
HAL Id: hal-01101250
https://hal.science/hal-01101250v1

Submitted on 8 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accelerated Monte Carlo estimation of exceedance
probabilities under monotonicity constraints

Nicolas Bousquet

To cite this version:
Nicolas Bousquet. Accelerated Monte Carlo estimation of exceedance probabilities under monotonicity
constraints. Annales de la Faculté des Sciences de Toulouse. Mathématiques., 2012, 21(3), pp.557-591.
�10.5802/afst.1345�. �hal-01101250�

https://hal.science/hal-01101250v1
https://hal.archives-ouvertes.fr


ACCELERATED MONTE CARLO ESTIMATION OF EXCEEDANCE

PROBABILITIES UNDER MONOTONICITY CONSTRAINTS

by

Nicolas Bousquet

EDF Research & Development

Dpt. of Industrial Risk Management

6 quai Watier, 78401 Chatou, France

nicolas.bousquet@edf.fr

Abstract. — The problem of estimating the probability p = P (g(X) ≤ 0) is considered when X

represents a multivariate stochastic input of a monotonic function g. First, a heuristic method to

bound p, originally proposed by de Rocquigny (2009), is formally described, involving a special-
ized design of numerical experiments. Then a statistical estimation of p is considered based on a
sequential stochastic exploration of the input space. A maximum likelihood estimator of p based
on successive dependent Bernoulli data is defined and its theoretical convergence properties are

studied. Under intuitive or mild conditions, the estimation is faster and more robust than the
traditional Monte Carlo approach, therefore adapted to time-consuming computer codes g. The
main result of the paper is related to the variance of the estimator. It appears as a new baseline

measure of efficiency under monotonicity constraints, which could play a similar role to the
usual Monte Carlo estimator variance in unconstrained frameworks. Furthermore the bias of the
estimator is shown to be corrigible via bootstrap heuristics. The behavior of the method is illus-
trated by numerical tests led on a class of toy examples and a more realistic hydraulic case-study.

On considère l’estimation de la probabilité p = P (g(X) ≤ 0) où X est un vecteur aléatoire
et g une fonction monotone. Premièrement, on rappelle et formalise une méthode, proposée

par de Rocquigny (2009), permettant d’encadrer p par des bornes déterministes en fonction
d’un plan d’expérience séquentiel. Le second et principal apport de l’article est la définition et
l’étude d’un estimateur statistique de p tirant parti des bornes. Construit à partir de tirages
uniformes successifs, cet estimateur présente sous de faibles conditions théoriques une variance

asymptotique plus faible et une meilleure robustesse que l’estimateur classique de Monte Carlo,
ce qui rend la méthode adaptée à l’emploi de codes informatiques g lourds en temps de calcul.
Des expérimentations numériques sont menées sur des exemples-jouets et un cas d’étude hy-
draulique plus réaliste. Une heuristique de boostrap, reposant sur un réplicat de l’hypersurface

{x, g(x) = 0} par des réseaux de neurones, est proposée et testée avec succès pour ôter le biais
non-asymptotique de l’estimateur.
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1. Introduction

In many technical areas, the exceedance of some unidimensional variable Z over a certain
critical value z∗ may define an event of probability p which has to be carefully estimated.
Assumed to be stricly positive, p can be defined by

p = P (g(X) ≤ 0) =

∫
{g(x)≤0}f(x) dx

with X a random vector of uncertain input parameters with probability density function (pdf)
f , taking its values in a d−dimensional space , and g(X) = z∗ − Z a deterministic map-
ping from to IR. This framework is often encountered in structural reliability studies
(Madsen & Ditlevsen, 1996), when g is a computer code reproducing a physical phenomenon.
A Monte Carlo (MC) method is the usual way to estimate p, by p̂n = n−1

∑n
k=1 {g(xk)≤0}

where n is large and the xk are independently sampled from f . Avoiding regularity hypotheses
on g, this unbiased estimator presents good convergence properties and an estimation error
independent on d. Unfortunately, this strategy often appears inappropriate in practice when
p reaches low values, since g can be time-consuming and the computational budget may be
limited: a good estimation of a probability p ∼ 10−q typically requires at least 10q+2 calls to g
(Lemaire & Pendola, 2006). Furthermore, p̂n has the theoretical defect not to be robust, in the
sense given by Glynn et al. (2009): its relative error, namely its coefficient of variation, does
not tend to a finite limit when p→ 0+, given any finite number n of trials.

Many non-intrusive strategies have been proposed to accelerate the MC approach. Tradi-
tional methods from the engineer community in structural reliability (FORM/SORM) treat
the estimation of p as an optimization problem. The computational work is usually fast but
the estimators suffer from weakly or non-controllable errors. Statistical approaches are judged
in terms of reduction rate with respect to the MC estimator variance Var[p̂n] = p(1 − p)/n.
Methods like quasi-MC, sequential MC or importance sampling (Kroese & Rubinstein, 2007)
are based on selecting a design of experiments (DOE), namely a set of points in on which g is
tested, such that be explored in areas close to the limit state surface S = {x ∈ ; g(x) = 0}.
Most advanced methods often get rid of the time-consuming difficulties by emulating the be-
havior of g, for instance using kriging techniques (Cannamela et al., 2008) which presuppose
smoothness conditions on g.

Minimizing the strength of regularity hypotheses placed on g underlies the development
of specialized acceleration methods. For instance, computer codes can suffer from edge effects
which restrict smoothness conditions (Munoz-Muniga et al., 2011). On the other hand, the real-
ity of the phenomenon can imply various form constraints on Z. Especially, the assumption that
g is monotonic with respect to X is a standard problem in regression analysis (Durot, 2008).
In the area of numerical experiments, monotonicity properties of computer codes have been
considered theoretically and practically, e.g. proving the MC acceleration of Latin Hypercube
Sampling for the estimation of expectancies (MacKay et al., 1979), carrying out screening meth-
ods for sensitivity analyses (Lin, 1993), constraining response surfaces (Kleijnen & van Beers,
2009; Kleijnen, 2011), predicting the behavior of network queuing systems (Ranjan et al., 2008),
computing flood probabilities (de Rocquigny, 2009) or estimating the safety of a nuclear reactor
pressure vessel (Munoz-Muniga et al., 2011).

Specific engineering works in structural reliability have highlighted the possibility of bound-
ing and estimating p significantly faster than using a MC approach. Under the name of



ACCELERATED MONTE CARLO UNDER MONOTONICITY 3

monotonic reliability methods (MRM), de Rocquigny (2009) proposed a class of sequential
algorithms contouring the limit state surface and enclosing p between deterministic bounds
which dynamically narrow. A similar idea was explored by Rajabalinejad et al. (2011). How-
ever, although a parallelization of such algorithms was already implemented (Limbourg et al.,
2010), these methods were only empirically studied and some of the proposed estimators of p
remained crude.

The present article therefore aims to provide a first theoretical approach of the accelerated
MC estimation of p when g is assumed to be monotonic and possibly discontinuous, although
some smoothness constraints are assumed on the failure surface S. More precisely, this article
is structured as follows.

Section 2 is dedicated to a general description and a mathematical formalization of MRM.
The main contribution is presented in Section 3: a statistical estimator of p is proposed, based
on uniformly sampled DOEs in nested spaces. Defined as the maximum likelihood estimator
of dependent Bernoulli data, its asymptotic properties are theoretically studied. The estimator
is shown to be robust, and its variance gains a significant reduction with respect to the usual
MC case. It may also be viewed as a baseline (or target) variance for monotonic structural
reliability frameworks. The non-asymptotic bias of the estimator is examined in Section 4,
through numerical experiments involving a class of toy examples. Based on a neural network
emulation of S, bootstrap heuristics are proposed and successfully tested to remove this bias.
Finally, a more realistic hydraulic case-study illustrates the benefits of the complete method.

Along the paper some connections are done with other areas of computational mathematics,
especially about implementation issues, and a discussion section ends this article by focusing
on the research avenues that must be explored in the area of stochastic sequential DOEs to
improve the results presented here.

2. Material

2.1. Working assumptions, definitions and basic properties

Let g : X 7→ g(X) be a deterministic function defined as a real-valued scalar mapping of
X = (X1, . . . ,Xd) on its definition domain ⊂ IRd. Deterministic means that the function
g(x) produces always the same output if it is given the same input x. Global monotonicity is
defined as follows: ∀i, ∃si ∈ {−1,+1}, ∀ε > 0, ∀x = (x1, . . . , xd) ∈ , such that

g (x1, . . . , xi−1, xi + siε, xi+1, . . . , xd) ≤ g (x1, . . . , xi−1, xi, xi+1, . . . , xd)

where si represents the sign of monotonic dependence: si = 1 (resp. si = −1) when g is
decreasing (resp. increasing) along with the i−th component xi. The following assumption is
made without loss of generality since any decreasing i−th component can be changed from xi

to −xi:

Assumption 1. — The function g is globally increasing over .

To be general, = [0, 1]d and X is a random vector defined on the probability space
( ,B( ), P ). Next assumption is made following this same concern of generality.
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Assumption 2. — All inputs x1, . . . , xd are independently uniform on = [0, 1]d.

In real cases, x1, . . . , xd can be defined as transformed inputs, as usual in structural safety
problems (Madsen & Ditlevsen, 1996). In such cases one can write x = F (y) where y =
(y1, . . . , yd) is a vector of physical inputs and F is their joint cumulative distribution function
(cdf). Therefore g = g̃ ◦ F−1 where g̃ is a mononotic function and F has to preserve this
monotonicity. When the yi are independent, F is a product of marginal cdfs and is naturally
increasing, so the assumption is not restrictive. Else, technical requirements on F are needed,
which depend on the way this joint distribution is defined and the technique used for this space
transformation (Rüschendorf, 2009). See for instance Chen (2009) for such requirements on
Gaussian copulas. Another general result is given in the Appendix (Supplementary Material).

Assumption 3. — Both subspaces − = {x ∈ , g(x) ≤ 0} and + = {x ∈ , g(x) > 0}
are not empty (so that p exists in ]0, 1[).

Definition 1. — A set of points of is said to be safety-dominated (resp. failure-dominated)
if g is guaranteed to be positive (resp. negative) in any point of this set.

Denote by � the partial order between elements of defined by x � y ⇔ xk ≥ yk ∀k = 1, . . . , d.
Then assume that some point value g(x̃) is known, and consider the sets +

x̃ = {x ∈ | x � x̃}
and −

x̃ = {x ∈ | x � x̃}. The increasing monotonicity implies that if g(x̃) > 0 (resp.

g(x̃) < 0), then +
x̃ is safety-dominated (resp. −

x̃ is failure-dominated). This proves next
lemma.

Lemma 1. — Both inequalities are true with probability 1:

p ≤ 1 − P (X ∈ +
x̃ ) if g(x̃) > 0,

p ≥ P (X ∈ −
x̃ ) else.

More generally, assume that n input vectors (xj)j=1,...,n can be sorted into safe and failure sub-
samples following the corresponding values of {g(xj)}j=1,...,n. They are respectively defined
by

Ξ+
n = {x ∈ (xj)j=1,...,n | g(xj) > 0}

and

Ξ−
n = {x ∈ (xj)j=1,...,n | g(xj) ≤ 0} .

Then one may define the sets
+
n =

{
x ∈ | ∃xj ∈ Ξ+

n , x � xj

}
,

−
n =

{
x ∈ | ∃xj ∈ Ξ−

n , x � xj

}

(see Figure 1 for an illustration). Finally, denoting p−n = P (X ∈ −
n ) and p+

n = 1−P (X ∈ +
n )

to alleviate the notations, one has in all the sequel and for all n ≥ 0,

p−n ≤ p ≤ p+
n . (1)

Hereafter, +
n and −

n will be referred to as dominated subspaces, where the sign of g(x)
is known. Note that the complementary non-dominated subspace n = / ( +

n ∪ −
n ) is the

only partition of where further calls of g are required to improve the bounds. Finally,
a topological assumption on S is needed to achieve the formal description of the situations
studied by de Rocquigny (2009) and Limbourg et al. (2010).



ACCELERATED MONTE CARLO UNDER MONOTONICITY 5

Assumption 4. — The limit state surface S = {x ∈ ; g(x) = 0} is regular enough and
separates in two disjoint domains − and + (simply connected).

The second part of this assumption implies that, in terms of classification, the two classes
of points −

n and +
n are perfectly separable when n → ∞. This property will be used later

in the paper to carry out bootstrap heuristics. By regular enough, S is assumed not to be the
surface of multidimensional stairs, so that it cannot be exhaustively described by a n−DOE
with n < ∞. This mild assumption is ensured, for instance, if g is continuously differentiable
on a non-empty measurable subset of S. More formally, it is assumed that ∀n <∞,

sup
xn∈S̄

∫

n−1∩ −

{x�xn} dx < p− p−n−1, (2)

sup
xn∈S̄

∫

n−1∩ +
{1−x�1−xn} dx < p+

n−1 − p. (3)

This will imply that p−n < p < p+
n and the finiteness of the strictly positive quantity ω̃n+1(p) =

[(p+
n − p)(p− p−n )]−1 encountered further in the paper.

Remark 1. — In multi-objective optimization, a dominated space can be interpreted as a
subset of a performance space delimited by a Pareto frontier (Figueira et al., 2005). In this
framework, g is thought as a monotonic rule of decision depending of d variables, for which the
set of n best possible configurations (the frontier) is searched.

Remark 2. — The proportions (p−n , 1− p+
n ) are the volumes of two unions of hyperrectangles

sharing the same orthogonal basis. Computing such volumes is known in computational geome-
try as Klee’s measure problem, for which recursive sweepline algorithms (van Leeuwen & Wood,
1981) can provide exact solutions. Details about their implementation are given in Appendix
(Supplementary Material). When d exceeds 4 or 5, these exact methods appear however too
costly, and trivial MC methods must be prefered in practice to compute these quantities.

2.2. MRM implementation: a one-step ahead strategy

Starting from +
0 = {1d}, U−

0 = {0d} and 0 = = [0, 1]d, the iterative scheme shared by
all MRM variants at step n ≥ 1 is based on:

1. selecting a DOE {x(1)
n , . . . ,x

(mn)
n } ∈ n−1;

2. computing the signatures ξ
(j)
xn

= {
g
(
x

(j)
n

)
<0
} ;

3. updating the subspaces

−
n = −

n−1 ∪
{
x ∈ | ∃ x(j)

n , ξ(j)xn
= 1, x � x(j)

n

}
,

+
n = +

n−1 ∪
{
x ∈ | ∃ x(j)

n , ξ(j)xn
= 0, x � x(j)

n

}
,

n = /( −
n ∪ +

n )

4. updating the bounds {p−n , p+
n } = {Vol( −

n ), 1 − Vol( +
n )}.
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Since −
n ⊂ −

n+1 ∀n ≥ 0, then P (X ∈ −
n ) ≤ P (X ∈ −

n+1) and the sequence (p−n ) is
nondecreasing. Symmetrically, the sequence (p+

n ) is nonincreasing. Since bounded in [0, p] and
[p, 1], both sequences are converging.

At each step, the DOE must be chosen accounting for the increasing monotonicity of g.

Denoting x
(1)
n and x

(2)
n two elements of the DOE and assuming to know ξ

(1)
xn

, it is unnecessary

to compute ξ
(2)
xn

in two cases:

if ξ(1)xn
= 1 and x(1)

n � x(2)
n ⇒ x(2)

n ∈ −

x
(1)
n

and ξ(2)xn
= 1,

if ξ(1)xn
= 0 and x(1)

n � x(2)
n ⇒ x(2)

n ∈ +

x
(1)
n

and ξ(2)xn
= 0.

Thus the order of trials should be carefully monitored, in relation with the partial order between
the elements of the DOE. Reducing the DOE to a single element, i.e. mn = 1 for all steps,
minimizes the number of unnecessary trials. This one-step ahead strategy is favored in the
present paper.

2.3. Stochastic MRM

Initialization. — First iterations should be monitored to reduce significantly the width of
[p−n , p

+
n ], such that further iterations mainly focus on refinements. A deterministic strategy

seems the most appropriate to start from [0, 1] until providing non-trivial bounds. A dichotomic
diagonal MRM, illustrated on Figure 2 in a two-dimensional case, was used in the examples
considered further. It explores the non-dominated space in an intuitive way and stops at step
k0 ≥ 1 such that

k0 ≥ 1 +
log(1/p)

d log 2
.

Consequently, an expected crude prior value of p can help to estimate the minimal number k0 of
trials. To alleviate the paper, the notation ( +

0 ,
−
0 , p

+
0 , p

−
0 ) now describes the situation after

N − 1 introductive deterministic steps with N ≥ k0 + 1, such that 0 < p−0 and p+
0 < 1.

Switching to stochastic DOEs. — Pursuing a deterministic strategy can be too costly to be effi-
cient, the upper bound p+

n offering possibly a very conservative assessment of p (de Rocquigny,
2009). Intuitively, such a strategy should be optimized by selecting the next element of the DOE
as the maximizer of a criterion which predicts a measure of dominated volume. Apart from
the difficulty of predicting, choosing the criterion remains arbitrary. Switching to a stochas-
tic strategy, which allows for a sequential statistical estimation of p in addition of providing
bounds, seems a promising alternative approach. In this framework,

xn ∼ fn−1

at each step n ≥ 1, with fn−1 a pdf defined on n−1. Then the probability space ( ,B( ), P )
becomes endowed with the filtration = (Fn) where Fn is the σ−algebra generated by a
n−sequence. The sequences (p−0 , . . . , p

−
n ) and (p+

0 , . . . , p
+
n ) become monotonic and bounded

stochastic processes with dependent increments.

Uniformly sampled DOEs. — The remainder of this article is devoted to a baseline statistical
estimation of p in a monotonic framework, in a similar spirit to the MC approach in uncon-
strained frameworks. Therefore, in the following, the sampling is chosen uniform at each step:
xn ∼ U

n−1
.
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Figure 1. Two-dimensional dominated and non-dominated subspaces after n = 14
iterations. Points {02,xa,xb,xc,xd,xe,xf ,xg} have nonzero signatures and are ver-
texes of −

n
. Points {xh,xi,xj,xk,xl,xm,xn,12} have zero signatures and are ver-
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Figure 2. Diagonal deterministic (DD-MRM) strategy, assuming a low p, stopping
after 4 steps.



8 NICOLAS BOUSQUET

3. A maximum likelihood estimator of p

Assume that x1, . . . ,xn are successively uniformly sampled in the nested non-dominated
spaces 0, . . . , n−1. Next lemma follows.

Lemma 2. — p−n , p
+
n

a.s.−−→ p.

In corollary any estimator of p located between the bounds is strongly consistent. Especially,
any crude average of the bounds gains a statistical validity. A more sophisticated approach can
be carried out by noticing that, at step k, the occurence of a nonzero signature ξxk

follows a
Bernoulli distribution B(γk) conditionally to Fk−1, with

γk = P (g(x) ≤ 0|x ∈ k−1) ,

=
P (g(x) ≤ 0) − P

(
g(x) ≤ 0|x ∈ −

k−1

)
P
(
x ∈ −

k−1

)

P (x ∈ k−1)

from Bayes’ formula, hence

γk =
p− p−k−1

p+
k−1 − p−k−1

. (4)

After n steps, all information about p is brought by the dependent-data likelihood Ln(p) =
Ln(p|x1, . . . ,xn) defined by the product of these conditional Bernoulli pdf:

Ln(p) =

n∏

k=1

(
p− p−k−1

p+
k−1 − p−k−1

)ξxk
(

p+
k−1 − p

p+
k−1 − p−k−1

)1−ξxk

, (5)

the maximum estimator (MLE) p̂n of which is considered in next proposition.

Proposition 3.1. — Denote `n(p) = logLn(p). There exists a unique and consistent solution
p̂n in ]p−n−1, p

+
n−1[ of the likelihood equation `′n(p) =

∑n
k=1 ω̃k (p) (pk − p) = 0, such that

p̂n =

n∑
k=1

ω̃k (p̂n) pk

n∑
k=1

ω̃k (p̂n)
, (6)

with ω̃k (p) =
((
p− p−k−1

) (
p+

k−1 − p
))−1

and pk = p−k−1 +
(
p+

k−1 − p−k−1

)
ξxk

Assumption 4 ensures the existence of p̂n since, by (2) and (3), p cannot be reached by
at least one of the two bounds (p−n−1, p

−
n+1) for any finite n. Similarly, the quantities defined

in next propositions remain finite if the limit state surface S has mild smoothness properties.
They are related to the behavior of the inverse of the Fisher information associated to (5),
which converges to 0 faster than the variance of the usual MC n−estimator

V MC
n (p) =

p(1 − p)

n
.

Lemma 3. — Assume that S is such that (2) and (3) hold (Assumption 4). Then, ∀n ≥ 0,

E
[
1/(p− p−n )2

]
< ∞, (7)

E
[
1/(p+

n − p)2
]

< ∞, (8)

and consequently E[ω̃n+1(p)] <∞.
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Proposition 3.2. — Denote Jn(p) the Fisher information associated to (5). Then

J−1
n (p) =

(
n∑

k=1

E [ω̃k(p)]

)−1

≤ V MC
n (p)

n
n∑

k=1

(1 − ck−1)−1

< V MC
n (p) (9)

where c0 = 0 and ∀ k > 1,

ck = E

[
p−k
p

+
1 − p+

k

1 − p
− p−k (1 − p+

k )

p(1 − p)

]
.

Proposition 3.3. — Denote γ0 = [(p+
0 − p−0 )/p−0 ]2. Then

J−1
n (p) ≤ V MC

n (p)

(
pγ0

1 − p

)
. (10)

In this data-dependent context, the central limit Theorem 3.1 remains classical in the sense
that the Cramer-Rao bound given by the inverse of the Fisher information is asymptotically
reached by the MLE. It is technically based on the martingality of the score process n 7→
{`′n(p)}n. Therefore inequalities (9) and (10) imply asymptotic variance reduction with respect
to Monte Carlo and robustness. From (10), the asymptotic coefficient of variation (CV) of the
MLE is such that

CV [p̂n] ≤ p

E
[
p−n−1

]
√
γ0

n

∞∼
√
γ0

n
.

Theorem 3.1. — Let (λn) be any deterministic sequence in ]0, 1[ such that λn → 1. Under
the supplementary assumptions:

(i) :
1

nδ

n∑

k=1

(ω̃k(p) − E [ω̃k(p)])
IP−→ 0 for any δ ≥ 1.

(ii) :
p+

n − p

p− p−n

IP−→ 1.

(iii) :
p̄n − p

p+
n − p

IP−→ 0 and
p̄n − p

p− p−n

IP−→ 0 with p̄n = (1 − λn)p̂n + λnp

then

J1/2
n (p) (p̂n − p)

L−→ N (0, 1). (11)

The law of large numbers (i) reflects the requirement that the sum of weights ω̃k(p) cannot
diverge faster than O(Jn(p)) from its mean behavior when n→ ∞. Although difficult to check
in practice, this behavior seems rather intuitive because the sampling trajectories mainly vary
at the first steps of the algorithm, when the non-dominated space is still large. Therefore (i) can
be perceived as an indirect requirement on the surface S. Assumption (ii) appears somewhat
natural, saying that the bounds converge to p symmetrically. Assumption (iii) expresses the
idea that any estimator located between p̂n and p converges to p faster than the bounds. Again,
it seems intuitive since p̂n is defined as an incremental average (cf. (6)), and therefore adopts
a smoother behavior than the bounds, as a function of n.
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Next proposition allows for an empirical estimation of the asymptotic variance and confi-
dence intervals. The additional requirement (v) appears mild and in the same spirit than the
smoothness assumptions on S, saying that p cannot be exactly reached by an average of the
bounds for any finite number n of trials.

Proposition 3.4. — Denote Ĵn(p) =
∑n

k=1 ω̃k(p). Under the assumptions of Theorem 3.1,
and assuming in addition:

(iv) : Assumption (i) remains true ∀δ ≥ 1/2,
(v) : @ n <∞ such that p = (2n)−1

∑n
k=1 ω̃k(p)(p−k−1 + p−k−1)

/∑n
k=1 ω̃k(p),

then

Ĵ
5/2

n (p)

|Ĵ ′
n(p)|

(
Ĵ −1

n (p̂n) − J−1
n (p)

)
L−→ N (0, 1). (12)

The reality of the theoretical descriptions hereinbefore are examined in the two next sections,
through numerical experiments led on toy examples and a more realistic hydraulic model.

4. Numerical experiments I: toy examples

The statistical behavior of the MLE is illustrated here using the following generic toy exam-
ple. For a given dimension d, denote

Zd = hd(Y) = Y1/(Y1 +

d∑

i=2

Yi)

where the physical input Yi follows the gamma distribution G(i + 1, 1) with pdf FYi
, inde-

pendently of other inputs. Obviously, ∀ d ≥ 2, hd is increasing in (−X1,X2 . . . ,Xd) where
Xi = FYi

(Yi) ∼ U[0,1], and Zd follows the beta distribution Be(2, 2
−1(d+ 1)(d+ 2)−3). There-

fore, denoting qd,p the p−order quantile of Yd, the deterministic function defined by

gd(X) = hd ◦ F−1(X) − qd,p

is related to the known exceedance probability p.

4.1. First results

In dimension 2, using p = 5%, the behavior of MRM bounds can be easily compared to the
MC 95%-confidence area (Figure 3). This small dimension induces a significant improvement
in precision with respect to Monte Carlo, which however disappears in higher dimensions and
highlights the need for real statistical estimators. Studies of the root mean square error (RMSE)
and the standard deviation of the MLE, which are plotted in Figure 5 as functions of the
increasing number of calls to gd for dimensions 3 and 4, reflected the high variance reduction of
the iterative estimator p̂n with respect to Monte Carlo but highlighted a positive bias (Figure
4). Indeed the highest weights favor local estimators pk = p+

k when approaching S (ie., when
ξxk

= 1 in (7)). On the examples considered in this last figure (as well as in other experiments
not shown here), a marked gap in relative bias was noticed between dimensions 3 and 4. Under
dimension 4, the bias remains reasonable from a moderate number of iterations (typically 400).
Else it dramatically stays at high values. Other experiments have shown on this example the
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effective convergence of the empirical variance of the MLE towards the Cramer-Rao bound as
well as the good behavior of its empirical estimate (Figure 6).

4.2. Bias correction via bootstrap heuristics

Bias removal appears as a practical requirement, automatizing the estimation of p. Indeed,
given a finite value of n, estimating p requires to decide from which iteration kn ≥ 1 the
computation of the MLE p̂n can be worth it, redefining p̂n =

∑n
i=kn

ψi,n(p̂n)pi with ψi,n(p) =

ω̃i(p)/
∑n

j=kn
ω̃j(p). An intuitive rule is to select

k∗n = arg min
kn

RMSE (p̂n) . (13)

If the MLE were debiased, RMSE (p̂n) ' J−1
n (p) which is minimized by k∗n = 1.

Given a fixed number n of trials, two general approaches may be used for controlling and cor-
recting the bias Bn = E[p̂n]−p affecting p̂n. A corrective approach consists of obtaining a closed-
form expression for the bias from Taylor expansions (Cox & Snell, 1968; Ferrari & Cribari-Neto,
1998) or penalizing the score or the likelihood functions (Bester & Hansen, 2005). This ap-
proach is not carried out here since the data-dependent context would require a specific alge-
braic work and technical developments about the empirical estimation of the main quantities
involved. The alternative use of bootstrap resampling techniques (Efron & Tibshirani, 1993)
can assess the bias empirically. For the simplicity of their principle, these heuristics are preferred
here.

In the present context, bootstrap experiments must be based on a replication Ŝn of the limit
state surface S (see Figure 7 for an illustration). Under Assumption 4, S can be interpreted as
the decision frontier of a supervised classification binary problem, without horseriding of classes
(ie., perfectly separable). Therefore Ŝn depends on the choice of a classifier Ĉn,M calibrated
from an arbitrary number M of points sampled in dominated subspaces. The rationale of the
bootstrap heuristics is as follows. Given Ĉn,M , the signature ξx of any x ∈ n can be predicted

by the occurence of P (g(x ≤ 0)|Ĉn,M ) ≥ 1/2. Then denote p̃n,M the volume under Ŝn. It can
easily be estimated by p̃n,M,Q at an arbitrary precision by Monte Carlo sampling (depending
on Q). Moreover a large number S of MLE estimators of p̃n,M can be fastly computed using
the predicted signatures.

The bootstrap heuristics make sense if the classifier is chosen such that p̃n,M → p when
(n,M) → ∞, so that the features of the experiment are asymptotically reproduced. More-

over, Ĉn,M must produce a monotonic surface Ŝn. For these reasons, the four-layer monotonic
Multi-Layer neural networks (MLNN) proposed by Daniels & Velikova (2010) have been chosen
for the experiments. Based on a combination of minimum and maximum functions (so-called
MIN-MAX networks) over the two hidden layers, these networks have universal approximation
capabilities of monotonic continuous functions. Besides, this choice matches the advices by
Hurtado (2004) who strongly recommended the MLNN and Support Vector Machines (SVM)
to estimate S in a structural reliability context. Both tools are flexible, can estimate a frontier
on the basis of a few samples and overcome the curse of dimensionality.
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Figure 3. MRM deterministic
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in dimension d = 2, for p = 5%.
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Figure 6. Ratios of MLE standard deviations over Monte Carlo standard deviations,
computed over 100 MRM replications, in dimension d = 2.
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Classification-based bootstrap algorithm

1. Sample x+ = (x+
1 , . . . ,x

+
M)

iid∼ U +
n

and x+ = (x−
1 , . . . ,x

−
M)

iid∼ U −

n
.

2. From (x+,x−), build a monotonic classifier Ĉn,M of ( −, +).
3. Replace g by the uncostly monotonic (increasing) function

g̃(x) =

{
−1 if P (g(x ≤ 0)|Ĉn,M ) ≥ 1/2,
+1 else.

4. Sample x1, . . . ,xQ
iid∼ U and compute p̃n,M,Q = Q−1

∑Q
k=1 {g̃(xk)≤0}.

5. For i = 1, . . . , S, get a MLE estimator p̃
(i)
n,M,Q then estimate Bn by

B̂n,M,Q,S = S−1
S∑

i=1

p̃
(i)
n,M,Q − p̃n,M,Q.

Numerical tests in function of n and d were conducted, and the results are presented in Table
1. The bias correction is found to be effective even from a moderate number of iterations (some
hundreds) until dimension 5, and a budget of at least n = 1, 000 is enough to correct a bias in
dimension 8. With less than 10% of overestimation on average on this example, these bootstrap
heuristics also appear relevant when the exact value of p is less interesting than its magnitude,
which is often the case in design optimization where it is aimed to diminish p of a given factor
by constraining the inputs (Tsompanakis et al., 2007).

Dimension d

p = 0.05 p = 0.005

n 2 3 4 5 8 2 3 4 5

50 1.19 4.17 6.93 16.87 27.85 8.21 13.80 18.22 39.57

100 0.28 2.31 4.79 12.94 22.98 6.15 11.55 15.67 31.40

250 0.21 1.87 3.34 8.74 19.12 3.28 8.72 11.01 24.68

500 0.12 1.25 2.87 6.20 16.76 1.14 5.84 8.12 16.06

1000 -0.02 0.47 2.14 2.97 12.85 0.12 2.72 5.28 9.23

2000 -0.008 -0.28 1.61 2.08 7.66 -0.34 1.55 3.09 6.51

Table 1. Relative error in % between estimated bias and real bias, for two true
probabilities p = 5% and p = 0.5%. Results are averaged on 100 experiments, each
boostrap estimation being based on S = 1, 000 MLE replicates. For each n, the
neural network is build from M = 106 sampled vectors, with a classification error
rate less than 0.25% on these training data.
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5. Numerical experiments II: a simplified hydraulic case-study

De Rocquigny (2009), Limbourg et al. (2010) then Munoz-Muniga et al. (2011) considered
a simplified but realistic hydraulic model linking the downstream water level H (m) of a river
section, of width b = 300 (m) and length l = 5000 (m), with the upstream discharge Q (m3/s)
and the friction coefficient Ks (m1/3/s) of the river bed. Denoting Zm and Zv the upstream
and downstream altitude of the river bed above seal level,

H =


 Q

bKs

√
Zm−Zv

l




3/5

.

Assuming a dike level h0 = 55.5 (m), the flood probability is p = P (g′ ◦ F−1(X) ≤ 0) where
Y = {FQ(Q),Ks} (2-dim. version) or Y = {Q,Ks, Zm, Zv} (4-dim. version), F is the cdf of Y
and

g′(Y) = h0 − Zv −H(Y),

which is increasing in (−Q,Ks, Zm,−Zv). Input distributions or punctual values are chosen
as in Limbourg et al. (2010). Q follows a Gumbel distribution with location 1013 and scale
558, truncated in [10, 104]. Ks is normal N (27.8, 32) truncated in 0. In the 4-dim. version,
Zm and Zv are triangular on [53.5, 56.5] and [48.5, 51.5] with respective modes 55 and 50 (their
respective values in the 2-dim. version).

For several computational budgets and averaged over 100 repeated experiments, two al-
ternative methods are compared to the MRM bias-corrected MLE: the MC method and an
engineering FORM-IS method build on two steps: (a) with a limited number of trials (no more
than 40), the First-Order Reliability Method (FORM) is run to provide an estimate of the
conception point β = arg min ‖u‖ on {g′ ◦ F−1 ◦ Φ(u) ≤ 0}, with Φ the standard normal pdf
and u a random variable evolving in the d−dimensional standard Gaussian space U ; (b) an
Importance Sampling (IS) method that uses the budget left to sample in U using a standard
normal distribution centered on β. See Anonymous (2011) for details about the implementation
of the method.

For a given n, the three methods are compared through the following indicators: E[p̂n],
CV[p̂n] and the relative average precision γn = E[(p+

n − p−n )]/p. Using the DOEs produced
by the MC and the FORM-IS methods, these bounds can obviously be computed accounting
for the monotonicity of g. For each version a MC computation involving 40,000 particules
provides a precise estimate of p, which is used for estimating p in γn. Finally, S = 1, 000
bootstrap replicates were used for the correction of each MRM-MLE estimate. The results are
summarized on Table 2.

In terms of magnitude, the three methods perform similarly. The benefit of using MRM
instead of MC or FORM-IS in these low dimensions clearly appears in most cases, and more
obviously in dimension 2: MC needs at least 200 times more iterations than MRM to reach
a similar precision CV[p̂n], and if FORM-IS is significantly better than MC, the precision of
its estimates remains far beyond of those produced by MRM. In dimension 4, the difference
between these two methods somewhat vanishes and they lead to close performance when the
number of iterations remains low. For both dimensional cases, it was noticed that a single
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FORM run can provide a crude estimate of p with good magnitude after 10 iterations only.
But the dimensional increasing allows the part of the importance sampling falling into the
non-dominated area to be greater than in a two-dimensional setting.

n method dimension = 2 dimension = 4
E[p̂n] CV[p̂n] γn E[p̂n] CV[p̂n] γn

100 MC 0.002775 190% 2,900% 0.010075 99%

FORM-IS 0.002241 68% 478% 0.018147 74%

MRM 0.002781 14% 48% 0.015498 82% 1,400%

200 MC 0.002775 134% 630% 0.010075 70% 2,300%

FORM-IS 0.002667 44% 244% 0.010242 42% 2,230%

MRM 0.002776 6% 24% 0.012451 35% 800%

1,000 MC 0.002775 60% 515% 0.010075 31% 1,200%

FORM-IS 0.002736 27% 168% 0.009959 27% 1,000%

MRM 0.002775 0.12% 5.6% 0.010911 20% 300%

40,000 MC 0.002775 9.5% 475% 0.010075 5% 247%

Table 2. Estimation results for the two-dimensional and four-dimensional versions
of the problem.

6. Discussion

Many structural reliability problems deal with the fast estimation of a probability p of an
undesirable event. This event can often be defined by the occurence of an exceedance in output
of some time-consuming function g with stochastic multidimensional inputs. In the present
article, g is assumed to be monotonic and possibly non-continuous.

Pursuing pioneering works by de Rocquigny (2009) and Limbourg et al. (2010) who explored
heuristically the benefits of this framework, this article first offers a formal description of the
latter that focuses on the existence of deterministic bounds around p. A sequential strategy of
numerical experiments in the input space allows for a progressive narrowing of this interval. The
second and main aspect of the paper is the definition and the study of a statistical estimator
of p when the strategy becomes stochastic and leans on uniform nested sampling. Easy to
compute, it is defined as the maximizer of a likelihood (MLE) of dependent data sampled from
Bernoulli distributions, whose parameters are explicit functions of the dynamic bounds.

A keypoint of the paper is the theoretical description of its asymptotic properties, which
are found similar to those arising from the classical estimation theory, provided some intuitive
assumptions are respected. They are found mild in practice on some examples. Both theoretical
and applied results show a significant improvement of the fastness and the robustness of this
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estimator with respect to the usual Monte Carlo estimator. In the third part of the paper,
boostrap heuristics are proposed and carried out successfully to remove the non-asymptotic
bias affecting the MLE, via constrained neural networks. Only a basic continuity assumption
on the limit state (or failure) surface is needed to benefit from their universal approximation
capabilities.

Thus, the tools proposed in this article and its supplementary material in Appendix can be
directly used in structural reliability applications, without preliminary learning step (as usual,
for instance, in stratified methods). However, the generality of the frame allows for a wider
range of theoretical and applied studies. These research avenues are briefly discussed in the
following items.

Bias correction. — Following Hurtado (2004), support vector machines (SVM) should prob-
ably be considered instead of neural networks, since their geometric interpretation of margin
maximizers appears more relevant to the problem than neural networks. In addition to the
monotonicity constraint, they should be build at step n under the linear constraint that the
volume under the predicted surface be equal to the current (biased) estimator p̂n. This would
certainly improve the properties of the bootstrap heuristics. More importantly, this method
should be now tested on a large variety of examples, and the intuitive feeling of its ability to
correct the bias must be confirmed by more applied and theoretical studies.

In parallel, future studies should focus on adopting a corrective approach to the bias affecting
the MLE, then on selecting a slippery window of indexes, according to (13) or a similar rule,
such that the MLE converges faster to p. The comparison of the experimental benefits of both
approaches would help the method to become more ready-to-use.

Simplifying the assumptions. — Most of the technical assumptions that are needed to get the
theoretical results present some intuitive features, and are underlyingly linked to the nature of
the limit state surface. However, they remain difficult to check in practice, although asymptotic
normality was always noticed in numerical experiments. Therefore, future work should be
dedicated to simplifying those assumptions and classifying the limit state surfaces in function
of their ability to allow a fast and robust estimation of p.

Sensitivity studies. — Crucial tasks in structural reliability are sensitivity studies of probabilis-
tic indicators to the uncertainty input model (Morio, 2011). Therefore, assuming X = F (Y)
where the Y represent physical inputs with cdf F , given a budget n, the variations of (p−n , p

+
n , p̂n)

due to modifying F in Fε should be the subject of future works. As a supplementary benefit
of the method, the new values (p−k,ε, p

+
k,ε, p̂n,ε), for k ∈ {0, . . . , n}, can be recomputed without

any supplementary call to g, thanks to an importance sampling mechanism. Indeed, as the
subspaces ( −

k ,
+
k ) remain dominated whatever the choice made on input distributions in the

physical space, then

p−k,ε =

∫

F−1( −

k
)

dFε(y) and p+
kε = 1 −

∫

F−1( +
k

)

dFε(y),

which can computed by a simple Monte Carlo method. In such future studies, we suggest that
the progressive bounds could be defined as robust if they remain true whatever the fluctuations
of Fε in a well-funded variational class around F .
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Exploring other forms of stochastic DOEs. — A keypoint of future works will be to elaborate
unbiased estimators from sequential stochastic designs of experiments with non-asymptotic
properties. Indeed, the asymptotic variance of the MLE reaches the Cramer-Rao bound J−1

n (p).
Therefore any unbiased estimator based on sequential uniform sampling, especially those defined
by p̃n =

∑n
k=1 ωkpk where the ωk are now deterministic weights, independent on p and summing

to 1, will never reach a lower variance than J−1
n (p), even though the ωk are optimized to this

aim. Improving the Monte Carlo acceleration nJ−1
n (p)/(p(1 − p)) will only be possible using

less naive strategies than uniform samplings. The problem of defining such samplings so that
an unbiased estimator of p has better statistical properties will be the subject of a future paper,
whose theoretical aspects should benefit from the probabilistic arguments used here to study
the asymptotic behavior of the MLE.

Towards partial monotonicity. — Finally, the practical limits of monotonicity assumptions
should be refined. Intuitively, monotonicity as a building hypothesis seems antagonist to high-
dimensional structural safety problems, and could mainly characterizes the behavior of g as a
function of its most prominent input variables (as it could be measured through global sensitivity
analysis). Indeed, the real examples treated by de Rocquigny (2009); Limbourg et al. (2010)
and Rajabalinejad et al. (2011) do not go beyond dimension 4. Partial monotonicity, as defined
by Daniels & Velikova (2010), seems a more appealing and realistic property, for which the
methods developed in a pure monotonicity context should be adapted in the future.
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Appendix A

Proofs

Proof of Lemma 2. — An infinite uniform sampling on provides on the open sets

( −̊, +̊) two topologies constituted by the collections of open subsets −̊
0 , . . . ,

−̊
n , . . ., and

+̊
0 , . . . ,

+̊
n , . . .. Hence the sequence ( −

n ,
+
n ) define two covers (exhaustions) of ( −, +).

Then

U−
∞ =

∞⋃

k=0

U−
k = −, U+

∞ =

∞⋃

k=0

U+
k = +

and limn→∞ p−n = limn→∞ P (X ∈ −
n ) = P (X ∈ U−

∞) = p by inclusion. Similarly, lim p+
n = p.

Furthermore, given p−0 and p+
0 , p−n and 1 − p+

n are Fn−1−adapted submartingales bounded in

p ∀p ≥ 1. Then, from Doob’s theorem (Meyer, 1972), the bounds converge almost surely to
p.

Proof of Proposition 3.1. — One may write `′′n(p) =
∑n

k=1 ω̃k (p)Sk (p) with

Sk (p) = −1 + (pk − p) ω̃k (p)
(
2p− p−k−1 − p+

k−1

)
, (14)

= −ω̃k(p)(p− pk)2.

Hence `′′n(p) < 0 in (p−n−1, p
+
n−1). Besides, limp→p−

n−1
`′n(p) = ∞ and limp→p+

n−1
`′n(p) = −∞.

Hence, by twice continuity and differentiability of `n(p), the mean value theorem implies the
existence and unicity of a MLE p̂n in ]p−n−1, p

+
n−1[.

Proof of Lemma 3. — We shall proceed by induction. Since p−0 < p < p+
0 , (8) and (7) hold

for n = 0. Denote ηn = 1/(p− p−n )2. For n ≥ 1, it is assumed that E[ηn] <∞. Then

E [ηn+1] = E
[
ηnE

[
1 − ξxn+1

|Fn

]]
+ E

[
E

[
ξxn+1

/
(
p− p−n − Vol−xn+1

)2

|Fn

]]

with Vol−xn+1
=
∫

n∩ − {x�xn+1} dx the additive volume of formerly non-dominated failure

points in n that are now dominated by the failure point xn+1. By hypothesis, the first term
is always finite. Furthermore, with

Vol−xn+1
≤ sup

xn∈ n∩ −

∫

n∩ −

{x�xn} dx = sup
xn∈S̄

∫

n∩ −

{x�xn} dx,

(2) implies that Vol−xn+1
< p−p−n . Since p−n = p−n−1 +Vol−xn

, etc., one has
∑n+1

k=1 Vol−xk
< p−p−0 .

Then

E

[
E

[
ξxn+1

/
(
p− p−n − Vol−xn+1

)2

|Fn

]]
= E


ξxn+1

/

(
p− p−0 −

n+1∑

k=1

Vol−xk

)2

 < ∞.

The same rationale applies to 1/(p+
n − p)2, by symmetry, since p+

n+1 = p+
n − Vol+xn+1

with

Vol−xn+1
=
∫

n∩ + {1−x�1−xn+1} dx.
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Proof of Proposition 3.2. — One has E[`′n(p)] =
∑n

k=1 E [ω̃k(p)E [pk − p|Fk−1]] = 0 since
ω̃n+1 depends only on Fn, hence the Fisher information Jn(p) = Var[`′2n (p)] = E[`′2n (p)] is equal
to −E[`′′n(p)] by twice differentiability and continuity of `n(·), similarly to a classic iid. case.
Assumption 4 implies that ∀n < ∞, p−n−1 < p < p+

n−1, ie. p cannot be reached in any finite

number of iterations, so that these quantities are well defined. With −Sn(p) = ω̃n(p)(p− pn)2

∀ n ≥ 0 from (14),

Jn(p) =
n∑

k=1

E
[
ω̃2

k(p)Var [pk|Fk−1]
]

=
n∑

k=1

E [ω̃k(p)]

since

Var [pn|Fn−1] =
(
p+

n−1 − p−n−1

)2
E [ξxn

|Fn−1] −
(
p− p−n−1

)2
,

=
(
p+

n−1 − p−n−1

) (
p− p−n−1

)
−
(
p− p−n−1

)2
,

= ω̃−1
n (p). (15)

Inequality (9) is a simple consequence of Jensen’s inequality: since E−1
[
ω̃−1

k (p)
]
≤ E [ω̃k(p)],

then J−1
n (p) ≤

(
n∑

k=1

E−1
[
ω̃−1

k (p)
]
)−1

=
p(1 − p)

n∑
k=1

(1 − ck−1)−1

.

Proof of Proposition 3.3. — Using the notation Sk(p) defined in (14),

Jn(p) = −E

[
p(1 − p)

nV MC
n (p)

n∑

k=1

ω̃k (p)Sk (p)

]
= n−1 J̃n(p)

V MC
n (p)

with

J̃n(p) = E

[
n∑

k=1

p(1 − p)
(
p+

k−1 − p
)2ξxk

−2 (
p− p−k−1

)−2ξxk

]
,

which can be rewritten as

J̃n(p) =

n∑

k=1

{
E

[
ξxk

(
p(1 − p)

(
p− p−k−1

)2

)]
+ E

[
(1 − ξxk

)

(
p(1 − p)

(
p+

k−1 − p
)2

)]}
.

Since p−1
((
p+

k−1 − p
)

+
(
p− p−k−1

))
≤ ρk−1, then

p+
k−1 − p ≤ p(ρk−1 − 1) + p−k−1 ≤ p(ρk−1 − 1) + p = pρk−1,

p− p−k−1 ≤ p(ρk−1 + 1) − p+
k−1 ≤ p(ρk−1 + 1) − p = pρk−1.

Hence

p(1 − p)
(
p+

k−1 − p
)2 ≥ 1 − p

pρ2
k−1

and
p(1 − p)

(
p− p−k−1

)2 ≥ 1 − p

pρ2
k−1

.
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Consequently,

J̃n(p) ≥ 1 − p

p

n∑

k=1

E

[
1

ρ2
k−1

(ξxk
+ 1 − ξxk

)

]
,

≥ 1 − p

p
nE

[
1

ρ2
0

]

since (ρn) is a strictly decreasing positive process. Since (p−n , p
+
n ) are predictible processes, p−0

and p+
0 are deterministic quantities, then

E

[
1

ρ2
0

]
=

(
p−0

p+
0 − p−0

)2

= 1/γ0,

and J̃n(p) ≥ n
(

1−p
γ0p

)
which proves (10).

Proof of Theorem 3.1. — Given the strong consistency of p̂n, its asymptotic normality can
be established using arguments studied by Crowder (1975, 1983). Showing that `′n(p) is a
Fn−1−adapted martingale is a classic result:

E
[
`′n+1(p) − `′n(p)|Fn

]
= ω̃n+1(p)E [pn+1 − p|Fn] = 0.

Furthermore Jn(p) < nE[ω̃n(p)] <∞ under Assumption 4 (cf. Lemma 3) Hence `′n(p) is square
integrable. Denoting ∆n(p) = `′n(p) − `′n−1(p), then ∆2

n(p) = ω̃2
n(p)(pn − p)2 and

E
[
∆2

n(p)|Fn−1

]
= ω̃2

n(p)Var [pn|Fn−1] = ω̃n(p).

Then < `′(p) >
n
=
∑n

k=1 ω̃k(p) denotes the increasing (or bracket) process of `′n(p). The proof
can be achieved in three steps.

1. — With Jn(p) = E[< `′(p) >
n
] and limn→∞ Jn(p) = ∞ from (10), establishing asymptotic

normality first requires to prove the following law of large numbers (LLN)

Mn(p) = J−1
n (p) < `′(p) >

n
−1

IP−→ 0. (16)

Denote Wn(p) =
∑n

k=1(ω̃k(p) − E[ω̃k(p)]) Then, ∀ε > 0,

P (|Mn(p)| > ε) = P
(
J−1

n (p)|Wn(p)| > ε
)
,

≤ P

(
V MC

n (p)
pγ0

1 − p
|Wn(p)| > ε

)
from (10),

≤ P

(
1

n
|Wn(p)| > ε′

)
with ε′ = ε/(p2γ0),

which tends to 0 under (i) and proves (16).
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2. — For all k ∈ {1, . . . , n}, denote Γk,n = J
−1/2
n (p)|∆k(p)|. The second requirement of

asymptotic normality is proving the following Lindeberg condition: ∀ε > 0,

1

Jn(p)

n∑

k=1

E
[
∆2

k(p) {Γk,n>ε}|Fk−1

] IP−−−−→
n→∞

0. (17)

A Lyapunov condition is often used instead of (17), but requires 2+δ-order moment assumptions
on ω̃k(p). An alternative approach is the following. From Markov’s inequality and since the
ω̃k(p) are increasing functions of k,

P (Γk,n > ε|Fk−1) ≤ ω̃k(p)

ε2Jn(p)
≤ ω̃n(p)

ε2Jn(p)
.

It follows from (16) that

ω̃n(p)

Jn(p)
+

1

Jn(p)

n−1∑

k=1

ω̃n(p) =
ω̃n(p)

Jn(p)
+

(
Jn−1(p)

Jn(p)

)(
< `′(p) >

n−1

Jn−1(p)

)
,

IP−−−−→
n→∞

1.

However, by Lemma 3, E[ω̃n(p)] < ∞ which means that Jn(p)
∞∼ Jn−1(p). Necessarily,

ω̃n(p)/Jn(p)
IP−−−−→

n→∞
0 and

Lk,n = E
[

{Γk,n>ε}|Fk−1

] IP−−−−−−→
k→n→∞

0. (18)

Note besides that

E
[
∆2

k(p) {Γk,n>ε}|Fk−1

]
≤ E

[
∆2

k(p)|Fk−1

]
E
[

{Γk,n>ε}|Fk−1

]
+
∣∣Cov

[
∆2

k(p), {Γk,n>ε}|Fk−1

]∣∣ ,

≤ ω̃k(p)Lk,n + ω̃2
k(p)

√
Var [(pk − p)2|Fk−1]

√
Var

[
{Γk,n>ε}|Fk−1

]

from Cauchy-Schwarz inequality. Since Var[X2] ≤ E[X] whenX ∈ {0, 1}, then
√

Var[ {Γk,n>ε}|Fk−1] ≤√
Lk,n. Furthermore, denote

Kk,n(p) = ω̃k(p)
√

Var [(pk − p)2|Fk−1].

From Lemma 4 below and under (ii), then Kk,n(p)
IP−→ 0. Therefore, one may write

E
[
∆2

k(p) {Γk,n>ε}|Fk−1

]
≤ ω̃k(p)βk,n

with βk,n = Lk,n +Kk,n(p)
√
Lk,n

IP−→ 0 from (18). Then

1

Jn(p)

n∑

k=1

E
[
∆2

k(p) {Γk,n>ε}|Fk−1

]
≤ < `′(p) >n

Jn(p)

n∑
k=1

ω̃k(p)βk,n

n∑
k=1

ω̃k(p)
(19)
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and given (16), Toeplitz lemma proves (17). Finally, (16) and (17) prove the two martingale
central limit theorems (Bercu, 2008):

J−1/2
n (p)`′n(p)

L−−−−→
n→∞

N (0, 1), (20)
√
Jn(p)

< `′(p) >
n

`′n(p)
L−−−−→

n→∞
N (0, 1). (21)

Lemma 4. — If ∃ γ∞ such that 0 < γ∞ <∞ and
p+

n−p

p−p−

n

IP−→ γ∞, then, ∀k ≥ 1,

Var
[
ω̃k(p)(pk − p)2|Fk−1

] IP−→ γ∞ + 1/γ∞ − 2.

Proof. — One may write

ω̃k(p)(pk − p)2 = (1 − ξxk
)
p− p−k−1

p+
k−1 − p

+ ξxk

p+
k−1 − p

p− p−k−1

,

= ξxk

[
ω̃k(p)

{(
p+

k−1 − p
)2 −

(
p− p−k−1

)2}]
+
p− p−k−1

p+
k−1 − p

With ξxk
∼ B(γk) and from (4), then

Var
[
ω̃k(p)(pk − p)2|Fk−1

]
=

ω̃k(p)

(p+
k−1 − p−k−1)

2

[
(p+

k−1 + p−k−1 − 2p)(p+
k−1 − p−k−1)

]2
,

= ω̃k(p)(p+
k−1 + p−k−1 − 2p)2,

=
p+

k−1 − p

p− p−k−1

+
p− p−k−1

p+
k−1 − p

− 2
IP−→ γ∞ + 1/γ∞ − 2.

3. — A last condition is required to transfer the asymptotic normality from `′n(p) to (p̂n − p).
Since p−n−1 < p̂n < p+

n−1, for any n there always exists an open neighborhood Vp̂n
of p containing

p̂n. From twice differentiability of `n(·) and continuity of `′n(·) in Vp̂n
, the mean value theorem

implies there exists some intermediate point p̄n ∈ Vp̂n
between p and p̂n such that

`′n (p̂n) = 0 = `′n(p) + (p̂n − p) `′′n(p̄n)

and moreover p̄n
a.s.−−→ p. Thus, with `′′n(p̃n) 6= 0,

(p̂n − p) = `′n(p) (−`′′n(p̄n))
−1

(22)

and it is necessary to prove the LLN

`′′n(p̄n)

< `′(p) >n

IP−→ 1 (23)
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to obtain the final result (Theorem 3 in Crowder (1983)), combining (23) with (16) and (20).
Based on (iii) this last LLN is straightforward. Indeed, ∀k ≤ n,

∣∣∣∣
p+

k − p̄n

p+
k − p

− 1

∣∣∣∣ =
|p̄n − p|
p+

k − p
≤ |p̄n − p|

p+
n − p

IP−→ 0.

Similarly (p̄n − p−k )/(p− p−k )−1
IP−−−−−−→

k→n→∞
0. With pk+1 ∈ {p−k , p+

k } then, for k ∈ {0, . . . , n−1},

γk+1,n = (p̄n − pk+1)
2
ω̃k+1(p̄n)

IP−−−−−−→
k→n→∞

1.

Furthermore, some calculus proves that κk,n = ω̃k+1(p̄n)/ω̃k+1(p)
IP−−−−−−→

k→n→∞
1. Then, with

−`′′n(p) =
∑n

k=1 ∆2
k(p),

`′′n(p̄n)

< `′(p) >n
=

n∑
k=1

ω̃k(p)κk,nγk,n

n∑
k=1

ω̃k(p)

IP−−−−−−→
k→n→∞

1 from Toeplitz lemma.

Proof of Proposition 3.4. — Using the notations of the previous proof, note that Ĵn(p) =<

`′(p) >n. By twice continuity and derivability of Ĵ −1
n (.) in ]p−n , p

+
n [, a Taylor expansion gives

Ĵ −1
n (p̂n) = Ĵ −1

n (p) − Ĵ ′
n(p)

Ĵ 2
n (p)

(p̂n − p) (1 + o(1)) .

After some calculus,

Ĵ
5/2

n (p)

|Ĵ ′
n(p)|

(
Ĵ −1

n (p̂n) − J−1
n (p)

)
= RnUn +RnZn

with Rn =

√
Jn(p)/Ĵn(p)

IP−→ 1 from (16), Un = sgn(Ĵ ′
n(p))

√
Jn(p) (p̂n − p) (1 + o(1))

L−→
N (0, 1) from Theorem 3.1, and

Zn =
Ĵ

3/2
n (p)

|Ĵ ′
n(p)|

(
Ĵn(p)

Jn(p)
− 1

)
.

Thanks to Slutsky’s theorem, it is enough to show that Zn
IP−→ 0 to prove the statement of the

proposition. Notice that

Ĵ ′
n(p) =

n∑

k=1

ω̃2
k(p)

{
2p−

(
p+

k−1 + p−k−1

)}
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which is always nonzero assuming (iv). Hölder’s inequality gives

n∑
k=1

ω̃k(p)

∑
ω̃2

k(p)
{
2p−

(
p+

k−1 + p−k−1

)} ≤
∑{

2p−
(
p+

k−1 + p−k−1

)}−1

n∑
k=1

ω̃k(p)

hence

Ĵ
3/2

n (p)

|Ĵ ′
n(p)|

≤
∑{

2p−
(
p+

k−1 + p−k−1

)}−1

√
n∑

k=1

ω̃k(p)

Another Hölder’s inequality gives
Ĵ

3/2
n (p)

|Ĵ ′
n(p)|

≤

√√√√
n∑

k=1

(
p+

k−1 − p
) (
p− p−k−1

)

2p−
(
p+

k−1 + p−k−1

) and simple calculus

shows that each term of the sum is stricly smaller than 1. Then

|Zn| ≤ √
n

∣∣∣∣∣
Ĵn(p)

Jn(p)
− 1

∣∣∣∣∣ ≤ 2p2

√
n

n∑

k=1

(ω̃k(p) − E [ω̃k(p)])

from (10), then Zn
IP−→ 0 if (i) remains true ∀δ ≥ 1/2.
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Appendix B

Supplementary Material

This supplementary section first provides details about the implementation of sweepline
algorithms to solve Klee’s measure problem, which allows for an exact computation (modulo
rounding errors) of the probability bounds (p−n , p

+
n ) ; a pseudo-code is given for direct use.

Then a general result is given about the preservation of monotonicity when the uniform input
x = (x1, . . . , xd) results from an inverse transformation of the joint cdf.

B.1. A sweepline algorithm to compute volumes of hypercubic unions

Sweepline (or plane sweep) algorithms are commonly used to jointly detect and sort intersec-
tions between segments (van Leeuwen & Wood, 1981). The d-dimensional volume is calculated
recursively by exploring all n-1-dimensional “slices” of the d-th dimension. See Shamos & Hoey
(1976); de Berg et al. (1997) and Chlebus (1998) for more explanations. When segments are
parallel or perpendicular such as their intersections define a union of hypercubes sharing the
same orthogonal basis, the volume calculation is known as Klee’s measure problem (Erickson,
1998; Chan, 2008). A pseudo-code follows to be used for direct implementation.

Let ∆n be the n× d matrix of n vertexes (x1, . . . ,xn) defining the union of hypercubes (for
an example, see Figure 1). In the following pseudo-code, the volume considered is V −

n , also
defined by the points of ∆n and the origin (0, . . . , 0) of the −space.

Algorithm VOL(∆n, n, d).

1. Let ∆′
n = σn,d(∆n) be the n×d permutation of ∆n arranged in the increasing

order of the n−vector of d−dimensional components.

2. Remove the d−dimensional components from ∆′
n and denote Voln = 0.

3. For i ∈ {1, . . . , n},
(a) Consider the slice ∆

(i)
n = {x′

i, . . . ,x
′
n ∈ ∆′

n}.
(b) Denote Ṽol

(i)

n the d− 1−dimensional volume of ∆
(i)
n .

If dimZ
(i)
n = 1,

• ∆
(i)
n is a n− i+ 1−vector and Ṽol

(i)

n = max{x ∈ ∆
(i)
n };

• force i to the index of this maximal component in ∆′
n;

else Ṽol
(i)

n = VOL(∆
(i)
n , n− i+ 1, d− 1).

(c) Let Λi = ∆′
n[i, d] − ∆′

n[i− 1, d] the size of ∆
(i)
n (assuming ∆′

n[0, d] = 0).

(d) Compute Vol
(i)
n = Λi · Ṽol

(i)

n the d−dimensional volume.

(e) Update the total volume Voln = Voln + Vol
(i)
n .

In practice, this algorithm seems to remain little used for dimension d larger than 2 or 3.
This is not surprising because its complexity C(n, d) (the number of runs for a d-dimensional
hypervolume between n points) is O(nd). This appears when considering the first developments
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of C(n, d):

C(n, d) =

n−1∑

k=0

C(n− k, d− 1) =

n−1∑

k=0

(k + 1)C(n− k, d− 2),

=

n−1∑

k=0

(
k−1∑

p=0

p

)
C(n− k, d− 3),

=

n−1∑

k=0

(k + 1)(k + 2)

2
C(n− k, d− 3),

. . .

Note however than the fastest version of this algorithm, proposed by Overmars & Yap (1991),
runs in time O(nd/2 log n) for d ≥ 3. An alternative approach was presented by Chlebus (1998)
with the same asymptotic performance, although its exposition was restricted to dimensions 3
and 4. At the present time the computational difficulties raised by diminishing the cost still
remain open problems, although some slight improvements have recently been found by Chan
(2008). Some ideas of possible improvements could possibly come from a parallel with multi-
objective optimization contexts (cf. Remark 1 in the article). Indeed, algorithms running in
polynomial time O(nk1dk2) to compute hypervolume metrics of Pareto frontiers have already
been proposed by Fleischer (2003).

B.2. Preservation of monotonicity through space transformation

Consider g̃ a monotonic function with physical input random vector y = (y1, . . . , yd) and
denote F their joint cumulative distribution function (cdf). The methodology proposed in the
article applies using the transformed function g = g̃◦F−1, provided F−1 is a globally increasing
function of independent uniform inputs x = (x1, . . . , xd). This is ensured when (y1, . . . , yd) are
independent, since F−1 = (F−1

1 , . . . , F−1
d ) where Fi is the ith marginal cdf. In dependent cases

(and possibly when the physical inputs mix continuous and discrete distributions), the general-
ized Rosenblatt’s transform (Rüschendorf, 2009) may be used if the inputs can be stochastically
conditioned, namely they can be sorted to get the explicit writing

F (y1, . . . , yd) = F1(y1)

d∏

i=2

Fi|1,...,i−1(yi|y1, . . . , yi−1).

Under this assumption, next lemma provides an intuitive sufficient condition for F−1 to be an
increasing function of all xi ∼ U [0, 1].

Lemma 5. — Assume that for i = 2, . . . , d, there exists a mapping fi and a set of (possibly
random) parameters θi independent of Y1, . . . , Yi such that:

(i) : Yi = fi(Y1, . . . , Yi−1, θi),
(ii) : fi is a globally increasing function of Y1, . . . , Yi−1;

then F−1(x) is an increasing function of x.

Multivariate normal distributions are often selected as approximate ways to tackle the
difficulties of assessing correlations between input physical parameters, and therefore deserve
particular interest in the field of computer experiments. If Chen (2009) obtained general results
about the preservation of monotonicity when these distributions are given under the form of
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Gaussian copulas, an immediate corollary of Lemma 5 is to notice that any standard binormal
input distribution with positive correlation coefficient µ ensures that F−1(x) is increasing.

Indeed, Y = (Y1, Y2) where Y1 ∼ N (0, 1) and Y2 = µY1 +
√

1 − µ2θ with θ ∼ N (0, 1). A
similar result can be found for the class of elliptical bivariate copulas.

Proof of Lemma 5. — Assume (i). ∀t ∈ IR, ∀k ∈ {2, . . . , d}, denote pt
θi

(Y1, . . . , Yi−1) =

P (fi(Y1, . . . , Yi−1, θi) < t|Y1, . . . , Yi−1). Then, ∀z ∈ IR, let At
Y1,...,Yi−1

(z) denote the event

{pt
θi

(Y1, . . . , Yi−1) ≤ z}. By definition,

F−1
i|1,...,i−1 (z|Y1, . . . , Yi−1) = inf

{
t ∈ IR |P

(
At

Y1,...,Yi−1
(z)
)

= 1
}
.

Assuming (ii), pt
θi

(Y1, . . . , Yi−1) is a globally decreasing function of Y1, . . . , Yi−1. Thus, given

t, the occurence of event At
Y1,...,Yi−1

(y) similarly decreases. Necessarily t increases, hence the

minimum value of all t ∈ IR such that P(At
Y1,...,Yi−1

(z)) = 1 increases. Hence F−1
i|1,...,i−1 is a

globally increasing function of Y1, . . . , Yi−1, ∀i ∈ {2, . . . , d}. Since Y1 = F−1(X1) is naturally
an increasing function of X1, a simple recursive reasoning shows that F−1

i|1,...,i−1 is an increasing

function of X1, . . . ,Xi−1. The statement of the lemma follows.

Nicolas Bousquet
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