®? := A @ A.

¥3(f):= lim E,

n—+4oco

Theorem 2 (Multidimensional result) We suppose that sup 7 < 4+oco. Let H be any function belong-
ing to Hy iy with v-expectation equal to 1 and such that ming H > 0. Let f: M — RY, the coordinates



of which are in H, k) and v-centered. Then (M\/%—Tl) converges in distribution to a random variable
n
7 with gaussian distribution N'(0,X2(f)) and there exists B > 0 such that we have

yn>1, 1I ((H.y)* (M\/J)) ,]P*(Z)) < %.

Our proofs are based on the construction of the Young towers and on a perturbation method introduced
by Nagaev in [11, 12] and adapted by many authors (cf. for example [9] and [10]). The results we used
here come from [10]. The fact that our estimations hold for probability measures of the form (H - v)
enables us to get an estimation in O(t~ %““5) for any € > 0 in the case of the billiard flow (cf. the following
section).

1.4 A consequence for the billiard flow

Here we suppose that billiard has finite horizon. Let us consider a particle moving with unit speed in the
billiard domain . The configuration of such a particle at some time is given by a couple (¢,0) € Q@ xR /Z
where ¢ is the position of a particle and 278 the angular measure between some fixed vector and the
speed vector of the particle. To avoid confusion we eliminate configurations corresponding to incident
vectors at the time of a collision off Q). We denote by @)1 the set obtained.

We define the billiard flow (Z;): as follows : Z;(q,0) = (g¢,0:) is the configuration at time ¢ of a
particle with configuration (g, ) at time 0. The flow (Z;); preserves the normalised Lebesgue measure
p1on Q.

The continuous system (@1, (Z:):, 1) can be represented by the suspension flow (M, (Yi)s, ) over
(M,v,T) with roof function 7. Indeed, 1 can be identified with M = {(z,s) : © € M, s € [0;7(x)[}
by ¢ : Q1 — M that maps (¢,7) € @1 to (z,s) where z is the configuration of the particle (presently at
position ¢ with speed ) at the previous collision time and s is the distance covered since the previous
collision. With this identification, Z; corresponds to Y (i.e. ¥ o 7y = Y; o ¢) where Yi(z,s) = (2,5 + 1)
with the identifications (y, 7(z)) = (T'(y),0). Moreover the image probability measure of p; by ¢ is p

given by: F,[g] = [, (for(x) g(z,s) ds) dv(z).

Theorem 3 We suppose that supt < +oo. Let F' : Qi — RY, the coordinates of which are n-
Hélder continuous (for some 1 €]0;1]) and puy centered. Then the following limit exists : Y2(F) =
@2
lim; s 400 By [(% fot FolZ, ds) ] and (\/LZ fot FolZ, ds) converges in distribution (whent goes to in-
¢

finity) to a random variable W with gaussian distribution N(O,iz(F)) and for any € > 0, there exists
B, > 0 such that we have

I ]
Vt > 1, H ((Ml)* (%/ F [e] Zs dS) ’]P)*(W)) S Bat_z‘l'f.
0

In section 2, we explain how our results are linked with analogous results for the associated Young
towers. Moreover we recall perturbation theorems used here. In section 3, we use the good property of
the Young towers to prove theorem 1 and theorem 2. Let us mention that for the final step of the proof
of theorem 1, another approach is given by the recent work of Gouézel [8].

2 Preliminaries to the proofs

2.1 When X%(f) is non invertible

Let us consider that we are under the hypotheses of theorem 2. Let us suppose that X%(f) is non
invertible. Then, up to a linear change of coordinates in RY, we suppose that the matrix Y2(f) is a



diagonal matrix with the first m diagonal terms equal to 1 and the others equal to zero. With this
change, we have 7 = (71, ..., Z1n,0,...,0) and :

o () o (B0 o)

since we know that ¢%(fin4;) = 0 implies that (S, (fr+s,7))n is bounded in L?(v).

If m = 0, the conclusion of theorem 2 is true according to formula (1).
If m > 1, then we are led to the study of the same problem with (f1, ..., fn,) instead of f.

Hence, in the proof of theorem 2, we suppose without any lost of generality that X2(f) is invertible.

2.2 Construction of the Young towers

Let us recall how Young constructs in [18] two dynamical systems (M, D, T) and (M, D, T) such that :

e the system (M, v, T) is an extension of our billiard system (M, v,T") and of the (M, I),AT), i.e. there
T)

exist two measurable functions  : (M, D, T) — (M,v,T) and & : (M,0,T) = (M, p,T) such that :

ﬁoT:Tor,V:(r)*D,froT:Tofrandﬁ:(ﬁ')*D.

e the Perron-Frobenius operator P associated to T is quasi-compact on some good space of functions,
and 1 is its only dominating eigenvalue (and it is simple).

Stable and unstable curves

We recall here some well known results about stable and unstable curves for (M, v, T).

Definition We call stable curve (resp. unstable curve) a C'-curve ¥* (resp. +“) of M con-
tained in M \ U,so T %Ro (resp. in M\ U,soT*Ro) and satisfying lim, 4o {(T™ (%)) = 0 (resp.

limp 400 LT (%)) = 0), with l(v) := fv \Vdr? +dp?.

Proposition 2.1 There exists a set M of M, ezxactly T-invariant, such that v(M) = 1 and such that
any ¥ € M is contained in an unique mazimal stable curve written v°(x) and in an unique mazimal
unstable curve written y* ().

Proposition 2.2 There exist two real numbers o €]0;1[ and C > 0 such that, for any stable curve
v, any unstable curve v* and any integer n > 0, we have [ (T™(y*)) < Ca™ and L (T~ (%)) < Ca.
Moreover, the intersection of a stable curve with an unstable curve contains at most one point.

Construction of (M,,T)

Definition We call rectangle of M a measurable subset A of M of the following form :

A= U »|nl U ],

,YSEF‘SQ ,Yuel“z

where % is a family of stable curves and I'Yy a family of unstable curves and such that v* Ny* £ 0, for
any (y°,7%) € % x I'Y.

Let a rectangle A of M be given. We call s-sub-rectangle of A a rectangle B of the following form :

= U »|n| U]

,YSEFSB ’YuEFZ



with I'y contained in I'%;. We call u-sub-rectangle of A a rectangle C' of the following form :

c=| UJ»|nl U |

with I'Y. contained in T .

In [18], Young gives the construction of a rectangle A = (UWSEFS ’ys) N (UW“EF” 'y“) contained in M

(where T is a family of stable curves contained in M \T(Ry) and T'* a family of unstable curves contained
in M \ T7(Rp)) endowed with a return time R(-) in A under the action of 7" and of a (countable) v-
essential partition {A;};5, of A in s-sub-rectangles satisfying (in particular) the following :

e R is equal to a constant r; on each Aj;;
e Tor any z € A, we have : TR@) (2 (z)) C v* (TH@)(2)) and TEE®) (% (z)) D v* (THE)(z)) .
e For any ¢ > 0, 77¢(A;) is a u-sub-rectangle of A;

e A; is contained in a connected component of M \ R_,, o.

Then, Young constructs a Borel probability measure ji on A, 7%()-invariant, such that E;[R] < 400. The
probability measure /i is a cluster value of (% i\;—ol (pyu(-lvg N A))* ((TR('))k)) . for the convergence
in distribution (where ~f is some fixed unstable curve belonging to I'* and with dp, = 1, cos(p) dr).
The dynamical system (M, v, T) defined as follows is an extension of (M,v,T) (by = : M, - M given
by m(z,l) = T'(z)) :

. M::{(:v,l):mEA, 0<!I<R(z)-1}

o T(z,1) = (x,l4+1)ifl < R(z) — 1 and T(z,1) = (TE®)(2),0) if | = R(z) — 1,

o (UlZO A x {l}) = %%A]l), where, for each [, A; is a measurable subset of {R > [}.

In the following, we suppose that a := ged(r;) is equal to 1. We are led to this case :

e cither by adapting Young’s construction to make that true;

e or by noticing that a speed of convergence in the central limit theorem for ((f o T™),,v) in n-z
corresponds to establishing a speed of convergence in n~% for ((Sa(f, T) 0o T™)p,v). If f is in
Hy iy, then So(f,T) is in H, k1a-1). Moreover, the system (Mg, Uq, Ty) with My := ;5o Aia,

Vg '= a DlM and T, := T“)l _is an extension of (M, v, T%) that is analogous to extension
a i,
(M, ,T) of (M,v,T)

A partition
We define ¢ : {& € A : R(z) > I} — Ay by 4i(z) = (2,1). Young gives the construction of a partition

D={A1;;1>0,7=1,..., 5} where {A;;}; is a finite partition of A; := {(z,l) € M;1l' = 1} satisfying
the following properties :

Properties 2.3 1. jo=1and Agq1 = Ag = A x {0};

2. each i, (A; ;) is a s-sub-rectangle of A, union of A;;



3. For any 1 > 0, {irg1 ™" (Aug10) 55" = 1, .., dig1} is a partition of {R > 1+ 1} finer than the one
induced by {il_l (A )5 =1, ...,jl};

4. For any x,y in il_l(Alyj) and in a same unstable curve, there exists an unstable curve containing x

and y and contained in M \ UZ:O(T_k(RO))J

. IfT_l(Ao) NA;; # 0, then there exists an integer i > 0 such that f‘l(Ao) NA; =A; x {r;—1}.
For any X,Y € M, we define the separation time s(X,Y) = max{n >0:7" Y)eD (T”(X)) } .

Fact 2.4 Let n > 0 be an integer. Let X and Y be two points in M such that s(X,Y) > n. Then, the
intersection point z of the curves v* (w(X)) and v (w(Y)) exists. Moreover, T"(z) and T" (n(Y)) are
both contained in a same unstable curve.

A factor with a quasicompact transfer operator
We consider the factor (M, v, T) of (M, v, T) given by the canonical projection 7 : M — M, where M
is the set of the R-classes of M, for the binary relation R defined on M by :

(z,)R(2',l')) & =1 and z,2' are in a same 7* € I'*.
Young consider the measure m on M m(A) = D >0 Pye (fr(f‘l(fr_l(A) NAN) Y N A) and prove that
v is absolutely continuous relatively to m and such that the density p := % satisfies :

o co ! < p < cq, for some real number ¢y > 1;

o |p(2) —p(y)] < claé(ﬁ’g)ﬁ(i‘), for some real numbers ¢; > 0 and «g €]0; 1[;

with §(7(z), 7(y)) = s(x,y). We shall write A = 7 (A;) and Alyj = @ (A;;). Let us fix oy :=
max(a%, ap). For any 8 €]0;1[ and € > 0, we define the functional space V(s . as follows :

Vig,e) = {f ‘M —=C measurable, Hf”V(,s,s) < +oo},

where [ £ = /] + 7], - with
Vis,e) (B,e,00) (8,,h)
F r —le
= Ssu A e ,
| f) (B,¢,00) 150 ha Hoo
17 f) - i)
= su su — e )
(B.2:h) 120;j25~~~,jz£,yeApl,j 34(&.9)

We define P as the adjoint operator of g — g o T on L?(m). We have Pp = p. Young shows that we can
find two real numbers § €]as; 1] and ¢ > 0 such that, for any real number € €]0; &g],

e There exists Co > 0 satisfying || - [|z2(0) < Coll - [lv, .5

e There exist 7 €]0;1[ and Cy > 0 such that, for any integer n > 0 and for any f € V(p,¢) satisfying
fM fdfn = 0, we have P”f <Cin”

f

| -
Vis,e) Vis.e)

o We have P(f)(&) = Yooz £(2)F(2), with
Alh]

log%‘ < Cha1*@9)=1 for any & and ¢ in a same



In the following, we consider (8, ) satisfying these properties. By a direct calculation, we get :

Lemma 2.5 Let h : M — C be a bounded function such that there exists cp, > 0 such that :
Vi,y € M, [h(#) — h(g)] < cafTD.
Then, for any g € V(g ¢y, function hg is in V(5 .y and we have :

179ll(8.c,00) < [[Bllolgli(s.c,00) and [[Rglls.e,ny < [lAlloollgll(s.e.n) + cnllgliis,e,o0)-

2.3 From f: M — R'to f: M — R*

Let us consider a function f : M — R* the coordinates of which are in H(y,x) and are v-centered.

_ First we define the function f: M — R¢ by f := fom. Let us define H:= Ho#. The image measure
(H - D). (7) coincide with H -v. Hence, establishing a central limit theorem with a rate of convergence in
O(n_%) for ((f o1™)n>0, H - v) leads to establishing a central limit theorem with a rate of convergence

in O(n_%) for ((fo T")nzo,ﬁr - D).

Second we define f : M — R® such that we have : f— fo T=hs—hjso T for some bounded function

h; : M — R‘ We follow the construction of [17] (this idea is already present in [2], lemma 1.6 pages
11-12). Let 4% be some unstable curve of our rectangle A (such that v§ NA # 0). We define h as follows :

hy =350 (fo Tn — folm ox) , where x : M — {(z,1) € M : x € ¢} is the projection over the
“Images” of 7§ along the stable curves, that is : x(z,l) = (2’,1) where &’ is the point of A belonging to

76 and to the v* € I'* containing z. Because of exponential decay of the length of the stable curves,
function hy is well defined and bounded. We define g; : M — R* as follows : g = f—(hy —hyoT).

We have : g7 1= fo X+ .50 (fo Tr+l o X — fo " o Y © T) . This function g; is constant along the

stable curves. Therefore, we have : gy = fo 7 for some f : M — R* which is bounded (because f~' and h
are bounded). As in lemma 3.1 of [17], we prove the following :

Lemma 2.6 There exists ci>0 such that, for all &, € M, we have |f(;i‘) - A(Q)|Oo < cfﬁg(iv@).

Proof. Let X and Y be two points of M.

(a) Let us control f(x(X)) —f(x(Y)). According to the fact 2.4, TS(X’Y)(W(X(X)) and TS(X’Y)(W(X(Y))

are in a same unstable curve. Therefore, for any k =0, ..., s(X,Y), we have :

d(T* (m(x(X))), T (r(x(Y)))) < Ca*XY)=F,

If s(X, Y) < K, then we have : [F(x(X)) = F(x(Y))|_ < (2l fllooa5) asx¥).

If s(X,Y) > K, then we have : ‘f(x(X)) — f(x(Y))‘ < C}”’K)C”a_”Kans(va).

(b) Let n > 0 be such that 2(n + K + 1) < s(X,Y). Then 7 (TS(XY)(X(X))) and (TS(XVY)(X(Y)))

belong to a same unstable curve. Hence we have :
Vh =0, K, d (15 (" (X)), TR ((Y))))) < Cat KXk

and so :

[FE+ (X)) = FA (V)| < OO cmantxy)=tutit),

co

Moreover, we have :

Vk=0,..,K, d (Tk(w(T" (x(T(X)))), T* (= (T (X(T(y)))))) < CasXY)=(n+k+1)



and so :

T (TY))] | < G enant -,

(e}

FI ((T(X))) = £

(c) Let n > 0 be such that 2(n + K + 1) > s(X,Y). Let us notice that the points F(T(X(X))) and
m(x(T (X))) are in a same stable curve. Hence we have :

VE=0,..,K, d (Tk(n(f” (X(T(X)))),Tk(w(T"“(X(X))))) < Cam.

and therefore :

F(I @) = F (I X)) | < ofremar.

o0

Analogously, we have :

‘f<Tn(X(T(Y))) - f(fﬂ+l(x(Y)))‘ < C}”VK)Cﬂann.

o0

(d) Conclusion :

97 (X) = 9; V)l < (21w + CICT) @K oY)

| 250 | g

+20‘}(¢777K)C’77 Z aﬂ(S(XVY)—(”‘*‘k+1)) _|_ Z ann
n=0 nZSQXQ’Y)—K
s(X,Y _1) n(s X,Y —K)
(n,K) —nK (XY (n,K) o (55 @
§(2||f||oo+cf C”)Oz 7 a”( )_|_20f C”( pREr— + 1—an )a

ged.

Lemma 2.7
1 ((H V). <%> ((H - 9)s () (%\/ﬁﬂ)) = %

Therefore, to establish a rate of convergence in n~% in the central limit theorem for (foT™)n>o0, H - v),

it suffices to get a rate of convergence in n~ 2 in the central limit theorem for ( (f o T”)nzo, (H -0).(7)).

And to establish such a result, we can use the good properties of the operator P and apply the following
results concerning techniques of perturbation of operators.

2.4 From H-ito H-»

We will show that the image measure (H - 7). (7) is of the following form : H - & for some H belonging
to Vs,.. Moreover we prove the existence of constants ag > 0, bg > 0 and cg > 0 such that :

Vi, g€ M, ag < H(#) <bg, [H(@)-H@)|<enf D,
We follow the proof of the existence and of the properties of p. We have :

((-2).(m) (4) = (1 -9) (U ((Am U ﬂm) x {1})) ,

TEA;

with A, := #(T~"(#7'(A) N A;)). According to the definitions of ji and of 77, we have :

(11 - 9) (le < {1})) - mxwow )(By).

1>0

10



Adapting the proof of lemma 2 of [18], we prove that, for all [ > 0, there exists g; : v§ N A — R such
that :

(HoT i) | |J 7v*(2) | = (90 pyp (I N A))(A),
:L‘EA;
with fll any measurable subset of v§ N A. Moreover there exist ap > 0, by, > 0 and ¢;, > 0 such that
VI>0, Ve evg NA, ap Sgl(m) < by

and :
s((x,0),(y,0))—1
2

VI>0,Ve,yevy NA, |g(z) —a(y)| < chgi(z)B
7

From this and from the definition of m we conclude that (I;T
to m and we have :

)« (7) is absolutely continuous with respect

dm

9i1(z)
Ez [R()]
Now, let us indicate how we prove the existence of the functions g;. Let A; be any measurable subset

of 4§ MA. Let (Ng)p>1 be a sequence of integers such that ( Zj\fko ! (pm’;('hg N A))* ((TR('))j))k>
>1

converges in distribution to . We have :

(HoT -f) | [Jr(@)] = lim - i (HoT' - pyg (g 0 A)), (TF)) | (@)

xEA; j:O xEA;

= lim / HNk,ldpv”ﬂA( |700A)

k—+o00

with Hy,(y) == & Y200 0 Lictior isos)
ing to ¥°(y) and to the unstable curve 'y( ) € ' containing the following set :

(7RO (73 n Jﬁl (Tfe(.))_m (Aim))

.y pii(y)H(T" (y; 1)), where y;; is the intersection point belong-

m=0
and with :
— JUT(T™ (y)) 1
w30 =\ 1L 5y | e e o)
with JUT'(z) = W(m). According to the properties satisfied by J* (cf. [18]), there exists K > 0
such that :
Vi, Vi, Va,y € v§ NA, logpj’ (l)‘<]ﬁ ), (4,0))
pii(y)

Moreover, we have :

H(T' (24)) 1 (n.K) i
, u A ] 4, < n, 2| H||oo ) C" (s ((2,0),(y,0) == K)
Vl’, yE Yo n ’ og H(Tl (y]yl)) = Hlil’lM H (CH + || H ) Ca
Let us write Ly := K + mmMH (C’g’K) + 2||H||Oo) C"a~ "™ We have :
" pii(x) H (T (2}5)) 0))—1
Ve, y €Evg NA, |log < L0, .
° pii(y)H (1" (y;,1))

From which we get :
Vez,y €78 NA, |[Hyu(z) — Hyi(y)| < Le" Hy (o) (@0 @0~
From the Ascoli theorem, we get the uniform convergence of some subsquence (Hy, 1)m of (Hn, )& to

some function g; satisfying the properties said before.
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2.5 Speed of convergence and characteristic functions
Let us recall the two following results linking speed of convergence in the sense of DF,, and of P, to
estimates on the characteristic functions.

For any real random variable X, we denote by ¢x : R — C the characteristic function of X, i.e.

ox t— EleftX].

Theorem 2.8 (Berry-Esseen lemma, £ = 1) LetY be a random variable with gaussian law (with non-
null variance). For any real random variable X and for any real number U > 0, we have :

lpx () — oy (t)] 24
sup |[P(X <z)—-P(Y <z)| <L dt + .
sup [P(Y < 2) = P(Y < 2)| < W/_U 7 —

We denote by (-,-) the usual scalar product on R® For any R‘random variable X, we denote by
¢x : RY = C the characteristic function of X, i.e. px :t s E[e!tX)],

Theorem 2.9 (Yurinskii [19], £ > 1) LetY be some £-dimensional random variable with gaussian dis-
tribution (with invertible covariance matriz). There exist two real numbers cg > 0 and T > 0 such that,
for any real number T > 0 and for any R*-random variable X (defined on some (E,T,P), we have :

1
2

2

1+r ok
T(P.(X), P.(Y)) < co / > S o ex —ev)(t)
[tlo<T k 0 {iq,.ix}efl,. . 3k te

Hence, to establish theorems 1 and 2, we can use estimates on characteristic functions.

2.6 Characteristic functions and operators

The adjoint operator P of g — goT on L?(p) is given by : P(g) = @, where P is the adjoint operator

of g = go T on L?(m). Because of the properties of P and of p (and according to lemma 2.5), the
operator P satisfies the following property :

e P is a continuous linear operator on Vg .y;

e we have P1 = 1;

e there exist two real numbers Cy > 0 and 7 €]0; 1] such that, for all integer n > 0 and for all
fe V(3,¢) such that [, fdv =0, we have : HP”f < Com” f”

‘Vus,s) Vise)

)n ([—if)} with :

i{t,Sp (f,T ~
We will use the fact that we have : g [e e ] =E KP:T

Pi(g) = P(ei0Dy). (2)

Indeed, it is easy to see that, for all £ € R¢ and n > 1, we have : (Pt)”(g) = pr (ei(t’sn(f’T)>g). We will

apply the theorems of perturbation recalled in the following section to our (Pt)t. Let us introduce a few
notations : Ly, will be the set of continuous Clinear operator of V(s ). We endow ﬁv(ﬂ)s) with the

norm || ley,,.,"given by : [Wlley, = subyy, i 19 v

12



Lemma 2.10 The map t — P, is in C'OO(]RZ,ﬁv(ﬁ’E)). Moreover, for all t € RY, for all m > 1 and all
i1,y im € {1, ..., £}, we have :

o - A
Wﬂ(g) = Pt(fil .. 'fimg) - p (Zmez(t ) f fl ) .
Proof.

e First of all, we notice that, for any ¢ € R, eilt.f) satisfies the hypothesis of lemma 2.5. Therefore,
for any ¢t € R, P, belongs to Ly,..

o Let t e R, veR* je{l,...0} and g € Vs .. Let us prove that we have :

Pt+vej(') - Pt() - Upt(ifj X )

v

: ol
snPtnﬁv(ﬂ,s)( 112, +2lelefl| e )

Lvg,e

where ¢; is the jt* vector of the canonical basis of RY. We have :

Priue,(9) = Pilg) = vPi(ifye) _ (f —1—ify )
= I} — A I

v v

Hence, we have :

pt+vej(g) - pt(g) - vpt(lf]g)

v

ei“fi —-1- zfv
b —y

v

g

EVig,e)

Vis,e) Vis.e)

iwfi 4t
We will apply lemma 2.5 to the function h := % Indeed, we have :

1l =

u ||f||2

(e}

and, for any z and y in M, we have :

et fi(®) _ givfi(@)+iv(fi(9)-Fi(2)) _ i(fi (&) — fi(9)v

|h(2) —h(y)] =

v

(5 — 1yinlf; (2) — £5(9)) ‘ L VL) = HEP

- v 2|v|
< 2eldlflle | £3(@) — @)
o Conclusion. We have :
. Pt+uej(')_]5t(')_vpt(fj X ) _
lim =0
v—=0 v
L:V‘B,E

and, for all m > 1 and all i1, ...,4,,,j € {1, ..., £}, we have :

Prigoe, (" fiy - i, % Y = Po(i™ fiy -+ fir %) = 0P (Y fi iy - fin %)

v

v—0

ged

13



2.7 Perturbation operator method
First let us introduce some notations. For any complex Banach space B, we use the following notations :

1. We denote by B’ the set of continuous C-linear maps from B in C. We endow this set of the norm
Il - lls given by : [[A||s := SUp||f||s=1 |A(S)]-
2. For any A € B’ and any f in B, we will use the notation : (4, ). := A(f).

3. For any A € B', any g € B, we denote by g ®. A the continuous C-linear endomorphism of B defined
by : (9 @« A) (f) := (A, 9.

4. We denote by Lp the set of continuous C-linear endomorphisms of B. We endow this set with the
norm || - ||z, given by : [Pl := supysy,=1 [[P(f)lls-

Theorem 2.11 (theorem IIL.8 of [10], Onedimensional version) Let B be a complex Banach space.
Let Iy be an open interval containing 0. Let m > 1 be some integer. Let (Q(t))ier, be a family of contin-
uous linear operators on B such that :

(i) The application t — Q(t) is in C™ (o, Lp);
(ii) there exist two subspaces F and H of B such that :

(a) B=F&H, QO)(F)CF and Q(0)(H) CH.
(b) dim(F) =1 and Q(0)r = id|F,
(c) the spectral radius of Q(0)j is strictly less than 1.

Then there exists an open interval Iy containing 0 and contained in Iy, there exist real numbers n; >
0,72 >0, ¢1 > 0 and four functions A € C™(11,C), v € C™(I1,B), ¢ € C"(1,B') and N € C™ (11, Lp)
such that, for all t € I, we have :

(1) foralln > 1, Q)" = A)"v(t) ®« ¢(t) + N()",

(2) Q)v(t) = A(t)o(t), Q)" p(t) = A(t)p(t) and (p(t),v(t)). =1,

(3) 1AW > 1=m,

(4) for all £=0,...,mand alln > 1, ||%N(t)"||55 <ec(l—n—n2)™.

(5) [Corollaries I1I-11 and I1I-12 of [10]] Moreover, if m > 2, we have :

(a) X'(0) = (#(0), Q(0) - v(0))«
(b) and, if X'(0) = 0, sup,5o [nA”(0) = (2(0), (Q)"(0) - v(0))| < +o0.

We will use this theorem to prove our theorem 1 (when ¢ = 1)with Q(t) = P, and B = Vp,e) and
QU () -(g) =Q(t) - (™ f™g); M(0) =1, v(0) =1 and ¢(0) = ».

In this case, we have : @'(0) = F;[if] = 0 and

Moreover, we have (¢(0), (Q")"(0) - v(0))s = Fy [(Sa(f,T))?] and hence

N(0) = Jim {— (w) } = (). (4)



Theorem 2.12 (Multidimensional version) Let B be a complex Banach space. Let Uy be an open
subset of R® containing Og:. Let m > 1 be some integer. Let (Q(t))iev, be a family of continuous linear
operators on B such that :

(i) The application t — Q(t) is in C™(Up, Lg);
(ii) there exist two subspaces F and H of B such that

(a) B=F&H, QO)F) C F and QO)(H) CH,
(b) dim(F) =1 and Q(0)r = id)F,
(c) the spectral radius of Q(0)jy is strictly less than 1.

Then there exists an open set Uy containing 0 and contained in Uy, there exist three real numbers n; >
0,m2 > 0, ¢1 > 0 and four functions A € C™(Uy,C), v € C™(Uy,B), ¢ € C™(U1,B') and N € C™ (U3, L)
such that, for allt € Uy, we have :

(1) foralln > 1, Q)" = A()"v(t) @« ¢(t) + N()",

(2) Q)v(t) = A(t)o(t), Q) p(t) = At)p(t) and (p(t),v(t))« =1,

(3) 1@ > 1=m,

(4) for all £ =0,....m, for all iy,...,ip € {1,...,£} and all n > 1, )

m2)"

L (N (1))

3%'“3% S cl(l —n1—

Lp

Idea of the proof. This is the multidimensional version of theorem IV-8 of [10] which is based on the theo-
rem of implicit functions (see chapter XIV of [10]). Hence, it is easily extendible to the multidimensional
case, qed.

We will use theorem 2.12 to prove our theorem 2. We will apply it to Q(¢) = P, and B = Vig,e)- We
have A (Oge) = 1, v (Oge) = 1 and ¢ (Oge) = .

Let h = (hy, ..., hs) € R:. We can apply theorem 2.11 to (Q(s) = Q(shy, ..., shs))ser (for some small
interval I containing 0). From formula (3), we get : (VA(0), (h1, ..., hy)) = 0 Hence we have : VA(0) = 0.
hihji =2 —A(0) = —02(hy fi + ...+ hefe) = —(32(f) - h, h). Hence we

From formula (4), we get : Ze N

7,7'=1
have : HessA(0) = —X2(f).

3 End of the proofs

In this section, we write A; := A(t), ¢ := ¢(t) and v; := v(t), where A, ¢ and v are the functions given
in theorems 2.11 or 2.12 applied to Q(t) = P, and B = V(3 ). To finish, it suffices to prove :

e For theorem 1, that there exists some 8 > 0 such that we have :

gy |Peaci (t) — @Z(t)‘ .
/ a dt = O(n™3).
NG 2]

e For theorem 2, that there exists some 8 > 0 such that we have :

[5]+1 A

> ia

/ ETR T (s'osngf‘,T‘) - SDZ) (t)
[tlo<BVM k=0 [iy,. . ix}e{l,... e}k bk v

Bt
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3.1 Theorem 1

To conclude, we just have to follow the proof of theorem B of [10] page 12 (cf. section VI-3, cf. also
theorem B* of [10] page 84). Let ¢3 > 0 and 3 > 0 be two real numbers such that the closed ball [—3; 5]

is contained in I; and such that for any ¢ € [—3; ], we have || < e=°2*" and e~ - =g < e~ (this is
possible because o(f) > 0 and because we have A"(0) = —o?(f)). In the following, n will be any mteger
and ¢ € R any real number satisfying : n > 2 and [¢| < 8+/n. For such a couple (n,t), we have : \/ﬁ el

and we have :

i+ Sn(£,T) o2(f)t2 N . noo. 02(5)12
2| e = (o (P ) ) - e
*

()" (5 v 25) 1), + (o (4 ><m>,e—w
(A') (< ( 7) (13’)>*—1)+<19,(N%)"(g)>*
(

EH&

1

7=
+

)
6 -]
thoo — 22

.
— 1 " |t|°° H
+er(L=m = n2)" 2| Hllys...

0 (sl ¥) +0 7

Therefore, we have :

3

3.2 Theorem 2

To conclude we follow the proof of theorem 2.2.1 of [14]. Tt is inspired by the previous section.

Let ¢2 > 0 and 8 > 0 be two real numbers such that the closed ball BHOO (0, B) is contained in U; and

such that for any t € By, (0,8), we have |\ < e=c2(tt) and e~ (LT < e=e2(tt) (this is possible
because Y.2(f) is invertible and because we have HessA(0) = —X2?(f)). In the following, n will be any
integer and t € R® any real number satisfying : n > 2 and |t|.o < By/n. For such a couple (n,t), we
have : \/— € U;. Hence, we have :

a [OFI] = (s () ),

()" (5 (o 00 (), + (o (W) (D)

1. We start by giving an estimation when k& = 0. As in the case of theorem 1, we get :

(/mw«aﬁ 2 dt) -0 <%) '

2. Let k be an integer satisfying 1 < k < L%J + 1 and (41,...,4%) € {1, ...,E}k. According to theorem
2.12, we have :
ok ;
— K. . [ '
i, ..ot Bl

ik

H-»

.- {6i(t7ﬁ5n(f,T))} _ XD

<t,ﬁ5n(f,T)>}




_ A n k41 e~ Tt e (l—m — 772)” R
o <8ti1...8tik (()\ﬁ) )) +0 ((1 + |t|°° ) \/ﬁ + n% ||H||Vﬂ,s:

e s (5 0050) 1), 1 =0 (58 ot s (1)) =0 (1 130

Now we have to estimate the following quantity :

k

k n 1t v2

21

In the following b : BHOO(O,ﬁ) — C will be a function CL#]+1 on BHOO(O,ﬁ) such that 6(0) = 1
and g—Z(O) = 0 and Hess b(0) = —X2(f) and |b(t)] < e~°2(t1) (we will take b(t) := \; and b(t) =
6_%“’22(””). We have :

e (CG) )= L S o

A={A1,.. An}€EQK

where Q) is the set of partitions A = {4y, ..., A, } of {1, ..., k} in nonempty subsets A; = {l%i), . l;(é)A,}'
and with, for all A = {A;,..., 4} € Qk :

wcann =i teemn () i (s ) ()

Let A ={A1,..., An} € Q. mg(A) will be the number of A; € A such that #A4; = 1. Let us notice

that we have 2m < mg(A) + & and :
mo(A)
nme— 20t o [t]oo n—%
v/n
_ s

= O (jtlem e 200).
o If 2m < mg(A) + k, then, for any ¢ € By, (0, #\/n), we have :
a0 =0 (=" 20
gn ) - \/ﬁ € .

o If 2m = mg(A) + k, each A; has cardinality one or two. Hence, for any t € By,|_ (0, 3y/n), we
have :

[SIEd

l9n (A, 0) ()]

IN

Il
)
TN
=

Nl
w2
3
3
[=]
=
+
z
=
3
[=]
=
N

9n(AA) () = gn (A, e ‘_< (14 [¢|7otA )e—%w)),

0 —Li w20 t |t|oo2
— — 2( = (f)) N = -

(A )n_m e 00 Z o (M -0
Y v

Indeed, we have :

and

and

ged.
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3.3 Theorem 3
Let F be as in the hypothesis of theorem 3.

1. Let us notice that :

(k1) <%/OtFonds) = pia (%/(:Fod;_lo}’sds).

2. For any w € M and any ¢t > 0, we define the number n(t,w) of collisions before the time ¢ for a
particle having configuration w at time 0 :

k-1
n(t,w) = max{kz 0 : ZToTj(w) §t}.
j=0

Let us define f(w fo Fo’t/) (w, s) ds. Let us denote by K, the Ky-Fan metric for R random
variables deﬁned on /\/l Since Y;(w, ) = Ys4u(w) and since Yk ToTj(w)(w, 0) = T*(w) and since

n(t,w)—1 E;Lifdw)—l roTj(w)
> foTk(w):/ (F o™t oY, (w,0)ds,
k=0 0

we have :
1 n(t,q())-1 .
\/_/ (Foy™)oYds— 7 > foT*q() :O(t_a)’
k=0

with ¢ : (w, s) = w. Hence we have :

4. Let us write 7 := fM 7dv. According to theorem 2, since the coordinates of f belong to H(, 1) and
are v-centered, we have :

I %z:_foTk ,N(o,%z%ﬂ) :0(%).

5. We are led to the control of W, := (Zk 0 foTk — ,E Pl fo Tk)

6. According to lemma 4.1 of [13], we have :

ﬂ\lﬂ-

VL >0, 3CL >0, Vt > 1, VKZI,I/({n(t )=

> A\/_}) <CLK~t (5)
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7. Moreover (Zz;é foT") and (Z:;Ol(r o T* — 7)) are bounded in all LP. Hence, for all p > 1,
there exists A, > 0 such that :

[+]-1
vt >0, % (Y roT*)—t < A, (6)

k=0
Lr(v)

And, according to a result of Serfling (theorem B of [15]), for all p > 1 and there exists K, > 0
such that we have :

YN > 1, || max_(max (|S,(f,T)|, |Sa(f, T~Y))) < K,N*Z. (7)
n=0,....N LP ()
8. Let a € ]0; %[ According to (7), we have :
Wp> 1, ¥ 2k,
> t < 2K .
b= >0, HWt fIne)=glsebeey|| =TTy

Moreover, according to (5) and to (6) and to the Cauchy-Schwartz inequality, we have :

< (Azp + [|7]leo )| Flloo O 2Pt~ 2L,

Vp>1, YL >1, V>0, va
Lr(v)

1424
{In(t,-)-%[>e3+2*)

9. By taking L :=

200

Va>0,Vp>1, supti=® ||Wt||L,,(V) < 400 and supti~ ||Wt||L,, y < Foo.
t>7 t>7

From this and from the Markov inequality, we get :
L f(y | = 0 (=)
Va >0, ¥p>1, Ky \[Ef \[ Z for*()| =0 (7 ).

Let us notice that it seems difficult to get a better result than O (t_%) with this method. Indeed

t
(n(t;/%) converges in distribution (when ¢ goes to inﬁnity) to a non-degenerate gaussian random
¢

variable. Hence, we suspect that —= < [E Fl-1 foTk— Zk 0 oTk( )) is of order ¢t~7. But this

does not preclude a rate of convergence in t=% for the \/LZ ZZ:(’)' B f o Tk ().
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