Fernando Loup 
email: spacetimeshortcut@yahoo.com
  
A new warp drive equation based on a parallel 3 + 1 ADM formalism applied to the Natario spacetime geometry

Warp Drives are solutions of the Einstein Field Equations that allows superluminal travel within the framework of General Relativity. There are at the present moment two known solutions: The Alcubierre warp drive discovered in 1994 and the Natario warp drive discovered in 2001. However the major drawback concerning warp drives is the huge amount of negative energy density able to sustain the warp bubble.In order to perform an interstellar space travel to a "nearby" star at 20 lightyears away in a reasonable amount of time a ship must attain a speed of about 200 times faster than light.However the negative energy density at such a speed is directly proportional to the factor 10 48 which is 1.000.000.000.000.000.000.000.000 times bigger in magnitude than the mass of the planet Earth!!. With the correct form of the shape function the Natario warp drive can overcome this obstacle at least in theory.Other drawbacks that affects the warp drive geometry are the collisions with hazardous interstellar matter(asteroids,comets,interstellar dust etc)that will unavoidably occurs when a ship travels at superluminal speeds and the problem of the Horizons(causally disconnected portions of spacetime).The geometrical features of the Natario warp drive are the required ones to overcome these obstacles also at least in theory. Some years ago starting from 2012 to 2014 a set of works appeared in the current scientific literature covering the Natario warp drive with an equation intended to be the original Natario equation however this equation do not obeys the original 3 + 1 Arnowitt-Dresner-Misner(ADM ) formalism and hence this equation cannot be regarded as the original Natario warp drive equation.However this new equation satisfies the Natario criteria for a warp drive spacetime and as a matter of fact this equation must be analyzed under a new and parallel 3+1 ADM formalism. We compare both original and parallel 3 + 1 ADM formalisms using the approach of Misner-Thorne-Wheeler(M T W ) and Alcubierre and while in the 3 + 1 spacetime the parallel equation differs radically from the original one when we reduce both equations to a 1 + 1 spacetime both equations becomes equivalent.We discuss the possibilities in General Relativity for this new equation.

Introduction:

The Warp Drive as a solution of the Einstein field equations of General Relativity that allows superluminal travel appeared first in 1994 due to the work of Alcubierre.( [START_REF] Alcubierre | Classical and Quantum Gravity[END_REF]) The warp drive as conceived by Alcubierre worked with an expansion of the spacetime behind an object and contraction of the spacetime in front.The departure point is being moved away from the object and the destination point is being moved closer to the object.The object do not moves at all 1 .It remains at the rest inside the so called warp bubble but an external observer would see the object passing by him at superluminal speeds(pg 8 in [START_REF] Alcubierre | Classical and Quantum Gravity[END_REF])(pg 1 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]).

Later on in 2001 another warp drive appeared due to the work of Natario.( [START_REF] Natario | Classical and Quantum Gravity[END_REF]).This do not expands or contracts spacetime but deals with the spacetime as a "strain" tensor of Fluid Mechanics(pg 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]). Imagine the object being a fish inside an aquarium and the aquarium is floating in the surface of a river but carried out by the river stream.The warp bubble in this case is the aquarium whose walls do not expand or contract. An observer in the margin of the river would see the aquarium passing by him at a large speed but inside the aquarium the fish is at the rest with respect to his local neighborhoods. However there are 3 major drawbacks that compromises the warp drive physical integrity as a viable tool for superluminal interstellar travel.

The first drawback is the quest of large negative energy requirements enough to sustain the warp bubble. In order to travel to a "nearby" star at 20 light-years at superluminal speeds in a reasonable amount of time a ship must attain a speed of about 200 times faster than light.However the negative energy density at such a speed is directly proportional to the factor 10 48 which is 1.000.000.000.000.000.000.000.000 times bigger in magnitude than the mass of the planet Earth!!!(see [7], [8] and [9]).

Another drawback that affects the warp drive is the quest of the interstellar navigation:Interstellar space is not empty and from a real point of view a ship at superluminal speeds would impact asteroids,comets,interstellar space dust and photons.(see [5], [7] and [8]).

The last drawback raised against the warp drive is the fact that inside the warp bubble an astronaut cannot send signals with the speed of the light to control the front of the bubble because an Horizon(causally disconnected portion of spacetime)is established between the astronaut and the warp bubble.(see [5], [7] and [8]).

We can demonstrate that the Natario warp drive can "easily" overcome these obstacles as a valid candidate for superluminal interstellar travel(see [7], [8] and [9]).

In this work we cover only the Natario warp drive and we avoid comparisons between the differences of the models proposed by Alcubierre and Natario since these differences were already deeply covered by the existing available literature.(see [5], [6] and [7])However we use the Alcubierre shape function to define its Natario counterpart.

Alcubierre ([12]) used the so-called 3+1 Arnowitt-Dresner-Misner(ADM ) formalism using the approach of Misner-Thorne-Wheeler(M T W )( [START_REF] Misner | Gravitation)[END_REF]) to develop his warp drive theory.As a matter of fact the first equation in his warp drive paper is derived precisely from the original 3 + 1 ADM formalism(see eq 2.2.4 pgs [67(b)],[82(a)] in [START_REF] Alcubierre | Introduction to 3 + 1 Numerical Relativity[END_REF], see also eq 1 pg 3 in [START_REF] Alcubierre | Classical and Quantum Gravity[END_REF]) 23 and we have strong reasons to believe that Natario which followed the Alcubierre steps also used the original 3 + 1 ADM formalism to develop the Natario warp drive spacetime. Some years ago from 2012 to 2014 a set of works ( [5], [6], [7], [8] and [10] ) started to appear in the scientific literature covering the Natario warp drive spacetime using the following equation:

ds 2 = [1 -(X rs ) 2 -(X θ ) 2 ]dt 2 + 2[X rs drs + X θ rsdθ]dt -drs 2 -rs 2 dθ 2 (1) 
The equation above appeared for the first time in the works pg 4 eq 1 in [5],pg 12 eq 50 in [6],pg 14 eq 38 in [7],pg 20 eq 80 in [8],pg 9 eq 12 in [10] and was intended to be the original Natario warp drive equation.However this equation do not obeys the original 3 + 1 ADM formalism.The correct Natario warp drive equation that obeys the 3 + 1 ADM formalism is given below:

ds 2 = (1 -X rs X rs -X θ X θ )dt 2 + 2(X rs drs + X θ dθ)dt -drs 2 -rs 2 dθ 2 (2) 
Indeed the equation presented in the works ( [5], [6], [7], [8] and [10] ) is a valid equation for the Natario warp drive spacetime but under the context of a new and parallel 3 + 1 ADM formalism.

The 3 + 1 original ADM formalism with signature (-, +, +, +) is given by the equation (21.40) pg [507(b)] [534(a)] in [START_REF] Misner | Gravitation)[END_REF] g µν dx µ dx ν = -α2 dt 2 + γ ij (dx i + β i dt)(dx j + β j dt)

The new 3 + 1 parallel ADM formalism with signature (-, +, +, +) is given by the equation:

g µν dx µ dx ν = -α 2 dt 2 + ( √ γ ii dx i + β i dt)( √ γ jj dx j + β j dt) (4) 
In this work we study the validity of the new equation presented in the works ( [5], [6], [7], [8] and [10] ) for the Natario warp drive spacetime using the new parallel 3 + 1 ADM formalism and we arrive at the conclusion that the new equation is a valid solution for the warp drive spacetime according to the Natario criteria.We also compare both Natario warp drive equations in the original and parallel 3 + 1 ADM formalisms and we arrive at two interesting conclusions:

• 1)-in the 3 + 1 spacetime the parallel ADM formalism differs radically from the original ADM formalism because while in the original formalism all the mathematical entities of General Relativity (eg:Christoffel symbols,Riemann and Ricci tensors,Ricci scalar,Einstein tensors,extrinsic curvature tensors) are cartographed and chartered these mathematical entities are completely unknown in the parallel formalism and must be obtained by hand calculations in a all-the-way-round process starting from the covariant components of the 3 + 1 spacetime metric and finishing with the Einstein tensor in a long and tedious sequence of calculations in tensor algebra liable of errors or can be obtained by computer programs like M aple or M athematica.

• 2)-A dimensional reduction from 3 + 1 spacetime to a 1 + 1 spacetime demonstrates that in a 1 + 1 spacetime both original and parallel ADM formalisms are equivalent and since the works ( [5], [6], [7], [8] and [10] ) uses the dimensional reduction from a 3 + 1 to a 1 + 1 spacetime their conclusions are still valid.

For the study of the original ADM formalism we use the approaches of M T W ( [START_REF] Misner | Gravitation)[END_REF]) and Alcubierre( [START_REF] Alcubierre | Introduction to 3 + 1 Numerical Relativity[END_REF]) and we adopt the Alcubierre convention for notation of equations and scripts.

We adopt here the Geometrized system of units in which c = G = 1 for geometric purposes and the International System of units for energetic purposes. This work is organized as follows:

• Section 2)-Introduces the Natario warp drive continuous shape function able to low the negative energy density requirements when a ship travels with a speed of 200 times faster than light. The negative energy density for such a speed is directly proportional to the factor 10 48 which is 1.000.000.000.000.000.000.000.000 times bigger in magnitude than the mass of the planet Earth!!!.

• Section 3)-presents the new equation for the Natario warp drive spacetime in the parallel 3 + 1 ADM formalism in a rigorous mathematical fashion.We recommend the study of the Appendices A and C at the end of the work in order to fully understand the mathematical demonstrations. The dimensional reduction from a 3 + 1 to a 1 + 1 spacetime shows that the parallel ADM formalism in the 1 + 1 spacetime is equal to the original ADM formalism in the 1 + 1 spacetime.

• Section 4)-presents the original equation for the Natario warp drive spacetime in the original 3 + 1 ADM formalism in a rigorous mathematical fashion.We recommend the study of the Appendix E at the end of the work in order to fully understand the mathematical demonstrations The dimensional reduction from a 3 + 1 to a 1 + 1 spacetime shows that the original ADM formalism in the 1 + 1 spacetime is equal to the parallel ADM formalism in the 1 + 1 spacetime

• Section 5)-compares both the original and parallel formalisms and since in a 1 + 1 spacetime both formalisms are equivalent the shape function used to lower the negative energy density requirements in the original equation is valid also for the new equation so this new Natario warp drive is also affordable from the point of view of negative energy densities in a 1 + 1 spacetime.For a better description about how the Natario shape function can lower the negative energy density requirements in the Natario warp drive see [8] and [9] .Also when we reduce the original 3 + 1 ADM formalism to a 1 + 1 original ADM formalism the zero expansion behavior of the Natario warp drive is maintained in the original equation and since the 1 + 1 parallel ADM formalism is equivalent to the originasl one then at least in a 1 + 1 dimensions the new equation for the Natario warp drive also retains the zero expansion behavior.Another important thing is the fact that even in the 1 + 1 spacetime both warp drive equations possesses the negative energy density in the warp bubble in front of the ship 4 and the repulsive behavior of the negative energy density in the bubble can protect the ship against incoming highly energetic Doppler blueshifted photons or interstellar hazardous matter (eg:space dust,gas clouds,supernova remmants,asteroids comets etc) a ship would encounter in a realistic interstellar spaceflight at superluminal speeds.Also this negative energy density in front of the ship protects the ship against the so-called infinite Doppler Blueshifts in the Horizon.For more about how the Natario warp drive deals with collisions with interstellar matter or infinite Doppler blueshifts see [5] , [7] and [8] 2 The Natario warp drive continuous shape function

Introducing here f (rs) as the Alcubierre shape function that defines the Alcubierre warp drive spacetime we can construct the Natario shape function n(rs) that defines the Natario warp drive spacetime using its Alcubierre counterpart.Below is presented the equation of the Alcubierre shape function. 5 .

f (rs) = 1 2 [1 -tanh[@(rs -R)] (5) 
rs = (x -xs) 2 + y 2 + z 2 (6) 
According with Alcubierre any function f (rs) that gives 1 inside the bubble and 0 outside the bubble while being 1 > f (rs) > 0 in the Alcubierre warped region is a valid shape function for the Alcubierre warp drive.(see eqs 6 and 7 pg 4 in [START_REF] Alcubierre | Classical and Quantum Gravity[END_REF] or top of pg 4 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]).

In the Alcubierre shape function xs is the center of the warp bubble where the ship resides. R is the radius of the warp bubble and @ is the Alcubierre parameter related to the thickness.According to Alcubierre these can have arbitrary values.We outline here the fact that according to pg 4 in [START_REF] Alcubierre | Classical and Quantum Gravity[END_REF] the parameter @ can have arbitrary values.rs is the path of the so-called Eulerian observer that starts at the center of the bubble xs = R = rs = 0 and ends up outside the warp bubble rs > R.

According to Natario(pg 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]) any function that gives 0 inside the bubble and 1 2 outside the bubble while being 0 < n(rs) < 1 2 in the Natario warped region is a valid shape function for the Natario warp drive.

The Natario warp drive continuous shape function can be defined by:

n(rs) = 1 2 [1 -f (rs)] (7) 
n(rs) = 1 2 [1 -[ 1 2 [1 -tanh[@(rs -R)]]]] (8) 
This shape function gives the result of n(rs) = 0 inside the warp bubble and n(rs) = 1 2 outside the warp bubble while being 0 < n(rs) < 1 2 in the Natario warped region.

Note that the Alcubierre shape function is being used to define its Natario shape function counterpart.

For the Natario shape function introduced above it is easy to figure out when f (rs) = 1(interior of the Alcubierre bubble) then n(rs) = 0(interior of the Natario bubble) and when f (rs) = 0(exterior of the Alcubierre bubble)then n(rs) = 1 2 (exterior of the Natario bubble).

Another Natario warp drive valid shape function can be given by:

n(rs) = [ 1 2 ][1 -f (rs) W F ] W F (9)
Its derivative square is :

n (rs) 2 = [ 1 4 ]W F 4 [1 -f (rs) W F ] 2(W F -1) [f (rs) 2(W F -1) ]f (rs) 2 (10) 
The shape function above also gives the result of n(rs) = 0 inside the warp bubble and n(rs) = 1 2 outside the warp bubble while being 0 < n(rs) < 1 2 in the Natario warped region(see pg 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]).

Note that like in the previous case the Alcubierre shape function is being used to define its Natario shape function counterpart. The term W F in the Natario shape function is dimensionless too:it is the warp factor.It is important to outline that the warp factor W F >> |R| is much greater than the modulus of the bubble radius.

For the second Natario shape function introduced above it is easy to figure out when f (rs) = 1(interior of the Alcubierre bubble) then n(rs) = 0(interior of the Natario bubble) and when f (rs) = 0(exterior of the Alcubierre bubble)then n(rs) = 1 2 (exterior of the Natario bubble).

• Numerical plot for the second shape function with @ = 50000 and warp factor with a value W F = 200 The plots in the previous page demonstrate the important role of the thickness parameter @ in the warp bubble geometry wether in both Alcubierre or Natario warp drive spacetimes.For a bubble of 100 meters radius R = 100 the regions where 1 > f (rs) > 0(Alcubierre warped region) and 0 < n(rs) < 1 2 (Natario warped region) becomes thicker or thinner as @ becomes higher.

rs f (rs) n(rs) f ( 
Then the geometric position where both Alcubierre and Natario warped regions begins with respect to R the bubble radius is rs = R -< R and the geometric position where both Alcubierre and Natario warped regions ends with respect to R the bubble radius is rs = R + > R As large as @ becomes as smaller becomes too.

Note from the plots of the previous page that we really have two warped regions:

• 1)-The geometrized warped region where 1 > f (rs) > 0(Alcubierre warped region) and 0 < n(rs) < 1 2 (Natario warped region).

• 2)-The energized warped region where the derivative squares of both Alcubierre and Natario shape functions are not zero.

The parameter @ affects both energized warped regions wether in Alcubierre or Natario cases but is more visible for the Alcubierre shape function because the warp factor W F in the Natario shape functions squeezes the energized warped region into a very small thickness.

The negative energy density for the Natario warp drive is given by(see pg 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF])

ρ = T µν u µ u ν = - 1 16π K ij K ij = - v 2 s 8π 3(n (rs)) 2 cos 2 θ + n (rs) + r 2 n (rs) 2 sin 2 θ (11) 
Converting from the Geometrized System of Units to the International System we should expect for the following expression:

ρ = - c 2 G vs 2 8π 3(n (rs)) 2 cos 2 θ + n (rs) + rs 2 n (rs) 2 sin 2 θ . (12) 
Rewriting the Natario negative energy density in cartezian coordinates we should expect for 6 :

ρ = T µν u µ u ν = - c 2 G v 2 s 8π 3(n (rs)) 2 ( x rs ) 2 + n (rs) + r 2 n (rs) 2 ( y rs ) 2 (13) 
6 see Appendix D

In the equatorial plane(1 + 1 dimensional spacetime with rs = x -xs ,y = 0 and center of the bubble xs = 0):

ρ = T µν u µ u ν = - c 2 G v 2 s 8π 3(n (rs)) 2 (14) 
Note that in the above expressions the warp drive speed vs appears raised to a power of 2. Considering our Natario warp drive moving with vs = 200 which means to say 200 times light speed in order to make a round trip from Earth to a nearby star at 20 light-years away in a reasonable amount of time(in months not in years) we would get in the expression of the negative energy the factor c 2 = (3 × 10 This term is 1.000.000.000.000.000.000.000.000 times bigger in magnitude than the mass of the planet Earth!!!or better:The amount of negative energy density needed to sustain a warp bubble at a speed of 200 times faster than light requires the magnitude of the masses of 1.000.000.000.000.000.000.000.000 planet Earths!!! Note that if the negative energy density is proportional to 10 48 this would render the warp drive impossible but fortunately the square derivative of the Natario shape function possesses values of 10 -102 ameliorating the factor 10 48 making the warp drive negative energy density more "affordable".

3 The equation of the Natario warp drive spacetime metric in the parallel 3 + 1 ADM formalism

The warp drive spacetime according to Natario for the coordinates rs and θ in the parallel 3 + 1 ADM formalism is defined by the following equation:(see Appendices A and C for details )

ds 2 = [1 -(X rs ) 2 -(X θ ) 2 ]dt 2 + 2[X rs drs + X θ rsdθ]dt -drs 2 -rs 2 dθ 2 (15) 
The expressions for X rs and X θ are given by:(see pg 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF],see also Appendix B for details)

X rs = -2v s n(rs) cos θ (16) 
X rs = 2v s n(rs) cos θ (17)

X θ = v s (2n(rs) + (rs)n (rs)) sin θ (18) X θ = -v s (2n(rs) + (rs)n (rs)) sin θ (19)
Looking both the equation of the Natario warp drive and the equation of the Natario vector nX(pg 2 and 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]):

ds 2 = [1 -(X rs ) 2 -(X θ ) 2 ]dt 2 + 2[X rs drs + X θ rsdθ]dt -drs 2 -rs 2 dθ 2 (20) nX = X rs drs + X θ rsdθ (21) 
We can see that the Natario vector is completely inserted twice in the non-diagonalized components of the metric of the Nayario warp drive equation which gives:

g 01 = g 10 = X rs = 2v s n(rs) cos θ (22) g 02 = g 20 = X θ rs = -v s (2n(rs) + (rs)n (rs))rs sin θ (23) 
Since we have two sets of non-diagonalized components in the Natario warp drive equation and each set possesses equal components of the Natario vector nX this is the reason why the Natario vector nX appears twice in the Natario warp drive equation.

The diagonalized components of the metric of the Natario warp drive equation are given by:

g 00 = 1 -(X rs ) 2 -(X θ ) 2 = 1 -(2v s n(rs) cos θ) 2 -(-v s (2n(rs) + (rs)n (rs)) sin θ) 2 (24) 
The term (-v s (2n(rs) + (rs)n (rs)) sin θ) 2 = (v s (2n(rs) + (rs)n (rs)) sin θ) 2

g 00 = 1 -(X rs ) 2 -(X θ ) 2 = 1 -(2v s n(rs) cos θ) 2 -(v s (2n(rs) + (rs)n (rs)) sin θ) 2 (25) 
g 11 = -1 (26) 
g 22 = -rs 2 (27)
Considering a valid n(rs) as a Natario shape function being n(rs) = 1 2 for large rs(outside the warp bubble) and n(rs) = 0 for small rs(inside the warp bubble) while being 0 < n(rs) < 1 2 in the walls of the warp bubble also known as the Natario warped region(pg 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]):

We can see that the Natario warp drive equation given in the previous page satisfies the Natario requirements for a warp bubble defined by: any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of rs defined by Natario as the interior of the warp bubble and nX = -vs(t)dx or nX = vs(t)dx with X = vs for a large value of rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp bubble.(pg 4 in [START_REF] Natario | Classical and Quantum Gravity[END_REF])

The statement above can be explained in the following way: Consider again the Natario vector nX(pg 2 and 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]) defined below as:

nX = X rs drs + X θ rsdθ (28) 
The components of the Natario vector nX are X rs and X θ .These are the shift vectors.Then a Natario vector is constituted by one or more shift vectors. When the Natario shape function n(rs) = 0 inside the bubble then X rs = 2v s n(rs) cos θ = 0 and X θ = -v s (2n(rs) + (rs)n (rs)) sin = 0.Then inside the bubble both shift vectors are zero resulting in a zero Natario vector.

When the Natario shape function n(rs) = 1 2 outside the bubble then X rs = 2v s n(rs) cos θ = v s cos θ and X θ = -v s (2n(rs) + (rs)n (rs)) sin θ = -v s sin θ.Then outside the bubble both shift vectors are not zero resulting in a not zero Natario vector.

Natario in its warp drive uses the spherical coordinates rs and θ.In order to simplify our analysis we consider motion in the x -axis or the equatorial plane rs where θ = 0 sin(θ) = 0 and cos(θ) = 1.(see pgs 4,5 and 6 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]).

The Natario warp drive equation and the Natario vector nX in the equatorial plane 1 + 1 spacetime now becomes:

ds 2 = [1 -(X rs ) 2 ]dt 2 + 2[X rs drs]dt -drs 2 (29) nX = X rs drs (30)
Note that the Natario vector nX is still inserted twice in the Natario warp drive equation due to the 2 remaining non-diagonalized components which are:

g 01 = g 10 = X rs = 2v s n(rs) (31)
When the Natario shape function n(rs) = 0 inside the bubble then the shift vector X rs = 2v s n(rs) = 0 .Then inside the bubble the shift vector X rs = 0 is zero resulting in a zero Natario vector.

When the Natario shape function n(rs) = 1 2 outside the bubble then the shift vector X rs = 2v s n(rs) = v s .Then outside the bubble both shift and Natario vectors are not zero and the shift vector is equal to the bubble speed vs X rs = vs.

The above statements explain the Natario affirmation of X = 0 inside the bubble and X = vs outside the bubble.(pg 4 in [START_REF] Natario | Classical and Quantum Gravity[END_REF])

The diagonalized components of the metric of the Natario warp drive equation are given by:

g 00 = 1 -(X rs ) 2 = 1 -(2v s n(rs)) 2
(32)

g 11 = -1 (33)
4 The equation of the Natario warp drive spacetime metric in the original 3 + 1 ADM formalism

The equation of the Natario warp drive spacetime in the original 3 + 1 ADM formalism is given by:(see Appendix E for details )

ds 2 = (1 -X rs X rs -X θ X θ )dt 2 + 2(X rs drs + X θ dθ)dt -drs 2 -rs 2 dθ 2 (34)
The equation of the Natario vector nX(pg 2 and 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]) is given by:

nX = X rs drs + X θ rsdθ (35)
With the contravariant shift vector components X rs and X θ given by:(see pg 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF])(see also Appendix B for details )

X rs = 2v s n(rs) cos θ (36) X θ = -v s (2n(rs) + (rs)n (rs)) sin θ (37) 
The covariant shift vector components X rs and X θ are given by:

X rs = X rs = 2v s n(rs) cos θ (38) X θ = rs 2 X θ = -rs 2 v s (2n(rs) + (rs)n (rs)) sin θ (39) 
Considering a valid n(rs) as a Natario shape function being n(rs) = 1 2 for large rs(outside the warp bubble) and n(rs) = 0 for small rs(inside the warp bubble) while being 0 < n(rs) < 1 2 in the walls of the warp bubble also known as the Natario warped region(pg 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]):

We can see that the Natario warp drive equation given above satisfies the Natario requirements for a warp bubble defined by: any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of rs defined by Natario as the interior of the warp bubble and nX = vs(t)dx with X = vs for a large value of rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp bubble.(pg 4 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]) Natario in its warp drive uses the spherical coordinates rs and θ.In order to simplify our analysis we consider motion in the x -axis or the equatorial plane rs where θ = 0 sin(θ) = 0 and cos(θ) = 1.(see pgs 4,5 and 6 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]).

In a 1 + 1 spacetime the equatorial plane we get¿:

ds 2 = (1 -X rs X rs )dt 2 + 2(X rs drs)dt -drs 2 (40)
But since X rs = X rs the equation can be written as given below:

ds 2 = (1 -[X rs ] 2 )dt 2 + 2(X rs drs)dt -drs 2 (41)
5 Differences and resemblances between both the original and parallel 3 + 1 ADM formalisms for the Natario warp drive spacetime

The warp drive spacetime according to Natario for the coordinates rs and θ in the parallel 3 + 1 ADM formalism is defined by the following equation:(see Appendices A and C for details )

ds 2 = [1 -(X rs ) 2 -(X θ ) 2 ]dt 2 + 2[X rs drs + X θ rsdθ]dt -drs 2 -rs 2 dθ 2 (42) 
The equation of the Natario warp drive spacetime in the original 3 + 1 ADM formalism is given by:(see Appendix E for details )

ds 2 = (1 -X rs X rs -X θ X θ )dt 2 + 2(X rs drs + X θ dθ)dt -drs 2 -rs 2 dθ 2 (43) 
Note that the first equation have the Natario vector nX inserted twice in the non-diagonalized components.This Natario vector nX is given in contravariant form (pg 2 and 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]):

nX = X rs drs + X θ rsdθ (44) 
A "covariant" form of the Natario vector cX can be given by:

cX = X rs drs + X θ dθ (45) 
Note that the second equation have the "covariant" Natario vector cX inserted twice in the nondiagonalized components.

The contravariant shift vector components of the Natario vector nX being X rs and X θ are given by:(see pg 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF])(see also Appendix B for details )

X rs = 2v s n(rs) cos θ (46) 
X θ = -v s (2n(rs) + (rs)n (rs)) sin θ (47)

The covariant shift vector components X rs and X θ of the "covariant" Natario vector cX are given by:

X rs = X rs = 2v s n(rs) cos θ (48) X θ = rs 2 X θ = -rs 2 v s (2n(rs) + (rs)n (rs)) sin θ (49) 
The difference between both equations in the 3 + 1 spacetime is precisely the fact that one of the equations have the Natario vector nX in contravariant form while the other equation have the Natario vector cX in "covariant" form.Also one of the equations uses exclusively contravariant components while the other uses both contravariant and covariant components But in the 1 + 1 spacetime both equations are equal due to the equivalence between the contravariant and covariant shift vector components X rs = X rs of both Natario vectors nX and cX:

ds 2 = (1 -[X rs ] 2 )dt 2 + 2(X rs drs)dt -drs 2 (50) 
Alcubierre used the original 3 + 1 ADM formalism in his warp drive(see eq 1 pg 3 in [START_REF] Alcubierre | Classical and Quantum Gravity[END_REF]) 8 and we have reasons to believe that Natario which followed the Alcubierre steps also used the original 3 + 1 ADM formalism to derive the original Natario warp drive equation:

ds 2 = (1 -X rs X rs -X θ X θ )dt 2 + 2(X rs drs + X θ dθ)dt -drs 2 -rs 2 dθ 2 (51) 
The negative energy density for the Natario warp drive in the original 3 + 1 ADM formalism is given by(see pg 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF])

ρ = - c 2 G v 2 s 8π 3(n (rs)) 2 cos 2 θ + n (rs) + r 2 n (rs) 2 sin 2 θ (52) 
In the equatorial plane(1 + 1 dimensional spacetime with rs = x -xs ,y = 0 and center of the bubble xs = 0):

9 ρ = T µν u µ u ν = - c 2 G v 2 s 8π 3(n (rs)) 2 (53) 
But for the warp drive equation in the parallel 3 + 1 ADM formalism

ds 2 = [1 -(X rs ) 2 -(X θ ) 2 ]dt 2 + 2[X rs drs + X θ rsdθ]dt -drs 2 -rs 2 dθ 2 (54) 
We can say nothing about the negative energy density at first sight and we need to compute "all-theway-round" the Christoffel symbols Riemann and Ricci tensors and the Ricci scalar in order to obtain the Einstein tensor and hence the stress-energy-momentum tensor in a long and tedious process of tensor analysis liable of occurrence of calculation errors.

Or we can use computers with programs like M aple or M athematica (see pgs [342(b)] or [369(a)] in [START_REF] Misner | Gravitation)[END_REF], pgs [276(b)] or [294(a)] in [START_REF] Schutz | A First Course in General Relativity[END_REF],pgs [454, 457, 560(b)] or [465, 468, 567(a)] in [START_REF] Hartle | Gravity:An Introduction to Einstein General Relativity[END_REF]).

Appendix C pgs [551 -555(b)] or [559 -563(a)] in [START_REF] Hartle | Gravity:An Introduction to Einstein General Relativity[END_REF] shows how to calculate everything until the Einstein tensor from the basic input of the covariant components of the 3 + 1 spacetime metric using M athematica.

But since the 1 + 1 equation for the parallel ADM formalism is equal to the 1 + 1 equation for the original ADM formalism the negative energy density in 1 + 1 spacetime is the same for both equations. Also in the geometry of the original 3+1 ADM formalism Natario warp drive the spacetime contraction in one direction(radial) is balanced by the spacetime expansion in the remaining direction(perpendicular).

Remember also that the expansion of the normal volume elements in the original 3 + 1 ADM formalism for the Natario warp drive is given by the following expressions(pg 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]). :

K rr = ∂X r ∂r = -2v s n (r) cos θ (55) 
K θθ = 1 r ∂X θ ∂θ + X r r = v s n (r) cos θ; (56) 
K ϕϕ = 1 r sin θ ∂X ϕ ∂ϕ + X r r + X θ cot θ r = v s n (r) cos θ (57) θ = K rr + K θθ + K ϕϕ = 0 ( 58 
)
If we expand the radial direction the perpendicular direction contracts to keep the expansion of the normal volume elements equal to zero resulting in a warp drive with zero expansion.

Note also that even in a 1 + 1 dimensional spacetime the original 3 + 1 ADM formalism for the Natario warp drive when reduced to a 1 + 1 dimensions retains the zero expansion behavior:

K rr = ∂X r ∂r = -2v s n (r) cos θ (59) 
K θθ = X r r = v s n (r) cos θ; (60) 
K ϕϕ = X r r = v s n (r) cos θ (61) θ = K rr + K θθ + K ϕϕ = 0 (62) 
So we cannot say anything about the geometry of the parallel 3 + 1 ADM formalism concerning the expansion of the normal volume elements without the computation of the extrinsic curvatures but at least in a 1 + 1 spacetime the parallel 1 + 1 ADM formalism is equivalent to the original 1 + 1 ADM formalism which gives also a warp drive with zero expansion.

Conclusion:

In this work we demonstrated the validity of the equation for the new warp drive spacetime according to Natario in the parallel 3 + 1 ADM formalism:

ds 2 = [1 -(X rs ) 2 -(X θ ) 2 ]dt 2 + 2[X rs drs + X θ rsdθ]dt -drs 2 -rs 2 dθ 2 (63) 
This equation appeared for the first time in the works pg 4 eq 1 in [5],pg 12 eq 50 in [6],pg 14 eq 38 in [7],pg 20 eq 80 in [8],pg 9 eq 12 in [10] as the original Natario warp drive equation however this equation do not obeys the original 3 + 1 ADM formalism.The equation of the Natario warp drive spacetime that obeys the original 3 + 1 ADM formalism is this one:

ds 2 = (1 -X rs X rs -X θ X θ )dt 2 + 2(X rs drs + X θ dθ)dt -drs 2 -rs 2 dθ 2 (64) 
But in the 1 + 1 spacetime both equations are equal due to the equivalence between the contravariant and covariant shift vector components X rs = X rs :

ds 2 = (1 -[X rs ] 2 )dt 2 + 2(X rs drs)dt -drs 2 (65) 
So at least in a 1 + 1 spacetime the parallel 1 + 1 ADM formalism coincides with the original 1 + 1 ADM formalism and since the works [5], [6], [7], [8] and [10] uses the dimensional reduction from a 3 + 1 spacetime ro a 1 + 1 spacetime the conclusions of these works remains correct.

In section 2 we presented two Natario shape functions and while one of them makes the Natario warp drive impossible to be physically achieved due to high negative energy density requirements the other makes the Natario warp drive perfectly possible to be achieved because this shape function have a form that allows low and "affordable" negative energy density requirements.Then the form of the shape functions affects the behavior of the Natario warp drive spacetime specially in the Natario warped region.For a better description about how the second Natario shape function reduces the negative energy density requirements in the Natario warp drive see [8] and [9].

In section 3 we presented the detailed mathematical structure of the new equation for the Natario warp drive spacetime metric in the parallel 3 + 1 ADM formalism and we verified that this equation satisfies the Natario requirements for a warp drive spacetime.

In section 4 we presented the detailed mathematical structure of the equation for the Natario warp drive spacetime metric in the original 3 + 1 ADM formalism using the approaches of M T W ( [START_REF] Misner | Gravitation)[END_REF]) and Alcubierre ([12]).We also verified that this equation satisfies the Natario requirements for a warp drive spacetime.

In section 5 we compared the original 3 + 1 ADM formalism with the parallel 3 + 1 ADM formalism for the two Natario warp drive equations and while the equation in the original formalism have the spacetime geometry completely known(eq:Christoffel symbols,Riemann and Ricci tensors,Ricci scalar,Einstein tensor,stress-energy-momentum tensor for negative energy densities,extrinsic curvatures etc) the same mathematical entities for the equation in the parallel formalism remains unknown and must be calculated in a "all-the-way-round" hand by hand or can be obtained using computer programs like M aple or M athematica.

Still in section 5 we can see that in the 1 + 1 spacetime both ADM formalisms are identical and the new Natario warp drive equation have the same negative energy density requirements of the original one so the shape function used to lower the negative energy density to "affordable" levels in the original equation is valid also in the new one.

Also in section 5 we demonstrated that the zero expansion behavior of the original Natario warp drive equation in the original 3 + 1 ADM formalism is maintained when we reduce the dimensions to a original 1 + 1 ADM formalism and since the parallel 1 + 1 ADM formalism is equivalent to the original one then we can say that at least in a 1 + 1 spacetime the new equation have also a zero expansion behavior.

Another important thing is the fact that both equations possesses negative energy density in the warp bubble in front of the ship even in a 1 + 1 spacetime10 and the repulsive behavior of the negative energy density can protect the ship against Doppler blueshifted photons or collisions with hazardous interstellar matter(space dust,debris,asteroids,comets etc) a ship would encounter in a superluminal interstellar spaceflight in a real fashion.Also the negative energy density in front of the ship can protect the ship against the infinite Doppler blueshifts in the Horizon.For more about collisions with interstellar matter and infinite Doppler blueshifts see [5], [7] and [8].

The Natario warp drive spacetime is a very rich environment to study the superluminal features of General Relativity because now we have two spacetime metrics and not only one and the geometry of the new equation in the 3 + 1 spacetime is still unknown and needs to be cartographed. 

g µν dx µ dx ν = -α 2 dt 2 + γ ij (dx i + β i dt)(dx j + β j dt) (66) 
The 3 + 1 parallel ADM formalism with signature (-, +, +, +) is given by the equation:

g µν dx µ dx ν = -α 2 dt 2 + ( √ γ ii dx i + β i dt)( √ γ jj dx j + β j dt) (67) 
While the Christoffel symbols,Riemann and Ricci tensors,Ricci scalar,Einstein tensors or extrinsic curvature tensors are completely known and chartered for the original 3 + 1 ADM formalism these mathematical entities are completely unknown for the parallel 3 + 1 ADM formalism and this can open new avenues of research in General Relativity.

In this work we developed the parallel 3 + 1 ADM formalism exclusively for the Natario warp drive spacetime but it can also be applied to other spacetime metrics.

But unfortunately although we can discuss mathematically how to reduce the negative energy density requirements to sustain a warp drive we dont know how to generate the shape function that distorts the spacetime geometry creating the warp drive effect.So unfortunately all the discussions about warp drives are still under the domain of the mathematical conjectures.

However we are confident to affirm that the Natario warp drive will survive the passage of the Century XXI and will arrive to the Future.The Natario warp drive as a valid candidate for faster than light interstellar space travel will arrive to the the Century XXIV on-board the future starships up there in the middle of the stars helping the human race to give his first steps in the exploration of our Galaxy Live Long And Prosper 7 Appendix A:mathematical demonstration of the Natario warp drive equation for a constant speed vs in the parallel 3 + 1 ADM Formalism

The warp drive spacetime according to Natario is defined by the following equation but we changed the metric signature from (-, +, +, +) to (+, -, -, -)(pg 2 in [START_REF] Natario | Classical and Quantum Gravity[END_REF])

ds 2 = dt 2 - 3 i=1 (dx i -X i dt) 2 (68)
where X i is the so-called shift vector.This shift vector is the responsible for the warp drive behavior defined as follows(pg 2 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]):

X i = X, Y, Z i = 1, 2, 3 (69) 
The warp drive spacetime is completely generated by the Natario vector nX(pg 2 in [START_REF] Natario | Classical and Quantum Gravity[END_REF])

nX = X i ∂ ∂x i = X ∂ ∂x + Y ∂ ∂y + Z ∂ ∂z , (70) 
Defined using the canonical basis of the Hodge Star in spherical coordinates as follows(pg 4 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]):

e r ≡ ∂ ∂r ∼ dr ∼ (rdθ) ∧ (r sin θdϕ) (71) 
e θ ≡ 1 r ∂ ∂θ ∼ rdθ ∼ (r sin θdϕ) ∧ dr (72) e ϕ ≡ 1 r sin θ ∂ ∂ϕ ∼ r sin θdϕ ∼ dr ∧ (rdθ) ( 73 
)
Redefining the Natario vector nX as being the rate-of-strain tensor of fluid mechanics as shown below(pg 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]): nX = X r e r + X θ e θ + X ϕ e ϕ (74) nX = X r dr + X θ rdθ + X ϕ r sin θdϕ (75)

ds 2 = dt 2 - 3 i=1 (dx i -X i dt) 2 (76) 
X i = r, θ, ϕ i = 1, 2, 3 (77) 
We are interested only in the coordinates r and θ according to pg 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF])11 

ds 2 = dt 2 -(dr -X r dt) 2 -(rdθ -X θ dt) 2 (78) (dr -X r dt) 2 = dr 2 -2X r drdt + (X r ) 2 dt 2 (79) (rdθ -X θ dt) 2 = r 2 dθ 2 -2X θ rdθdt + (X θ ) 2 dt 2
(80)

ds 2 = dt 2 -(X r ) 2 dt 2 -(X θ ) 2 dt 2 + 2X r drdt + 2X θ rdθdt -dr 2 -r 2 dθ 2 (81)
ds 2 = [1 -(X r ) 2 -(X θ ) 2 ]dt 2 + 2[X r dr + X θ rdθ]dt -dr 2 -r 2 dθ 2 (82) 
making r = rs we have the Natario warp drive equation:

ds 2 = [1 -(X rs ) 2 -(X θ ) 2 ]dt 2 + 2[X rs drs + X θ rsdθ]dt -drs 2 -rs 2 dθ 2 (83)
The expressions for X rs and X θ are given by:(see pg 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]).See also Appendix B.

nX 

∼
But we already know that the Natario vector nX is defined by(pg 2 and 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]):

nX = X rs drs + X θ rsdθ (88)
Hence we should expect for:

X rs = -2v s n(rs) cos θ (89) 
X rs = 2v s n(rs) cos θ (90)

X θ = v s (2n(rs) + (rs)n (rs)) sin θ (91) X θ = -v s (2n(rs) + (rs)n (rs)) sin θ (92)
Considering both the Natario warp drive equation in the parallel 3+1 ADM formalism and the Natario vector(pg 2 and 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]):

ds 2 = [1 -(X rs ) 2 -(X θ ) 2 ]dt 2 + 2[X rs drs + X θ rsdθ]dt -drs 2 -rs 2 dθ 2 (93) nX = X rs drs + X θ rsdθ (94)
We can see that the entire Natario vector nX and the shift vectors X rs and X θ are completely contained in the non-diagonalized components of the Natario warp drive equation in the parallel 3+1 ADM formalism.

8 Appendix B:differential forms,Hodge star and the mathematical demonstration of the Natario vectors nX = -vsdx and nX = vsdx for a constant speed vs This appendix is being written for novice or newcomer students on Warp Drive theory still not acquainted with the methods Natario used to arrive at the final expression of the Natario Vector nX

The Canonical Basis of the Hodge Star in spherical coordinates can be defined as follows(pg 4 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]):

e r ≡ ∂ ∂r ∼ dr ∼ (rdθ) ∧ (r sin θdϕ) ∼ r 2 sin θ(dθ ∧ dϕ) (95) 
e θ ≡ 1 r ∂ ∂θ ∼ rdθ ∼ (r sin θdϕ) ∧ dr ∼ r sin θ(dϕ ∧ dr) (96) 
e ϕ ≡ 1 r sin θ ∂ ∂ϕ ∼ r sin θdϕ ∼ dr ∧ (rdθ) ∼ r(dr ∧ dθ) (97) 
From above we get the following results

dr ∼ r 2 sin θ(dθ ∧ dϕ) (98) rdθ ∼ r sin θ(dϕ ∧ dr) (99) 
r sin θdϕ ∼ r(dr ∧ dθ) (100) 
Note that this expression matches the common definition of the Hodge Star operator * applied to the spherical coordinates as given by(pg 8 in [START_REF] Warnick | Teaching Electromagnetic Field Theory Using Differential Forms[END_REF]): * dr = r 2 sin θ(dθ ∧ dϕ) (101) * rdθ = r sin θ(dϕ ∧ dr) (102) * r sin θdϕ = r(dr ∧ dθ)

Back again to the Natario equivalence between spherical and cartezian coordinates(pg 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]): 

∂ ∂x ∼ dx = d(r cos θ) = cos θdr-r sin θdθ ∼ r 2 sin θ cos θdθ∧dϕ+r sin 2 θdr∧dϕ = d 1 2 r 2 sin 2 θdϕ (104) Look that dx = d(r cos θ) = cos θdr -r sin θdθ (105) 
We know that the following expression holds true(see pg 9 in [START_REF]Introduction to Differential Forms[END_REF]):

dϕ ∧ dr = -dr ∧ dϕ (110) 
Then we have

* dx = * d(r cos θ) = [r 2 sin θ cos θ(dθ ∧ dϕ)] + [r sin 2 θ(dr ∧ dϕ)] (111) 
And the above expression matches exactly the term obtained by Natario using the Hodge Star operator applied to the equivalence between cartezian and spherical coordinates(pg 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]). Now examining the expression:

d 1 2 r 2 sin 2 θdϕ (112) 
We must also apply the Hodge Star operator to the expression above And then we have:

* d 1 2 r 2 sin 2 θdϕ (113) * d 1 2 r 2 sin 2 θdϕ ∼ 1 2 r 2 * d[(sin 2 θ)dϕ] + 1 2 sin 2 θ * [d(r 2 )dϕ] + 1 2 r 2 sin 2 θ * d[(dϕ)] (114) 
According to pg 10 in [START_REF]Introduction to Differential Forms[END_REF] the term 1 2 r 2 sin 2 θ * d[(dϕ)] = 0 This leaves us with:

1 2 r 2 * d[(sin 2 θ)dϕ] + 1 2 sin 2 θ * [d(r 2 )dϕ] ∼ 1 2 r 2 2 sin θ cos θ(dθ ∧ dϕ) + 1 2 sin 2 θ2r(dr ∧ dϕ) (115) 
Because and according to pg 10 in [START_REF]Introduction to Differential Forms[END_REF]:

d(α + β) = dα + dβ (116) d(f α) = df ∧ α + f ∧ dα (117) d(dx) = d(dy) = d(dz) = 0 (118) 
From above we can see for example that * d[(sin

2 θ)dϕ] = d(sin 2 θ) ∧ dϕ + sin 2 θ ∧ ddϕ = 2sinθ cos θ(dθ ∧ dϕ) (119) * [d(r 2 )dϕ] = 2rdr ∧ dϕ + r 2 ∧ ddϕ = 2r(dr ∧ dϕ) (120) 
And then we derived again the Natario result of pg 5 in [2]

r 2 sin θ cos θ(dθ ∧ dϕ) + r sin 2 θ(dr ∧ dϕ) (121) 
Now we will examine the following expression equivalent to the one of Natario pg 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF] except that we replaced 1 2 by the function f (r) :

* d[f (r)r 2 sin 2 θdϕ] (122) 
From above we can obtain the next expressions

f (r)r 2 * d[(sin 2 θ)dϕ] + f (r) sin 2 θ * [d(r 2 )dϕ] + r 2 sin 2 θ * d[f (r)dϕ] (123) f (r)r 2 2sinθ cos θ(dθ ∧ dϕ) + f (r) sin 2 θ2r(dr ∧ dϕ) + r 2 sin 2 θf (r)(dr ∧ dϕ) (124) 2f (r)r 2 sinθ cos θ(dθ ∧ dϕ) + 2f (r)r sin 2 θ(dr ∧ dϕ) + r 2 sin 2 θf (r)(dr ∧ dϕ) (125) 
Comparing the above expressions with the Natario definitions of pg 4 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]):

e r ≡ ∂ ∂r ∼ dr ∼ (rdθ) ∧ (r sin θdϕ) ∼ r 2 sin θ(dθ ∧ dϕ) (126) 
e θ ≡ 1 r ∂ ∂θ ∼ rdθ ∼ (r sin θdϕ) ∧ dr ∼ r sin θ(dϕ ∧ dr) ∼ -r sin θ(dr ∧ dϕ) (127) 
e ϕ ≡ 1 r sin θ ∂ ∂ϕ ∼ r sin θdϕ ∼ dr ∧ (rdθ) ∼ r(dr ∧ dθ) (128) 
We can obtain the following result:

2f (r) cosθ[r 2 sinθ(dθ ∧ dϕ)] + 2f (r) sinθ[r sin θ(dr ∧ dϕ)] + f (r)r sin θ[r sin θ(dr ∧ dϕ)] (129) 2f (r) cosθe r -2f (r) sinθe θ -rf (r) sin θe θ (130) * d[f (r)r 2 sin 2 θdϕ] = 2f (r) cosθe r -[2f (r) + rf (r)] sin θe θ (131) 
Defining the Natario Vector as in pg 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF] with the Hodge Star operator * explicitly written :

nX = vs(t) * d f (r)r 2 sin 2 θdϕ (132) nX = -vs(t) * d f (r)r 2 sin 2 θdϕ (133) 
We can get finally the latest expressions for the Natario Vector nX also shown in pg 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF] nX = 2vs(t)f (r) cosθe r -vs(t)[2f (r) + rf (r)] sin θe θ (134)

nX = -2vs(t)f (r) cosθe r + vs(t)[2f (r) + rf (r)] sin θe θ (135) 
With our pedagogical approaches

nX = 2vs(t)f (r) cosθdr -vs(t)[2f (r) + rf (r)]r sin θdθ (136) nX = -2vs(t)f (r) cosθdr + vs(t)[2f (r) + rf (r)]r sin θdθ (137) 
9 Appendix C:The Natario warp drive and the parallel 3 + 1 ADM Formalism 

g µν dx µ dx ν = -α 2 dt 2 + γ ij (dx i + β i dt)(dx j + β j dt) (138) 
using the signature (-, +, +, +) can be given by:

g µν dx µ dx ν = -α 2 dt 2 + ( √ γ ii dx i + β i dt)( √ γ jj dx j + β j dt) (139) 
Note that in the equation above all the essential 3 elements of the original 3 + 1 ADM formalism are also present 12 .These elements are:

• 1)-the 3 dimensional metric dl 2 = γ ij dx i dx j with i, j = 1, 2, 3 that measures the proper distance between two points inside each hypersurface.In this case dl = γ ij dx i dx j .

• 2)-the lapse of proper time dτ between both hypersurfaces Σ t and Σ t+dt measured by observers moving in a trajectory normal to the hypersurfaces(Eulerian obsxervers) dτ = αdt where α is known as the lapse function.

• 3)-the relative velocity β i between Eulerian observers and the lines of constant spatial coordinates ( √ γ ii dx i + β i dt).β i is known as the shift vector.

But since dl 2 = γ ij dx i dx j must be a diagonalized metric then dl 2 = γ ii dx i dx i dl = √ γ ii dx i and we have for the 3 + 1 spacetime metric the following result:

ds 2 = g µν dx µ dx ν = -α 2 dt 2 + ( √ γ ii dx i + β i dt) 2 (140) ( √ γ ii dx i + β i dt) 2 = γ ii (dx i ) 2 + 2 √ γ ii β i dx i dt + (β i dt) 2 (141) 
ds 2 = -α 2 dt 2 + γ ii (dx i ) 2 + 2 √ γ ii β i dx i dt + (β i dt) 2 (142) 
ds 2 = -α 2 dt 2 + (β i dt) 2 + 2 √ γ ii β i dx i dt + γ ii (dx i ) 2 (143) 
ds 2 = (-α 2 + [β i ] 2 )dt 2 + 2 √ γ ii β i dx i dt + γ ii dx i dx i ( 144 
)
ds 2 = (-α 2 + β i β i )dt 2 + 2 √ γ ii β i dx i dt + γ ii dx i dx i ( 145 
)
12 see Appendix E on the original 3 + 1 ADM formalism

Then the equations of the Natario warp drive in the parallel 3 + 1 ADM formalism are given by:

ds 2 = (-α 2 + β i β i )dt 2 + 2 √ γ ii β i dx i dt + γ ii dx i dx i (146) g µν = g 00 g 0i g i0 g ii = -α 2 + β i β i √ γ ii β i √ γ ii β i γ ii (147) 
The components of the inverse metric are given by the matrix inverse :13 

g µν = g 00 g 0i g i0 g ii = 1 (g 00 × g ii ) -(g i0 × g 0i ) g ii -g 0i -g i0 g 00
(148)

g µν = g 00 g 0i g i0 g ii = 1 ([-α 2 + β i β i ] × γ ii ) -( √ γ ii β i × √ γ ii β i ) γ ii - √ γ ii β i - √ γ ii β i -α 2 + β i β i (149) 
Suppressing the lapse function α = 1 we have:

ds 2 = (-1 + β i β i )dt 2 + 2 √ γ ii β i dx i dt + γ ii dx i dx i (150) 
g µν = g 00 g 0i g i0 g ii = -1 + β i β i √ γ ii β i √ γ ii β i γ ii (151) 
g µν = g 00 g 0i g i0 g ii = 1 (g 00 × g ii ) -(g i0 × g 0i ) g ii -g 0i -g i0 g 00 (152) 
g µν = g 00 g 0i g i0 g ii = 1 ([-1 + β i β i ] × γ ii ) -( √ γ ii β i × √ γ ii β i ) γ ii - √ γ ii β i - √ γ ii β i -1 + β i β i (153) 
Changing the signature from (-, +, +, +) to (+, -, -, -) we should expect for:

ds 2 = (1 -β i β i )dt 2 -2 √ γ ii β i dx i dt -γ ii dx i dx i (154) 
g µν = g 00 g 0i g i0 g ii = 1 -β i β i - √ γ ii β i - √ γ ii β i -γ ii (155) 
g µν = g 00 g 0i g i0 g ii = 1 (g 00 × g ii ) -(g i0 × g 0i ) g ii -g 0i -g i0 g 00
(156)

g µν = g 00 g 0i g i0 g ii = 1 ([1 -β i β i ] × -γ ii ) -(- √ γ ii β i × - √ γ ii β i ) -γ ii √ γ ii β i √ γ ii β i 1 -β i β i (157) g µν = g 00 g 0i g i0 g ii = 1 ([1 -β i β i ] × -γ ii ) -( √ γ ii β i × √ γ ii β i ) -γ ii √ γ ii β i √ γ ii β i 1 -β i β i (158)
The equations of the Natario warp drive in the parallel 3 + 1 ADM formalism given by:

ds 2 = (1 -β i β i )dt 2 -2 √ γ ii β i dx i dt -γ ii dx i dx i (159) g µν = g 00 g 0i g i0 g ii = 1 -β i β i - √ γ ii β i - √ γ ii β i -γ ii ( 160 
)
g µν = g 00 g 0i g i0 g ii = 1 (g 00 × g ii ) -(g i0 × g 0i ) g ii -g 0i -g i0 g 00
(161)

g µν = g 00 g 0i g i0 g ii = 1 ([1 -β i β i ] × -γ ii ) -(- √ γ ii β i × - √ γ ii β i ) -γ ii √ γ ii β i √ γ ii β i 1 -β i β i (162) 
g µν = g 00 g 0i g i0 g ii = 1 ([1 -β i β i ] × -γ ii ) -( √ γ ii β i × √ γ ii β i ) -γ ii √ γ ii β i √ γ ii β i 1 -β i β i (163)
obeys the generic equation of a warp drive in the parallel 3 + 1 ADM formalism:

ds 2 = dt 2 -( √ γ ii dx i + β i dt) 2 (164) 
The warp drive spacetime according to Natario is defined by the following equation but we changed the metric signature from (-, +, +, +) to (+, -, -, -)(pg 2 in [START_REF] Natario | Classical and Quantum Gravity[END_REF])

ds 2 = dt 2 - 3 i=1 (dx i -X i dt) 2 (165) 
The Natario equation is valid only in cartezian coordinates.For a generic coordinates system we must employ the equation given by the parallel 3 + 1 ADM formalism as being:

ds 2 = dt 2 - 3 i=1 ( √ γ ii dx i -X i dt) 2 (166) 
Note that β i = -X i and β i β i = X i X i with X i being the Natario shift vector. Hence we have:

ds 2 = (1 -X i X i )dt 2 + 2 √ γ ii X i dx i dt -γ ii dx i dx i (167) 
g µν = g 00 g 0i g i0 g ii = 1 -X i X i √ γ ii X i √ γ ii X i -γ ii ( 168 
)
g µν = g 00 g 0i g i0 g ii = 1 (g 00 × g ii ) -(g i0 × g 0i ) g ii -g 0i -g i0 g 00
(169)

g µν = g 00 g 0i g i0 g ii = 1 ([1 -X i X i ] × -γ ii ) -( √ γ ii X i × √ γ ii X i ) -γ ii - √ γ ii X i - √ γ ii X i 1 -X i X i (170) 
For the equations of the Natario warp drive in the parallel 3 + 1 ADM formalism:

ds 2 = (1 -X i X i )dt 2 + 2 √ γ ii X i dx i dt -γ ii dx i dx i (171) g µν = g 00 g 0i g i0 g ii = 1 -X i X i √ γ ii X i √ γ ii X i -γ ii (172) 
g µν = g 00 g 0i g i0 g ii = 1 (g 00 × g ii ) -(g i0 × g 0i ) g ii -g 0i -g i0 g 00 (173 
)

g µν = g 00 g 0i g i0 g ii = 1 ([1 -X i X i ] × -γ ii ) -( √ γ ii X i × √ γ ii X i ) -γ ii - √ γ ii X i - √ γ ii X i 1 -X i X i (174) 
And looking to the equation of the Natario vector nX(pg 2 and 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]):

nX = X rs drs + X θ rsdθ (175) 
With the contravariant shift vector components X rs and X θ given by:(see pg 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]):

X rs = 2v s n(rs) cos θ (176) 
X θ = -v s (2n(rs) + (rs)n (rs)) sin θ (177) 
But remember that dl 2 = γ ij dx i dx j = dr 2 + r 2 dθ 2 with γ rr = 1,γ θθ = r 2 √ γ rr = 1 √ γ θθ = r and r = rs.

Then the separate matrix components 2 × 2 evaluated separately for rs and θ of the Natario warp drive equation in the parallel 3 + 1 ADM formalism14 are given by:

g µν = g 00 g 0r g r0 g rr = 1 -X r X r X r X r -1 (178) 
g µν = g 00 g 0r g r0 g rr = 1 (g 00 × g rr ) -(g r0 × g 0r ) g rr -g 0r -g r0 g 00 (179)

g µν = g 00 g 0r g r0 g rr = 1 ([1 -X r X r ] × -1) -(X r × X r ) -1 -X r -X r 1 -X r X r (180) 
g µν = g 00 g 0θ g θ0 g θθ = 1 -X θ X θ rsX θ rsX θ -rs 2 (181) 
g µν = g 00 g 0θ g θ0 g θθ = 1 (g 00 × g θθ ) -(g θ0 × g 0θ ) g θθ -g 0θ -g θ0 g 00 (182) g µν = g 00 g 0i g i0 g ii = 1 ([1 -X θ X θ ] × -rs 2 ) -(rsX θ × rsX θ ) -rs 2 -rsX θ -rsX θ 1 -X θ X θ (183) 
The equation of the Natario warp drive in the parallel 3 + 1 ADM formalism is given by:

ds 2 = (1 -X i X i )dt 2 + 2 √ γ ii X i dx i dt -γ ii dx i dx i (184) ds 2 = (1 -X rs X rs -X θ X θ )dt 2 + 2(X rs drsdt + X θ rsdθdt) -drs 2 -rs 2 dθ 2 (185) 
ds 2 = (1 -X rs X rs -X θ X θ )dt 2 + 2(X rs drs + X θ rsdθ)dt -drs 2 -rs 2 dθ 2 (186) 
ds 2 = [1 -(X rs ) 2 -(X θ ) 2 ]dt 2 + 2[X rs drs + X θ rsdθ]dt -drs 2 -rs 2 dθ 2 (187) 
Note that the equation of the Natario vector nX(pg 2 and 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]) appears twice in the equation above due to the non-diagonalized shift components:

nX = X rs drs + X θ rsdθ (188) 
As a matter of fact expanding the term

2 √ γ ii X i dx i = X rs drs + X θ rsdθ (189) 
we recover again the Natario vector since γ rr = 1,γ θθ = rs 2 √ γ rr = 1 √ γ θθ = rs 10 Appendix D:The Natario warp drive negative energy density in Cartezian coordinates

The negative energy density according to Natario is given by(see pg 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF])15 :

ρ = T µν u µ u ν = - 1 16π K ij K ij = - v 2 s 8π 3(n (rs)) 2 cos 2 θ + n (rs) + r 2 n (rs) 2 sin 2 θ (190) 
In the bottom of pg 4 in [START_REF] Natario | Classical and Quantum Gravity[END_REF] Natario defined the x-axis as the polar axis.In the top of page 5 we can see that x = rs cos(θ) implying in cos(θ) = x rs and in sin(θ) = y rs Rewriting the Natario negative energy density in cartezian coordinates we should expect for:

ρ = T µν u µ u ν = - 1 16π K ij K ij = - v 2 s 8π 3(n (rs)) 2 ( x rs ) 2 + n (rs) + r 2 n (rs) 2 ( y rs ) 2 (191) 
Considering motion in the equatorial plane of the Natario warp bubble (x-axis only) then [y 2 + z 2 ] = 0 and rs 2 = [(x -xs) 2 ] and making xs = 0 the center of the bubble as the origin of the coordinate frame for the motion of the Eulerian observer then rs 2 = x 2 because in the equatorial plane y = z = 0.

Rewriting the Natario negative energy density in cartezian coordinates in the equatorial plane we should expect for:

ρ = T µν u µ u ν = - 1 16π K ij K ij = - v 2 s 8π 3(n (rs)) 2 (192) 
11 Appendix E:mathematical demonstration of the Natario warp drive equation for a constant speed vs in the original 3+1 ADM Formalism according to MTW and Alcubierre

General Relativity describes the gravitational field in a fully covariant way using the geometrical line element of a given generic spacetime metric ds 2 = g µν dx µ dx ν where do not exists a clear difference between space and time.This generical form of the equations using tensor algebra is useful for differential geometry where we can handle the spacetime metric tensor g µν in a way that keeps both space and time integrated in the same mathematical entity (the metric tensor) and all the mathematical operations do not distinguish space from time under the context of tensor algebra handling mathematically space and time exactly in the same way.

However there are situations in which we need to recover the difference between space and time as for example the evolution in time of an astrophysical system given its initial conditions. ] in [START_REF] Misner | Gravitation)[END_REF] where dx i + β i dt appears to illustrate the equation 21.40 g µν dx µ dx ν = -α 2 dt 2 + γ ij (dx i + β i dt)(dx j + β j dt) at pg [507(b)] [534(a)] in [START_REF] Misner | Gravitation)[END_REF]) 16

• 1)-the 3 dimensional metric dl 2 = γ ij dx i dx j with i, j = 1, 2, 3 that measures the proper distance between two points inside each hypersurface

• 2)-the lapse of proper time dτ between both hypersurfaces Σ t and Σ t+dt measured by observers moving in a trajectory normal to the hypersurfaces(Eulerian obsxervers) dτ = αdt where α is known as the lapse function.

• 3)-the relative velocity β i between Eulerian observers and the lines of constant spatial coordinates (dx i + β i dt).β i is known as the shift vector. ] in [START_REF] Misner | Gravitation)[END_REF] with the eqs (2.2.5) and (2.2.6) pgs [67(b)] [82(a)] in [START_REF] Alcubierre | Introduction to 3 + 1 Numerical Relativity[END_REF] using the signature (-, +, +, +) we get the original equations of the 3 + 1 ADM formalism given by the following expressions:

g µν = g 00 g 0j g i0 g ij = -α 2 + β k β k β j β i γ ij (193) 
g µν dx µ dx ν = -α 2 dt 2 + γ ij (dx i + β i dt)(dx j + β j dt)

The components of the inverse metric are given by the matrix inverse :

g µν = g 00 g 0j g i0 g ij = -1 α 2 β j α 2 β i α 2 γ ij -β i β j α 2 (195)
The spacetime metric in 3 + 1 is given by: ds 2 = g µν dx µ dx ν = -α 2 dt 2 + γ ij (dx i + β i dt)(dx j + β j dt)

But since dl 2 = γ ij dx i dx j must be a diagonalized metric then dl 2 = γ ii dx i dx i and we have:

ds 2 = -α 2 dt 2 + γ ii (dx i + β i dt) 2 (197) 
(dx i + β i dt) 2 = (dx i ) 2 + 2β i dx i dt + (β i dt) 2 (198) 
γ ii (dx i + β i dt) 2 = γ ii (dx i ) 2 + 2γ ii β i dx i dt + γ ii (β i dt) 2 (199) 
β i = γ ii β i (200) 
γ ii (β i dt) 2 = γ ii β i β i dt 2 = β i β i dt 2 (201)

(dx i ) 2 = dx i dx i (202) 
γ ii (dx i + β i dt) 2 = γ ii dx i dx i + 2β i dx i dt + β i β i dt 2 (203)

ds 2 = -α 2 dt 2 + γ ii dx i dx i + 2β i dx i dt + β i β i dt 2 (204) 
ds 2 = (-α 2 + β i β i )dt 2 + 2β i dx i dt + γ ii dx i dx i (205)

Note that the expression above is exactly the eq (2.2.4) pgs [67(b)] [82(a)] in [START_REF] Alcubierre | Introduction to 3 + 1 Numerical Relativity[END_REF].It also appears as eq 1 pg 3 in [START_REF] Alcubierre | Classical and Quantum Gravity[END_REF].

With the original equations of the 3 + 1 ADM formalism given below: ds 2 = (-α 2 + β i β i )dt 2 + 2β i dx i dt + γ ii dx i dx i (206)

g µν = g 00 g 0i g i0 g ii = -α 2 + β i β i β i β i γ ii (207) 
g µν = g 00 g 0i g i0 g ii = -1

α 2 β i α 2 β i α 2 γ ii -β i β i α 2 (208)
and suppressing the lapse function making α = 1 we have:

ds 2 = (-1 + β i β i )dt 2 + 2β i dx i dt + γ ii dx i dx i
(209)

g µν = g 00 g 0i g i0 g ii = -1 + β i β i β i β i γ ii (210) 
g µν = g 00 g 0i g i0 g ii = -1

β i β i γ ii -β i β i (211)
changing the signature from (-, +, +, +) to signature (+, -, -, -) we have:

ds 2 = -(-1 + β i β i )dt 2 -2β i dx i dt -γ ii dx i dx i (212) 
ds 2 = (1 -β i β i )dt 2 -2β i dx i dt -γ ii dx i dx i (213) 
g µν = g 00 g 0i g i0 g ii = 1 -β i β i -β i -β i -γ ii (214)

g µν = g 00 g 0i g i0 g ii = 1 -β i -β i -γ ii + β i β i (215) 
Remember that the equations given above corresponds to the generic warp drive metric given below:

ds 2 = dt 2 -γ ii (dx i + β i dt) 2 (216) 
The warp drive spacetime according to Natario is defined by the following equation but we changed the metric signature from (-, +, +, +) to (+, -, -, -)(pg 2 in [START_REF] Natario | Classical and Quantum Gravity[END_REF])

ds 2 = dt 2 - 3 i=1 (dx i -X i dt) 2 (217) 
The Natario equation given above is valid only in cartezian coordinates.For a generic coordinates system we must employ the equation that obeys the 3 + 1 ADM formalism:

ds 2 = dt 2 - 3 i=1 γ ii (dx i -X i dt) 2 (218)
13 Epilogue

• "The only way of discovering the limits of the possible is to venture a little way past them into the impossible."-Arthur C.Clarke18 

• "The supreme task of the physicist is to arrive at those universal elementary laws from which the cosmos can be built up by pure deduction. There is no logical path to these laws; only intuition, resting on sympathetic understanding of experience, can reach them"-Albert Einstein 1920

8 ) 2 = 9

 829 × 10 16 being divided by 6, 67 × 10 -11 giving 1, 35 × 10 27 and this is multiplied by (6 × 10 10 ) 2 = 36 × 10 20 coming from the term vs = 200 giving 1, 35 × 10 27 × 36 × 10 20 = 1, 35 × 10 27 × 3, 6 × 10 21 = 4, 86 × 10 48 !!! A number with 48 zeros!!!The planet Earth have a mass 7 of about 6 × 10 24 kg

The 3 +

 3 1 original ADM formalism with signature (-, +, +, +) is given by the equation (21.40) pg [507(b)][534(a)] in[START_REF] Misner | Gravitation)[END_REF] 

  Or dx = d(r cos θ) = cos θdr -sin θrdθ (106) Applying the Hodge Star operator * to the above expression: * dx = * d(r cos θ) = cos θ( * dr) -sin θ( * rdθ) (107) * dx = * d(r cos θ) = cos θ[r 2 sin θ(dθ ∧ dϕ)] -sin θ[r sin θ(dϕ ∧ dr)] (108) * dx = * d(r cos θ) = [r 2 sin θ cos θ(dθ ∧ dϕ)] -[r sin 2 θ(dϕ ∧ dr)]

A 3 + 1

 31 ADM formalism parallel to the equation (21.40) pg [507(b)] [534(a)] in[START_REF] Misner | Gravitation)[END_REF] 

The 3 + 1

 31 ADM formalism allows ourselves to separate from the generic equation ds 2 = g µν dx µ dx ν of a given spacetime the 3 dimensions of space and the time dimension.(see pg [64(b)] [79(a)] in[START_REF] Alcubierre | Introduction to 3 + 1 Numerical Relativity[END_REF]) Consider a 3 dimensional hypersurface Σ 1 in an initial time t1 that evolves to a hypersurface Σ 2 in a later time t2 and hence evolves again to a hypersurface Σ 3 in an even later time t3 according to fig 2.1 pg [65(b)] [80(a)] in[START_REF] Alcubierre | Introduction to 3 + 1 Numerical Relativity[END_REF].The hypersurface Σ 2 is considered and adjacent hypersurface with respect to the hypersurface Σ 1 that evolved in a differential amount of time dt from the hypersurface Σ 1 with respect to the initial time t1. Then both hypersurfeces Σ 1 and Σ 2 are the same hypersurface Σ in two different moments of time Σ t and Σ t+dt .(see bottom of pg [65(b)] [80(a)] in[START_REF] Alcubierre | Introduction to 3 + 1 Numerical Relativity[END_REF])The geometry of the spacetime region contained between these hypersurfaces Σ t and Σ t+dt can be determined from 3 basic ingredients:(see fig 2.2 pg [66(b)] [81(a)] in [12]) (see also fig 21.2 pg [506(b)] [533(a)

16

  we adopt the Alcubierre notation here 32 Combining the eqs (21.40),(21.42) and (21.44) pgs [507, 508(b)] [534, 535(a)

  -2v s n(rs) cos θe rs + v s (2n(rs) + (rs)n (rs)) sin θe θ (84)

nX ∼ 2v s n(rs) cos θe rs -v s (2n(rs) + (rs)n (rs)) sin θe θ (85) nX ∼ -2v s n(rs) cos θdrs + v s (2n(rs) + (rs)n (rs)) sin θrsdθ (86) nX ∼ 2v s n(rs) cos θdrs -v s (2n(rs) + (rs)n (rs)) sin θrsdθ

do not violates Relativity

see also Appendix E

see the Remarks section on our system to quote pages in bibliographic references

the negative energy density do not vanish even in a 1 + 1 spacetime

tanh[@(rs + R)] = 1,tanh(@R) = 1 for very high values of the Alcubierre thickness parameter @ >> |R|

see Wikipedia:The free Encyclopedia

see Appendix E

see Appendix D

the negative energy density do not vanish in front of the ship even in a 1 + 1 spacetime

The explanation for the term (rdθ -X θ dt) 2 = r 2 dθ 2 -2X θ rdθdt + (X θ ) 2 dt 2 will be given in the Appendix C

see Wikipedia:the free Encyclopedia on inverse or invertible matrices

Actually we know that the real matrix is a 3 × 3 matrix with dimensions t rs and θ.Our 2 × 2 approach is a simplification

n(rs) is the Natario shape function.Equation written in the Geometrized System of Units c = G = 1

special thanks to Maria Matreno from Residencia de Estudantes Universitas Lisboa Portugal for providing the Second Law Of Arthur C.Clarke

"Ideas And Opinions" Einstein compilation, ISBN 0 -517 -88440 -2, on page 226."Principles of Research" ([Ideas and Opinions],pp.224-227), described as "Address delivered in celebration of Max Planck's sixtieth birthday (1918) before the Physical Society in Berlin"

appears also in the Eric Baird book Relativity in Curved Spacetime ISBN 978 -0 -9557068 -0 -6

Comparing all these equations

(219)

With

We can see that β i = -X i ,β i = -X i and β i β i = X i X i with X i as being the contravariant form of the Natario shift vector and X i being the covariant form of the Natario shift vector.Hence we have:

Looking to the equation of the Natario vector nX(pg 2 and 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]):

With the contravariant shift vector components X rs and X θ given by:(see pg 5 in [START_REF] Natario | Classical and Quantum Gravity[END_REF]):

But remember that dl 2 = γ ii dx i dx i = dr 2 + r 2 dθ 2 with γ rr = 1 and γ θθ = r 2 . Then the covariant shift vector components X rs and X θ with r = rs are given by:

The equations of the Natario warp drive in the 3 + 1 ADM formalism are given by:

The matrix components 2 × 2 evaluated separately for rs and θ gives the following results: 17

Then the equation of the Natario warp drive spacetime in the original 3 + 1 ADM formalism is given by:

ds 2 = (1 -X rs X rs -X θ X θ )dt 2 + 2(X rs drs + X θ dθ)dt -drs 2 -rs 2 dθ 2 (242) 17 Actually we know that the real matrix is a 3 × 3 matrix with dimensions t rs and θ.Our 2 × 2 approach is a simplification 36