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Abstract—Textures can often be found in large areas of images
and videos. They have different spectral and statistical properties
as compared to normal (structural) components. Encoding them
with ordinary video coders requires higher bit rate and usually
results are unsatisfying in perceived quality. Recently, different
perceptual tools have been developed to estimate the perceived
quality of textures taken into account models of Human visual
system. In this paper, we investigate and discuss the practical
usability of one of these tools, namely STSIM, as a distortion
function for selecting the intra-prediction mode and block parti-
tioning of texture images in HEVC. We experiment few practical
implementations to examine its performance compared to default
metrics used by HEVC. Experimental results showed that the
perceived quality of the decoded textures has been significantly
improved specially for stochastic types of textures

Index Terms—Texture Coding; Perceptual Optimization,
STSIM

I. INTRODUCTION

Video coding standards, such as HEVC [1], aim at rep-
resenting video signals with a minimum bitrate at a certain
distortion level. The typical distortion measure is based on
comparing individual pixels values of the original and distorted
signals. This kind of measure, however, does not correctly fit
our visual perception, in other words, the amount of distortion
that it measures does not proportionally reflect the amount of
distortion that we perceive. To overcome this problem, many
researchers have introduced various Perceptual Distortion met-
rics in the context of Perceptual Video Coding. These metrics
are based on models of Human Visual System (HVS). The
details of such metrics and coding techniques can be found in
[2].

In visual perception, the visual signal can be classified into
two components, Texture and Structure. Textures represent
homogeneous areas of video scenes with coherent statistics,
whereas Structures represent rather the semantics of the scene.
Textures appear in large areas of video streams. They can
appear in different forms such as sand, grass, tree leaves, see

waves and others. Estimating the amount perceptual distortion
in the compressed textures is highly different from structures.
The is because the Human Visual System focuses on the
semantic meaning of the texture rather than the exact details of
each pixel. This fact has been exploited in some approaches of
texture coding where the textures are removed at the encoder
side and re-synthesized at the decoder side. The texture can
be synthesized with few parameters to give approximately the
same perceptual quality. Examples of these approaches can be
found in [3] and [4].

Perceptual video coding can be implemented in several
levels of the coding process. It can be done at a pre-processing
level such as removal of high frequency components. It can
also be done at the post processing level by optimization the
rendering filter. At the encoding level, many other approaches
have been developed. Examples of this are Region of Interest
(ROI) coding, Rate Quality Optimization, Perceptual Quanti-
zation and others. All of these approaches try to optimize the
perceptual quality of the decoded videos at a given constraints.

In this paper, we investigate the possible perceptual op-
timization of texture coding in HEVC framework. We used
STSIM [5], as being a perceptual similarity metric designed
for textures, for selecting the prediction mode and block parti-
tioning in intra-prediction scheme within a fixed quantization
parameter scenario. We implemented this metric and compared
its performance with the default metrics in HEVC and also
with the well known similarity metric (SSIM).

The rest of the paper is organized as follows: Sec. II gives
an overview of HEVC intra-prediction mode and Texture
similarity metrics used in this work. Sec. III presents the
evaluation procedure we used to analyze each metric. In Sec.
IV, the simulation results and discussion is presented with
conclusion and possible further research is given in Sec. V.



II. THEORETICAL BACKGROUND

A. Intra-Prediction Scheme in HEVC

HEVC encoder starts by dividing video frames into Coding
Tree Units (CTUs). Each CTU contains (M×M ) Coding Tree
Block (CTB) for luminance component and 2 (M/2×M/2)
for chrominance components. The CTB is the basic container
of one or multiple Coding Blocks (CB). The encoder assigns
first one CB for the CTB and tries encoding different predic-
tion schemes and modes. It chooses the one that minimizes the
rate-distortion function. The CB can be partitioned in Quadtree
manner to find a better rate-distortion value in a smaller block
size.

In intra-prediction scheme, each CB contains either 1 or 4
equal sizes Prediction Blocks (PB). For each PB, the encoder
searches for the best prediction mode and partitioning into
Transform Blocks (TB). The TB’s are converted to a bitstream
after applying transform and quantization. In HEVC, there
are 35 intra-prediction modes. This include 33 directional
prediction, DC prediction and Planer prediction. Due to the
high complexity of searching for the best prediction mode and
quadtree partitioning, the encoder considers only three most
probable modes for its optimization process.

B. Overview of Texture Similarity Metrics

We begin this overview with one simple and effective image
quality metric which frequently replaces MSE for different
applications. It is known as Structural Similarity Index (SSIM).
This metric compares the statistics of two image patches x and
y. It is composed of three comparison terms, namely luminance
term (Ix,y), contrast term (Cx,y) and structure term (Sx,y). The
luminance term compares the mean values of the two patches,
where as the contrast term compares the standard deviations
of them. The structure term is the cross correlation coefficient
between the patches modified with some correction constant.
The similarity index between the two patches is calculated as:

qSSIM = (Ix,y)
α(Cx,y)

β(Sx,y)
γ (1)

where α, β and γ are design constants and typically take a
value of 1.

SSIM has been used for wide range of applications. In
[6], it has been used in template matching for generating the
prediction signal. It has been improved using the Complex
Wavelet domain (CW-SSIM) [7] instead of the spatial domain.
Similarly, the frequency coefficients in this domain have been
perceptually weighted to fit the perceptual properties of human
vision [8].

These metrics, although being useful similarity metrics, may
not be reliable similarity metrics for texture images. One of
the possible objection is that they allow implicit pixel by
pixel comparison inherited in the cross correlation measure
of the contrast term. Due to this, an SSIM based approach for
texture similarity has been developed. It is known as Structural
Texture Similarity Metric (STSIM)[9]. This metric compares
the statistics of images subbands performing the following
steps:

• Subband Decomposition: It uses the Steerable Pyramid
Filter[10] to decompose the image into multiple subbands
with different orientations and scales. This decomposition
has an interesting property of Shiftability which allows
subbands to have constant power against input shifts.

• Measure of Statistical differences in Subbands coef-
ficients: For each subband, the luminance and contrast
terms are calculated. The structure term is replaced by
the correlation terms. The correlation terms account for
horizontal and vertical autocorrelation of the subband.
STSIM was also improved in [5] by adding the crossband
correlation term for comparing the cross correlations
coefficients between adjacent bands.

• Pooling: The pooling strategy used for STSIM is similar
to SSIM except for the cross correlation term. That is, for
each subband m, a multiplicative pooling of the similarity
terms is calculated:

qm(x, y) = (Imx,y)
1
4 (Cmx,y)

1
4Cmxy(1, 0)

1
4Cmxy(0, 1)

1
4

where Cmxy(1, 0) and Cmxy(0, 1) are the horizontal and
vertical cross correlation terms respectively.
After this, the overall similarity index is calculated by
accumulating this term and adding the crossband correla-
tion terms. Let Nb equals to the number of subbands and
Nc is the number of crossband correlations, the similarity
index is defined as follows:

qSTSIM =

∑
Nb

qm(x, y) +
∑
Nc

Cmi,ni
x,y (0, 0)

Nb +Nc
(2)

where this term Cmi,ni
x,y (0, 0) is the cross correlation

term which compares the cross correlation between the
subbands m and n of x and y.

III. PERFORMANCE EVALUATION

We evaluated respectively the use of SSIM and STSIM
metrics as distortion measure inside HEVC for texture coding.
Since qSSIM and qSSTIM assess the similarity between two
images with a range between [0, 1], we consider as distortion:

DSSIM = 1− qSSIM (3)

DSTSIM = 1− qSTSIM (4)

We replaced the distortion measure in HEVC with these two
distortions respectively and evaluated the performances of each
of them. The details of the experiments and evaluations are
given in the following subsections.

A. Framework and Setup

We used the HEVC Modeling software HM9.0 [11] as a
host encoder. We chose the Brodatz texture images from USC
Viterbi texture dataset [12] in our experiments. These are 13
textures all in gray level images with dimensions 512x512.
We converted these textures into YUV240 format with Y
component filled with the textures and padding zeros in U and
V components. To evaluate the similarity metrics performance,
we encoded these videos by replacing the distortion measure



of HM by a scaled version of DSSIM and DSTSIM in Eqn.
(3) and Eqn. (4).

B. Experiments

We experiment using SSIM and STSIM inside the HM
encoder as a distortion measure. Since our videos consist of
one frame, these metrics were only tested for Intra-Picture
prediction scheme. The distortion measure that we replaced
with them has an effect at two computation levels:

1) Hadamard Transformed Sum of Absolute Difference
(SATD): This metric is used to select the three most
probable intra-prediction modes. These modes, as dis-
cussed in Sec. II, will be checked by the encoder in
order to find the best rate-distortion tradeoff considering
also the partitioning of the prediction blocks.

2) Sum of Square Difference (SSD): The encoder uses this
metric at several levels. we replaced its use only for the
distortion measure of best mode selection in a particular
partition of the prediction blocks

SSIM an STSIM were used in our experiment to compare
patches of textures that correspond to the size of the prediction
block. For STSIM, we used the simplified design of the
steerable pyramid filter developed in [13]. The number of
orientations we chose for the frequency decomposition is 2
while the number of scales was varying according to the patch
size. We chose the number of scales equals to 2 for the HEVC
prediction block sizes of 64x64, 32x32 and 16x16 and 1 for
the size of 8x8 and 4x4. the experiments carried out are:

• Experiment 1: We replaced the SATD by the distortion
measures of DSSIM and DSTSIM from Eqn. (3) and
Eqn. (4). We scaled both of them to match the range of
SATD as follows:

D1
SSIM = DSSIM ∗ 255 ∗BlockSize

D1
STSIM = DSTSIM ∗ 255 ∗BlockSize

where 255 is the maximum pixel value for 8 bits integer
representation.

• Experiment 2: Similar to the first Experiment, we re-
placed the SSD by a scaled version of DSSIM and
DSTSIM which are defined as:

D2
SSIM = DSSIM ∗ 2552 ∗BlockSize

D2
STSIM = DSTSIM ∗ 2552 ∗BlockSize

• Experiment 3: In this experiment, we replaced both SATD
and SSD by the corresponding SSIM and STSIM measure
used in the two previous experiments.

For all of the above experiments, The HM encoder were
used to encode the texture videos with different Quantization
Parameters (QP). The QP we chose were (22,26,32,36,43,51)
to cover a wide range of compression (from fine to coarse
compression). We studied the effect of using these metrics
on the decoded picture quality. We studied also the effect of
using these metrics on the prediction mechanism of HEVC.
The results of experiments are given in the next section.

IV. EXPERIMENTAL RESULTS

To show the result of the three experiments on the decoded
pictures, we first provide one example of a decoded texture
for each of experiments explained before. The effect of using
different distortion metrics is not very distinguishable for
lightly compressed images, that is why, we show here effect in
a very high compression scenario. Fig. 1 shows the effect of
replacing SATD with SSIM and STSIM for QP value of 51.
It can be seen that replacing SATD with D1

SSIM or D1
STSIM

reduces the number of DC blocks and enhances slightly the
quality of the decoded image. This has very little improvement
because in this approach, the new metrics affect only choosing
the 3 most probable intra-prediction modes but doesn’t decide
on neither the mode selection nor the block partition.

Fig. 1. Effect of replacing of SATD with D1
SSIM and D1

STSIM for QP
value 51. Top left: original texture, top right: encoded using default distortion
function, down left: SSIM instead SATD, down right: STSIM instead of SATD

Replacing SSD with D2
SSIM or D2

SSIM increases dramat-
ically the quality of the decoded image. this can be seen in
Fig. 2. If we look carefully on the decoded textures. It can
be seen that STSIM introduces some artificial lines which
were not available in the original image. The reason is that
STSIM is rotationally invariant metric. With this property, the
prediction signal generated using directional prediction may
have little distortion computed by STSIM although it is in a
wrong direction as compared to the original image. Texture
coded with SSIM can maintain better the directionality of the
texture (due to the pixel by pixel comparison inherited in it)
in some texture blocks, but the overall quality of the texture
coded with STSIM looks more natural.

The effect of replacing both SATD and SSD is not very
different from replacing SSD only since replacing SATD has
a minor effect on the decoded picture as seen before. One



Fig. 2. Effect of replacing SSD with D2
SSIM and D2

STSIM , QP value 51.
Top left: Original Image, top right: encoded using default distortion measure,
down left: SSIM instead of SSD, down right: STSIM instead of SSD

thing can be noticed is that the effect of producing artificial
lines in STSIM is more obvious here as the all mode selections
doesn’t relay on pixel by pixel comparison.

Another example is given in Fig. 4 of replacing SATD
and SSD with D2

SSIM and D2
STSIM for a non-directional

texture. It can be seen that both SSIM and STSIM reduce the
amount of visually noisy blocks. It can also be noticed that
reconstructed texture looks more natural when using STSIM
as compared to SSIM. That is, for a non-directional texture,
STSIM performs very well even though some blocks may be
predicted in a wrong direction.

To show the effect of these metrics on all of the used texture
dataset, Fig. 5 and 6 show the result of coding all textures in
third experiment. Looking at these figures, we can draw the
same conclusion as before: the quality of the decoded textures
increases in using either SSIM or STSIM, textures coded
with STSIM look more natural specially for non-directional
textures.

To study the effect of each metric on the prediction mech-
anism of HEVC, we ran the same simulation as before and
measured the number of times that the encoder chooses a size
of the prediction block in different QP. For our 13 textures, we
computed the average value of these numbers and obtained the
curves shown in Fig. 7. These curves shows how the encoder
works using different distortion metrics.

The first thing that one can notice is the high correlation
between the curves of default distortion measure, ”SSIM 1”(re-
placing SATD with D1

SSIM ) and ”STSIM 1” (replacing SATD
with D1

STSIM ). The reason behind it is that the behavior of
the encoder doesn’t change very much in these experiments,

Fig. 3. Effect of replacing both SATD and SSD with SSIM and STSIM, QP
value 51. Top left: Original Image, top right: encoded using default distortion
measure, down left: SSIM instead of SATD and SSD, down right: STSIM
instead of SATD and SSD

SATD only affects selecting the best candidates for rate-
distortion optimization. This doesn’t have a big influence on
the decoded pictures as shown before. It can be even proven
if you look at the curves of ”SSIM 2” and ”SSIM Both” and
also the curves of ”STSIM 2” and ”STSIM Both” where ”2”
here represents replacing SSD by the corresponding distortion
measure and ”Both” means replacing both SATD and SSD by
them. The very high similarity between them indicates that
replacing SATD as well as SSD is not very different from
replacing SSD alone.

Another observation from these curves is that the encoder
tends to use larger prediction blocks for higher compression.
By using SSIM or STSIM, the encoder is forced to use more
number of smaller blocks to provide better prediction of the
signal.

V. CONCLUSION

In this paper, we have studied the possibility of perceptual
optimization of HEVC for texture components. We used one
recent perceptual texture similarity metric, namely, STSIM,
as a distortion function for mode selection and block parti-
tioning in intra-prediction scheme of HEVC. This metric was
implemented and compared to a the default metrics used in
HEVC and also to SSIM which is as well known similarity
metric. Both metrics have shown a significant improvement of
the quality of decoded textures specially for high compression
range.

The implicit pixel by pixel comparison incorporated in
SSIM prevents it from selecting wrong direction in the set of



Fig. 4. Effect of replacing both SATD and SSD with SSIM and STSIM, QP
value 43. Top left: Original Image, top right: encoded using default distortion
measure, down left: SSIM instead of SATD and SSD, down right: STSIM
instead of SATD and SSD

directional prediction modes defined in HEVC as happens with
STSIM, but generally, the quality of the decoded textures tends
to be better although they might differ more in pixel by pixel
comparison. In other word, the non-reference quality of the
decoded textures is improved using STSIM. This observation
is more accurate for stochastic textures rather than directional
textures.

The rate-quality optimization of the used metrics was out
of the scope of this paper. This can be done by appropriately
selecting the Lagrangian multiplier of the rate-distortion func-
tion. This is left for a possible future research.
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