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Abstract. In this paper, an evaluation of transmit beamforming (TxBF) contribution is analyzed in the 

context of an indoor residential environment. Using an optimized 3D ray tracing tool, the multiple-

input multiple-output (MIMO) propagation channel is simulated. The algorithm of singular value 

decomposition is applied and a new transmission scheme is considered. Comparisons of cases 

with/without TxBF are realized by analyzing the received power, the signal to noise ratio (𝑆𝑁𝑅) of 

each spatial stream and the channel capacity. It is shown that the TxBF capacity gain increases when 

the MIMO channel correlation at the transmit side reaches high values, especially when only the 

dominant eigen mode is selected.  The main result concerns the antenna spacing:  a judicious choice of 

the transmitting antenna spacing can improve the effective transmission range by more than 45% in 

non-line of sight (NLOS) conditions. Several MIMO configurations (number of antennas and spatial 

streams) are also compared to determine the relevance of a possible activation of TxBF. The 

interference influence is studied and it is shown that under some conditions, TxBF improves the signal 

to interference ratio (SIR). 
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1.  Introduction 

Multipath is considered to be the major problem in basic wireless systems. It causes fading as 

radio waves travel over multiple paths and interfere with each other when they arrive at the 

receiver. Preprocessing the signal at the transmitter, using a technique known as transmit 

beamforming (TxBF), can overcome multipath effects to improve link throughput and 

robustness. 

Beamforming is an optional feature of 802.11n/ac standards but there is a growing 

industry demand for it in various wireless applications. It is a natural extension of the physical 

layer that has multiple spatial streams and antennas at both ends. In the case of TxBF, by 

controlling the power and the phase of the transmitted signals, it is possible to shape the 

effective radiation pattern of the antennas pointing towards the direction of the dominant path 

to improve the received power and hence the signal to noise ratio (𝑆𝑁𝑅). TxBF studied in this 

paper is used to extend the effective transmission range. It creates more robust coverage for 

802.11n/ac systems. Various techniques may be used to implement TxBF such as phased 

antenna arrays (direction based beamformers), codes book (for LTE), dominant eigen mode 

selection (single beamforming technique with one antenna weighting vector and that carries 

only one spatial stream [1]), and the more general SVD-MIMO (multiple eigen beamforming 

with one precoding matrix that carries multiple spatial streams such as in 802.11n/ac for 

example) which is studied in this paper. 
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Efficient steering of individual streams in such a system provides overall gain. 

Beamforming gain consists of: 

 an increased average received power compared with omnidirectional 

reception/transmission. 

 a diversity gain: through an optimized recombination of multipath that reduces the 

signals fading. 
 

In the literature, TxBF has been studied in order to highlight its contribution compared 

with the use of a simple MIMO system using spatial multiplexing only, like standardized for 

802.11n for example. 

Most of the publications studied outdoor [2] or outdoor-indoor [3] environments. They 

are based either on measurements made with equipment that implements TxBF or on a purely 

theoretical approach. Most of the results concern the dominant eigen mode TxBF, but there 

are few results concerning the more general SVD-MIMO systems with multiple spatial 

streams [4] [5], and they rarely concern typical European residential environments and 

European building materials. In fact, studies have analyzed several MIMO configurations in 

order to conclude on the relevance of a possible use of beamforming. This option requires the 

knowledge of the MIMO propagation channel between the transmitter and the receiver. This 

implies frame exchanges between transmitter and receiver and an overhead in the frame 

control. For instance, in [6], it was shown that for small values of SNR (or high interference 

level) the dominant eigen mode BF schemes can perform close to the MIMO system with 

singular value decomposition in terms of spectral efficiency, and can even outperform a 

MIMO system with Channel State Information (CSI) only at the receiver. 

Other studies have focused on the comparison between introducing the dominant eigen 

mode and transmit diversity as two complementary techniques for using multiple antennas in 

the forward link of a cellular communication system [7]. It was shown that, under ideal 

conditions (uncorrelated fading), transmit diversity has an advantage over a beamforming 

system. However, under handoff conditions, the beamforming system has both array gain and 

diversity, which improves its performance relative to transmit diversity. 

The singular values decomposition (SVD), which is seen as one of the most relevant 

MIMO precoding techniques, is present in publications that address the topic of eigen 

beamforming with multiple streams. In fact, in [8]-[11], analyzes have focused on evaluating 

the impact of channel estimation error on the performance of MIMO system that 

implements SVD-MIMO technique. It was proved that in case of non-ideal channel 

knowledge and a limited accuracy in the channel matrix estimation, a reduced number of 

eigenmodes in the precoding process becomes an optimum and leads into an improved BER. 

A typical system employing SVD suffers capacity degradation when incorrect CSI is used to 

transmit data. Therefore, some papers propose a new linear processing architecture which 

reduces the effect of incorrect CSI at the transmitter. 

Other approaches such as prototyping [12] have been also explored in order to assess the 

feasibility of an IEEE 802.11n transmit beamforming architecture before starting its mass 

production. But in this case, it is another study that tests the effect of the feedback delay for 

CSI. It does not exploit this realistic process to evaluate the added value of beamforming. 

Thus, in the context of earlier studies, it was shown in [13] for example, that in the case 

of a single stream transported by a MIMO system with NTx transmit antennas and NRx 

receiving antennas (NRx × NTx MIMO), a significant antenna array gain NRx.NTx can be 

achieved in Line Of Sight (LOS) conditions i.e. in a fully correlated received signals. For 

multiple streams and using the SVD-MIMO technique, a theoretical bound of the gain was 

defined in the case of a rich scattering environment (Rayleigh fading). This bound is 

(√𝑁𝑅𝑥 + √𝑁𝑇𝑥)2. Other works such as [14] have also analyzed the diversity gain for such 



channels and SVD-MIMO technique, and calculated that the achievable diversity order is 

(NTx - Nss+1).(NRx - Nss+1) for Nss spatial streams. So many aspects remain to develop, which 

are mainly: 
 

 An evaluation of the antenna array gain and diversity gain in the case of a real indoor 

environment (LOS and NLOS) with non-ideal channel correlation properties. 

 A practical study of the gains in the case of SVD-MIMO with multiple spatial streams 

rather than considering only the dominant mode. 
 

Therefore, the results presented in this paper fall within the general framework of 

studying transmit beamforming. They reveal in particular what can bring the introduction of 

this option compared to the use of a simple MIMO system with spatial multiplexing. A typical 

indoor residential environment is considered for this work. The comparisons will be expressed 

as a function of several parameters: the power received by all the receiving antennas, the 

signal to noise ratio (SNR) and the channel capacity. These different performance criteria will 

be considered in both configurations without beamforming (WO-BF) and with beamforming 

(W-BF) using the SVD-MIMO technique. The analysis will focus on the effect of TxBF on: 
 

 Each spatial stream: the SNR of each spatial stream will be computed in W-BF and WO-

BF. 

 The entire MIMO configuration: MIMO configuration is the pair (number of antennas, 

number of spatial streams).  
 

Several MIMO configurations (number of antennas, number of spatial streams, spacing 

between antennas) are also compared to identify which one has the most important BF gain. 

An interference scheme will then be reviewed with a jammer link disturbing the desired 

signal. The aim is to investigate whether the introduction of BF can increase or reduce the 

effect of interference generated by an interfering link. 

The rest of the paper is organized as follows. We introduce the channel model and the 

simulation environment in Section 2. In Section 3, the results of a comparative study of 

several performance criteria are presented and discussed. The received power, the SNR and 

the channel capacity are analyzed with and without transmit BF, as well as the BF gain 

expressed as a function of channel parameters (correlation and antenna spacing). In Section 4, 

we compare the signal to interference ratios (SIR). Finally, we draw some conclusions in 

Section 5. 

 

2. Channel Model and Simulation Environment 

2.1. RAY TRACING SIMULATION TOOL 

The results presented in this paper rely on a simulation approach. A 3D ray tracing model 

developed previously is used to have a realistic MIMO channel modeling [15] without any 

hypothesis on the channel correlation. This is our basis to construct the MIMO channel matrix 

used for beamforming performance analysis. 

The ray tracing software calculates the ray paths between each transmitting and each 

receiving antenna. It is based on the geometrical optics (GO) and the uniform geometrical 

theory of diffraction (UTD). The propagation phenomena taken into account are combinations 

of multiple transmissions, reflections and diffractions. Thus, a detailed description of the 3D 

indoor environment is essential for a proper modeling of wave propagation. It requires taking 



into account the electromagnetic characteristics of walls, floor, ceiling, windows and doors, 

and some details about the furniture. Plane facets with 3D dimensions describe the simulated 

indoor environment. Each facet is affected to a material which is characterized by its 

permittivity, conductivity and thickness. The electromagnetic properties of various building 

materials have been estimated in a previous study over the 2-16 GHz frequency band [16]. 

Consequently, the software tool can operate over a large frequency range. As a result, for each 

radio link, the simulations provide a list of all the identified ray paths. Each ray is 

characterized by its complex propagation vector, absolute delay, angle of arrival (AoA) and 

angle of departure (AoD). It is therefore possible to easily estimate channel spatio-temporal 

characteristics such as delay spread and angular spread. Figure 1 shows the typical 3D indoor 

residential scene used to perform simulations. It is a typical and real middle sized apartment 

with a 12 m × 7 m surface and European building materials and furniture. Two transmitter 

(Tx) locations have been considered with 25 receiver (Rx) locations in LOS and NLOS. Both 

Tx and Rx antenna arrays are 1 m above the ground level. The ceiling is at 2.53 m. 

 

 

 
 

Figure 1.  The indoor environment: 2 Tx positions (red) and 25 Rx positions (blue). 

 

 
 

2.2. SIMULATIONS 

The realization of the MIMO channel simulations was conducted in three steps: 

i) Ray Tracing 

The ray tracing software is launched considering a transmitter and a receiver to trace all the 

rays between a source station located in the corridor (Transmit1) and a receiver placed in 25 

positions distributed in different rooms of our indoor environment (Figure 1). A transmitter or 

a receiver consists of four omnidirectional vertically polarized dipole antennas arranged in 

form of a square (Figure 2). 

This configuration allows analyzing several MIMO systems such as 4 × 4, 4 × 3, 4 × 2, 3 

× 4, 3 × 2,   2 × 2, etc. No antenna coupling effects are considered in this study. For 4 × 4 



MIMO, 4×4×25 = 400 ray traces have been launched considering a single Tx location with 4 

antennas and 25 Rx with 4 antennas. 

For each Rx location, 10 carrier frequencies of the considered OFDM signals with 2 MHz 

spacing have been selected. They are distributed over a 20 MHz bandwidth around the central 

frequency 5.5 GHz. In fact, not all the carriers have been processed since in indoor residential 

environment, channel correlation bandwidth is relatively high compared to the OFDM carrier 

spacing of a 802.11n/ac signal: typical delay spread 𝜎 measured in this environment [15] is 

between 5 and 20 ns, so we can estimate the 90% correlation bandwidth B = 50/ is between 

1 and 4 MHz. The results have been then processed to compute the power of the rays for each 

one of the 10 selected carriers. Finally, 250 samples of the 4 × 4 MIMO channel were 

obtained. 

 

 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

Figure 2.  The antenna array. 
 

 

To run all the simulations in a reasonable time (several hours for all), we have chosen the 

number of phenomena undergone by each ray. In order to obtain a tradeoff between reliability 

and computational time, our ray tracing tool was configured with 3 reflections, 1 diffraction 

and 5 transmissions: this choice is justified by the comparisons between simulations and 

measurements performed in this apartment [15]. 

ii) Channel Matrix Calculation 

The ray tracing tool outputs are generated as files. In this stage, we extract data from these 

files to calculate the MIMO channel matrix. 250 matrices (H) are then calculated (25 Rx 

locations and 10 carrier frequencies for each Rx location). In a real connection, this step 

corresponds to the channel estimation performed at the transmitter by exploiting the channel 

state information (CSI). It is followed by the decomposition of the matrix H in singular 

values. 

iii) Results Analysis 

This third part will be detailed in Sections 3 and 4. 

 

 

2.3. SVD DECOMPOSITION 

Conceptually, the TxBF objective is to optimize the Tx antenna array pattern to maximize the 

power or the signal to noise ratio of the received signal for the desired user. Assuming that the 

channel matrix H is known, then, the optimal beamforming weights at the transmitter can be 
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obtained using singular value decomposition (SVD) [17]. In SVD-based MIMO-OFDM 

communication systems, SVD of 2×2 (or 4×4) complex matrices are periodically computed 

for each one of the OFDM carrier frequency. A general channel model can be described by 
 

𝑟𝑊𝑂−𝐵𝐹 = 𝐻𝑋 + 𝑛 (1) 
 

where 𝑟𝑊𝑂−𝐵𝐹 is the received signal column vector, X is the transmitted signal, H a NRx × 

NTx complex matrix for the MIMO channel for a single OFDM carrier and n is a column 

vector of NRx  additive complex Gaussian noise with zero mean and equal variance for the 

independent real and imaginary components. It is also assumed that the noises of each 

receiving antenna are independent random variables. 

Precoding consists in the spatial processing that occurs at the transmitter to maximize the 

signal power at the receiver input. The system requires the knowledge of the channel state 

information (CSI) at the transmitter [10], [11]. In this paper, perfect channel estimation is 

assumed. 

For a system with NTx transmitter antennas and NRx receiver antennas, the singular value 

decomposition of a matrix H is given by 
 

 𝐻 = 𝑈0𝑆0𝑉0
∗
    (2) 

 

where  𝑈0 , 𝑉0  are respectively a NRx × NRx and NTx × NTx unitary matrices (𝑈0
∗
𝑈0 =

𝐼𝑁𝑅𝑥×𝑁𝑅𝑥  and 𝑉0
∗
𝑉0 = 𝐼𝑁𝑇𝑥×𝑁𝑇𝑥 ) and (.)* means transpose-conjugate. 𝑆0  is a NRx × NTx 

diagonal matrix with the square root of eigen values of  𝐻∗𝐻,  where si are arranged in 

decreasing order. When NTx < NRx, S
0
 can be written as 

 

  𝑆0 = 

(

 
 

𝑠1 0 ⋯ 0
0 𝑠2 0 ⋮
⋮ 0 ⋱ ⋮
⋮ ⋯ 0 𝑠𝑁𝑇𝑥
0 ⋯ 0 0 )

 
 

 (3) 

 

The singular values 𝑠𝑖  are non-negative, ordered in decreasing order and defines the 

quality of the  𝑖𝑡ℎ  eigenmode. For example, to transmit Nss< NTx spatial streams on NTx 

antennas, only the first Nss columns of 𝑉0 are considered to construct the precoding matrix V, 

corresponding to the main Nss eigen modes. Obviously, we need to have at least Nss 

transmitting and receiving antennas and at least Nss non-zero singular values. For that, the size 

of the precoding matrix V becomes NTx × Nss. SVD-based precoding techniques make use of 

the fact that the matrix V consisting of a number of columns of  𝑉0 contains eigenvectors 

of  𝐻∗𝐻, which correspond to the eigenmodes of the communication channel. 

It can be written as 𝐻𝑉 =  𝑈𝑆, where 𝑈 is the matrix formed with the Nss first columns of 

 𝑈0  and 𝑆  is a Nss × Nss matrix. Note that U and V are not necessary unitary matrices:          

𝑈 = 𝐼𝑁𝑠𝑠×𝑁𝑠𝑠, but if  𝑁𝑠𝑠 < 𝑁𝑅𝑥, then 𝑈𝑈∗ ≠ 𝐼𝑁𝑅𝑥×𝑁𝑅𝑥. 

The precoding technique transmits the matrix product VX. The received signal 𝑟𝑊−𝐵𝐹 is 

 

𝑟𝑊−𝐵𝐹 = 𝐻𝑉𝑋 + 𝑛 (4) 

 

 

 

 



3. Performance Optimization Using Beamforming  
 

In this section, the TxBF is quantified in terms of instantaneous received power (Section 3.1), 

SNR and channel capacity (Section 3.2) to assess its contribution. Beamforming gain is also 

expressed in terms of the spacing between transmitting antennas (Section 3.3) and the MIMO 

channel correlation coefficient (Section 3.4). 

 

 

3.1. RECEIVED POWER 

The received power is an important parameter determining the transmission quality. In fact, 

the bit error rate (BER) decreases as the received power increases, which helps maintaining a 

high data rate. Otherwise, the degradation of the bit error rate causes a switching to a 

modulation and coding scheme that reduces the bit rate. Enabling the beamforming option can 

compensate a possible decrease of the received power due to a deterioration of transmission 

conditions. 

The powers received by all the Rx antennas in the cases of activation and no activation of 

TxBF are compared. The transmission scheme with a 4 transmitting antennas system is 

equivalent to the system shown in Figure 3. 

 

 
Figure 3.  Transmission scheme in case of an SVD precoding. 

 

It is obvious that the channel matrix H is replaced by a matrix HV. 

We consider a simple TxBF scheme that does not use water filling to adapt the power of 

the transmitted signals. So, each independent spatial stream has the same average power 

E[|𝑥𝑖|
2] = 

𝑃𝑒

𝑁𝑠𝑠
, where E[.] is the statistical mathematical expectation operator, Pe is the total 

emitted power on each OFDM carrier and Nss is the number of spatial streams. For our 

numerical examples, Pe  = 20 mW over 2 MHz bandwidth, which is a reasonable value for 

802.11ac/n devices in the 5 GHz frequency band (typically 200 mW over 20 MHz). 

Therefore, using (4), the expression of the instantaneous received power 𝑃𝑊−𝐵𝐹  by the Rx 

antenna array becomes 

 

𝑃𝑊−𝐵𝐹 = 
𝑃𝑒

𝑁𝑠𝑠
 𝑇𝑟𝑎𝑐𝑒 (𝐻𝑉𝑉∗𝐻∗) =

𝑃𝑒

𝑁𝑠𝑠
 ∑ |𝑠𝑘|

2𝑁𝑠𝑠
𝑘=1   (5) 

 

For all the results presented in this paper, the same total transmitted power Pe is used, 

whatever are the values of Nss, NTx or NRx. MIMO configuration is defined later in this paper 

by the triplet Nss× NRx × NTx. 



In the case of a link without TxBF, the transmission scheme is given Figure 4. For this 

scheme, 𝑄 is the mapping matrix used when there are more transmit antennas than spatial 

streams (NSS < NTx), as in [18]. 

 

 
 

Figure 4.  Transmission scheme without BF. 

 

 

For example, for a 4×4 MIMO system with 2 spatial streams 

 

𝑄 = 
1

√2
(

1 0
0 1
1 0
0 1

)  (6) 

 

Using (1), the received power without BF is 

 

 𝑃𝑊𝑂−𝐵𝐹 = 
𝑃𝑒

𝑁𝑠𝑠
 𝑇𝑟𝑎𝑐𝑒 (𝐻𝑄𝑄∗𝐻∗)  (7) 

 

With a simple calculation using (5) and (7), it can be shown that if the number of spatial 

streams is equal to the number of transmitting antennas, then the received power with TxBF is 

identical to that received without BF, i.e. if NSS = NTx, then 𝑃𝑊𝑂−𝐵𝐹 = 𝑃𝑊−𝐵𝐹. Therefore, later 

in the paper, the relevant cases to be considered when studying the received power correspond 

to NSS < NTx. 

In a first step, we have studied a 4 × 4 MIMO system. The aim is to compare the received 

power when we consider 1, 2 and 3 spatial streams with and without BF. 

In a second step, we fix the number of spatial streams NSS = 2 and then we compare 

different MIMO configurations in terms of received power. Results are given using 250 

realizations of the channel matrix H. The complementary cumulative distribution functions 

(CCDF) are displayed in Figures 5 and 6. 

By using BF we expect some gains concerning the median or average received power 

thanks to the Tx antenna array gain and also a reduced fading depth (or improved diversity 

gain) thanks to an optimized recombination of the multipaths. Consequently, the results drawn 

in Figure 5 are analyzed by considering the BF gain (received power difference with and 

without BF) for two probability levels 0.5 and 0.9. 



 

Figure 5.  Comparison of CCDF of the received power for 1, 2 and 3 spatial streams on 4×4 MIMO system. 

 

 For the 0.5 probability value, the median difference between the received power with 

BF (W-BF) and without BF (WO-BF) is computed. The median received power gain 

becomes smaller when the number of spatial streams increases. It remains, nevertheless, 

more important than the gain computed for a MIMO uncorrelated Rayleigh channel 

(Figure 7). This is probably because the simulated channel is more correlated and with 

less scattering than for Rayleigh channel. 

 The fading depth reduction is computed as the difference between the received powers 

W-BF and WO-BF for the 0.9 threshold probability. It becomes smaller when the 

number of spatial streams increases. The diversity gain for a Rayleigh channel      

(Figure 7) is more important than with our simulated channel, probably because of the 

same reasons as previously. A similar trend was observed in the case of mm-wave in the 

60 GHz frequency band [19]. 

Based on analysis of the received powers computed when Nss = 2, Figure 6 shows that the 

BF improves the received power in most of the studied configurations. This improvement is 

more sensitive to the number of receiving antennas because the configurations 4 × 4 and 3 × 4 

show better performance compared to 4 × 3 and 2 × 4 configurations. 
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Figure 6.  Comparison of CCDF of the received power for several MIMO configurations when NSS =2. 

 

 

 

Figure 7.  Median received power gain and fading depth reduction for simulated Rayleigh  

and indoor residential channel. 
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3.2.  SNR AND CHANNEL CAPACITY 

In this section, the SNR each spatial stream is analyzed in order to emphasize the effect of BF 

activation. In the case of multiple streams, the channel capacity is computed and compared 

with the case of a simple MIMO system. 

The transmission chain in the W-BF case is presented by Figure 8, where X is the 

transmitted signal, 𝜎n is the standard deviation (RMS value) of the additive Gaussian noise n, 

while V is the precoding matrix used for TxBF deduced from SVD applied to H and after 

selection of Nss spatial streams. ZF is the zero forcing receiver. 

 

 
 

Figure 8.  Transmission scheme with MIMO-SVD. 

 

Given the nature of the studied environment, the Tx-Rx distances are small, the signal 

attenuation is limited and eventually the SNRs are high, which justifies the use of ZF since it 

is equivalent to the Minimum Mean Square Error (MMSE) equalizer at high SNR. It is also a 

case in favor of using the beamforming. It has been shown in [20] that a ZF receiver is 

equivalent in terms of SNR to a receiver that applies the U
*
 matrix associated to the SVD of 

H. 

The estimated signal Xest (after detection) is 

 

 𝑋𝑒𝑠𝑡 = 𝑋 + ((𝐻𝑉)
∗𝐻𝑉)−1(𝐻𝑉)𝑛 (8) 

 

with ((𝐻𝑉)∗𝐻𝑉)−1 = (𝑆∗𝑆)−1. 
By applying the U

*
 matrix at the reveiver, the estimated signal would be                   

𝑋𝑒𝑠𝑡 = 𝑆𝑋 + 𝑈
∗𝑛 , which leads exactly to the same SNR as the ZF receiver. 

The noise covariance matrix 𝑐𝑜𝑣(𝑛)  at the ZF output becomes  

𝑐𝑜𝑣(𝑛) =  σ𝑛
2((𝐻𝑉)∗𝐻𝑉)−1. 

With TxBF, the 𝑆𝑁𝑅𝑊−𝐵𝐹,𝑖 of each stream can be written as 

 

𝑆𝑁𝑅𝑊−𝐵𝐹,𝑖  = 𝑠𝑖
2 𝐸[|𝑥𝑖|

2]

𝜎𝑛2
  (9) 

 

where si is the i-th singular value. 

By analogy with the foregoing, in the case without TxBF, the matrix 𝑄 replaces V and the 

𝑆𝑁𝑅 of each stream becomes 

 

𝑆𝑁𝑅𝑊𝑂−𝐵𝐹,𝑖 = 
𝐸[|𝑥𝑖|

2]

𝜎𝑛2.𝐷𝑖𝑎𝑔𝑖(((𝐻𝑄)
∗(𝐻𝑄))−1)

  (10) 

 

The same statistical analysis as in the previous paragraph has been made using the 250 

MIMO channel realizations. The obtained results are given in Figure 9 and Figure 10. 



In order to compute SNR, we consider for numerical examples a noise temperature T = 

300 °K and a noise spectral density of -173.8 dBm/Hz, so that 𝜎n
2
 = -110.8 dBm for a 2 MHz 

frequency band. 

For the 4 × 4 MIMO system, the results given in Figure 9 show that BF activation 

improves the SNR of the three main spatial streams with a SNR degradation of the fourth 

stream. 

 
 

Figure 9.  Comparison of CCDF of SNR for each spatial stream                                

in a 4×4 MIMO configuration with 4 spatial streams. 

 

To compare the different MIMO configurations, the channel capacity was calculated 

using (11) from [21] 
 

𝐶 =  ∑ 𝑙𝑜𝑔2(1 + 𝑆𝑁𝑅𝑘)
𝑁𝑠𝑠
𝑘=1    (bit/s/Hz) (11) 

 

where 𝑆𝑁𝑅𝑘 is the signal to noise ratio of the k
th

 spatial stream. 

The comparison of different MIMO configurations presented in Figure 10 shows that the 

TxBF activation improves the channel capacity in almost all the studied configurations, 

except for the 2 × 4 × 2 (2 spatial streams on a 4 × 2 MIMO). For a given Nss, we also find 

that an increase in the number of receiving antennas is more advantageous for the channel 

capacity compared to the number of transmitting antennas. 
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Figure 10.  Comparison of CCDF of channel capacity for several MIMO configuration when NSS = 2. 

It remains an issue to be addressed; for a given MIMO configuration, is it better to 

increase the number of transmit /receive antennas or the number of spatial streams and is there 

enough multipath diversity to use more spatial streams? To answer this question, the same 

comparative study as for Nss = 2 was performed for Nss = 3 (Figure 11). The results show that 

increasing the number of spatial streams has a greater effect on the channel capacity 

compared to a simple increase of the number of transmitting and receiving antennas. For 

example, the average capacity for a 2 × 3 × 3 MIMO configuration is 38 bit/s/Hz with Nss = 2. 

Capacity goes to 52 bit/s/Hz when Nss = 3 but it is only 42 bit/s/Hz for a 2 × 4 × 4 

configuration. 
 

 
Figure 11.  Comparison of CCDF of channel capacity for several MIMO configuration when NSS = 3. 
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3.3.  BEAMFORMING GAIN (BFG) 

Beamforming gain is defined as the average difference between the received power 

(expressed in dB) with TxBF and without TxBF for the same Nss, NTx and NRx MIMO 

configuration 

 

 𝐵𝐹𝐺 =  10𝑙𝑜𝑔10(
𝑃𝑊−𝐵𝐹

𝑃𝑊𝑂−𝐵𝐹
)  (12) 

 

BFG is evaluated in terms of the spacing between transmitting antennas for different 

MIMO configurations (different numbers of Tx and Rx antennas). The number of spatial 

streams is fixed: Nss = 2. This is the basic value required for 802.11n access points, higher 

values are optional. The objective is to identify which of these configurations achieves the 

maximum gain when the Tx antenna spacing changes. 

For a first position of the transmitter (in the corridor), six dTx (transmit antenna spacing) 

values have been considered for the simulations: 0.25𝜆, 0.5𝜆, 0.75𝜆, 𝜆, 1.25𝜆 and 1.5𝜆, where 

𝜆 is the carrier wavelength. The gain is given by Figure 12. Two remarks may be relevant for 

this example: the first concerns the fact that the maximum 𝐵𝐹𝐺 is achieved for two different 

spacings between the transmitting antennas: near 0.5𝜆 and near 1.25𝜆. The second is that the 

maximum gain is not necessarily achieved when using a large number of transmitting and 

receiving antennas; the configurations 2 × 4 and 4 × 3 are more suitable to achieve a 

significant gain by activating TxBF than 4 × 4. 
 

 

Figure 12.  BFG versus transmit antenna spacing for several MIMO configurations. 

(Transmitter in the corridor) 

 

To confirm the results observed in the case of a transmitter located in the corridor, other 

simulations have been performed for a transmitter located in the living room (Figure 13). 

Almost the same trends are obtained. To generalize this result to other environments, further 

simulations or measurements would be useful in future works. 
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Figure 13.  BFG versus transmit antenna spacing for several MIMO configurations. 

(Transmitter in the living room) 

 

From these results, it can be observed that the activation of TxBF when NSS = 2 is 

important if NTx is great and NRx is small. In the opposite case, the TxBF does not have a 

great interest. 

For practical deployment, one of the performance criteria to take into account is the 

coverage area of the system. These results can be interpreted in terms of improvement of it, as 

the activation of beamforming improves the received power. In fact, in [22] the typical 

propagation path loss (in dB) can be expressed as follows 

 

𝑃𝐿 = 𝐴0 +  𝐵𝑙𝑜𝑔10(
𝑑

𝑑0
) (13) 

 

where A0 and B are two constants, d is the distance between transmitter and receiver and d0 is 

a reference distance (d0 =1 m). The antenna gains are taken into account in the constants 

values. The received power (in dBm) in case of BF can be written as follows 

 

𝑃𝑊−𝐵𝐹 = 𝑃𝑒 − 𝐴0 −  𝐵𝑙𝑜𝑔10 (
𝑑

𝑑0
) + 𝐵𝐹𝐺 (14) 

 

where BFG is the beamforming gain. In a basic MIMO case, the power is 

 

𝑃𝑊𝑂−𝐵𝐹 = 𝑃𝑒 − 𝐴0 −  𝐵𝑙𝑜𝑔10 (
𝑑

𝑑0
)  (15) 

 

We search the maximum transmission ranges for a same reception level threshold 𝑆𝑚𝑖𝑛 to 

show how TxBF can improve the coverage area of MIMO systems. 𝑑𝑊−𝐵𝐹 and 𝑑𝑊𝑂−𝐵𝐹 are 

these maximum transmission ranges W-BF and WO-BF respectively to reach  𝑃𝑊𝑂−𝐵𝐹 =
𝑃𝑊−𝐵𝐹 = 𝑆𝑚𝑖𝑛. From (14) and (15), it can be deduced that 

 

𝑑𝑊−𝐵𝐹

𝑑𝑊𝑂−B𝐹
= 10

𝐵𝐹𝐺

𝐵    (16) 
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In typical indoor environments, the path loss models consider a value of B either 20 or 35 

depending on LOS or NLOS, such as in the TGN channel model [23]. 

When B = 35, with 4 × 2 MIMO configuration, the coverage range gain is about        

 10
5.7

35  = 1.45. For instance, the distance between the transmitter and the receiver can go from 

10 m to 14.5 m for the same received power in NLOS conditions, which results in a 

transmission range gain of more than 45%. 

When B = 20, then 10
5.7

20  = 1.92 and the transmission range gain reaches 92%. 

Table 1 gives the transmission range gain for the studied MIMO configurations using the 

results of Figure 12. 

 
 

TABLE 1 

TRANSMISSION RANGE GAIN 

MIMO  BFG (LOS, B = 20) BFG (NLOS, B = 35) 

4 × 4           60.32%                     30.96% 

4 × 3           67.88%                     34.45% 

4 × 2           92.75%                     45.50% 

3 × 4           30.32%                     16.34% 

3 × 3           32.59%                     17.49% 

3 × 2           39.64%                     21.02% 

 

 

  

3.4.  BFG AND CHANNEL CORRELATION 

The MIMO channel correlation matrices 𝑅𝑇𝑥 (at the transmit side) and 𝑅𝑅𝑥 (at the receive 

side) are calculated using a centered and normalized matrix 𝐻𝑛𝑜𝑟𝑚 deduced from the channel 

matrix H based on the following formulas [24] 

 

 R𝑅𝑥 =
1

𝑁𝑇𝑥
.
1

𝑁
 ∑ 𝐻𝑛𝑜𝑟𝑚(𝑘)𝐻𝑛𝑜𝑟𝑚(𝑘)

∗𝑁
𝑘=1  (17) 

 

 

 𝑅𝑇𝑥 =
1

𝑁𝑅𝑥
.
1

𝑁
 ∑ 𝐻𝑛𝑜𝑟𝑚(𝑘)

𝑇𝑐𝑜𝑛𝑗(𝐻𝑛𝑜𝑟𝑚(𝑘)
𝑁
𝑘=1 ) (18) 

 
where N = 10 is the number of channel samples (number of OFDM carriers in this paper). 

𝐻𝑛𝑜𝑟𝑚(𝑘)
𝑇 is the transposed form of 𝐻𝑛𝑜𝑟𝑚(𝑘), (.)

* 
is the Hermitian form. 𝐻𝑛𝑜𝑟𝑚(𝑘) is the k

th
 

frequency realization of the centered and normalized channel matrix 𝐻𝑛𝑜𝑟𝑚 and conj(.) is the 

conjugate operator. 

The centered and normalized coefficient hnorm
ij (k) ( ith  row and jth  column) of the 

𝐻𝑛𝑜𝑟𝑚(𝑘) matrix is computed using 

 

hnorm
ij

= 
hij(k) − mij

σij
 

 

where  

mij = 
1

𝑁
∑hij(k)

𝑁

𝑘=1

 



and 

σij = √
1

𝑁
∑ |hij(k) − mij|2𝑁
𝑘=1  

A single correlation coefficient CorTx is calculated using 𝑅𝑅𝑥 and 𝑅𝑇𝑥 by averaging the 

non-diagonal coefficients. This CorTx coefficient is deduced from RTx. For example, in the 

case of a 4×4 MIMO system and when 

 

𝑅𝑇𝑥 =  (

1 ρ12 ρ13 ρ14
ρ21 1 ρ23 ρ24
ρ31 ρ32 1 ρ34
ρ41 ρ42 ρ43 1

)  (19) 

 

The average coefficient 𝐶𝑜𝑟𝑇𝑥 is given by 

 

𝐶𝑜𝑟𝑇𝑥 =  
|ρ12|+ |ρ13|+ |ρ14|+ |ρ23|+ |ρ24|+ |ρ34|

6
  (20) 

 

Some previous studies [25] have shown that the dominant mode eigen beamforming has 

the highest gain when channel average correlation coefficient is high (single spatial stream), 

but no results are available concerning the more general case SVD-MIMO with multiple 

spatial streams. In the following, we give an example of results to analyze the relation 

between BFG and CorTx for dTx = 1.25𝜆, in the case of single or multiple spatial streams. For 

this value of dTx, it has been shown previously that a maximum BFG value can be reached. 

Up to 3 independent spatial streams on a 4 × 4 MIMO configuration are considered in 

this simulation. BFG is assessed for various Nss in terms of the average correlation coefficient 

CorTx. 

For the cases with 1 or 2 spatial streams over 4 × 4 MIMO channel, the beamforming 

gain increases when the correlation coefficient increases. In other words, when the 

environment becomes increasingly correlated (near like LOS correlation conditions), BFG 

tends to increase. In the case of Nss = 3 with a 4 × 4 MIMO system, slightly the same 

tendency can be observed but more Nss is high and less is BFG correlated with CorTx (Figure 

14). 
 

 

Figure 14.  BFG versus CorTx for 1, 2, and 3 streams on a 4 × 4 MIMO system. 
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4. Beamforming and Interference 
 

One other relevant aspect to be addressed about transmit beamforming is its ability to reduce 

interference. It modifies the radiation of the emission and favors the targeted receiver, but it is 

unclear if the power level of other receivers has increased, as this depends on the multipath, 

the number of antennas and the beam directivity. The considered TxBF optimizes the 𝑆𝑁𝑅 

but is not designed to maximize the 𝑆𝐼𝑅. Indeed, the purpose of this part is to investigate 

whether the introduction of transmit BF can increase or reduce the effect of interference 

generated by a jamming link. Several cases can be considered; the main link and the 

interfering link can both use or not the transmit beamforming option. The TxBF option is set 

to “active” for the interfering links. Therefore we compare the SIR with and without activation 

of the BF on the main link. This study was performed using a standard receiver without 

optimization, i.e. without taking into account the interference reduction. 

The considered transmission scheme is given in Figure 15. In this figure, the link between 

𝑋2 data and 𝑌2 is the main link (link 2), while the interfering link is between 𝑋1 and 𝑌1 (link 

1). If both wireless links (transmitter, receiver) use the SVD pre-coding technique, two V 

precoding matrices are introduced, one for each transmitter. 

The MIMO channel matrix between the transmitter 𝑋1 and the receiver 𝑌2 is denoted H12. 

n1 and n2 are independent additive complex Gaussian noises of zero mean with the same 

variance. 

 

 
 

Figure 15.  Transmission scheme with an interfering link and beamforming. 

 

 

Both links are using the same frequency channel (co-channel links). In the case of 

adjacent channels, an additional constant rejection coefficient due to filtering would have to 

be considered and applied to the interference power, but the conclusions would not be 

modified. 

At the output of a ZF equalizer (zero forcing), the general expression of the interference 

term is 

 

 with BF: 

 

𝐽𝑊_𝐵𝐹 = [(𝐻2 𝑉2)
∗(𝐻2𝑉2)]

−1(𝐻2𝑉2)
∗(𝐻12𝑉1)𝑋1  (21) 

 



 and without BF: 

 

𝐽𝑊𝑂_𝐵𝐹 = [(𝐻2 𝑄2)
∗(𝐻2𝑄2)]

−1(𝐻2𝑄2)
∗(𝐻12𝑉1)𝑋1 (22) 

 

where 𝑋1 is the transmitted vector and 𝑄2 is the mapping matrix of the link 2. As we have 

 

𝐻2𝑉2 = 𝑈2𝑆2𝑉2
∗𝑉2 =  𝑈2𝑆2 

 

And 

 

𝑉2
∗𝑉2 = 𝐼𝑁𝑇𝑥×𝑁𝑇𝑥 

 

so 

(𝐻2𝑉2)
∗𝐻2𝑉2 = 𝑆2

∗𝑈2
∗𝑈2𝑆2 = 𝑆2

∗𝑆2 
 

and finally 

 

  𝐽𝑊_𝐵𝐹 = [𝑆2]
−1(𝑈2

∗𝐻12𝑉1)𝑋1 (23) 

 

The total interferences power is then 

 

 𝑃𝐽
𝑊−𝐵𝐹 = 𝑇𝑟𝑎𝑐𝑒 (𝑅𝐽

𝑊−𝐵𝐹) (24) 

 

𝑃𝐽
𝑊𝑂−𝐵𝐹 = 𝑇𝑟𝑎𝑐𝑒 (𝑅𝐽

𝑊𝑂−𝐵𝐹) (25) 

 

where 

 

𝑅𝐽
𝑊−𝐵𝐹 =  E [𝐽𝑊_𝐵𝐹  𝐽𝑊_𝐵𝐹

∗] 
 

and 

 

𝑅𝐽
𝑊𝑂−𝐵𝐹 =  E [𝐽𝑊𝑂_𝐵𝐹   𝐽𝑊𝑂_𝐵𝐹

∗] 
 

To compare the interference power level and the main link signal power, the 𝑆𝐼𝑅𝑖 (signal 

to interference ratio) is calculated for each spatial stream 

 

𝑆𝐼𝑅𝑖
𝑊−𝐵𝐹 =

𝑃𝑠

𝑅𝐽
𝑊−𝐵𝐹(𝑖,𝑖)

 (26) 

 

 

𝑆𝐼𝑅𝑖
𝑊𝑂−𝐵𝐹 =

𝑃𝑠

𝑅𝐽
𝑊𝑂−𝐵𝐹(𝑖,𝑖)

 (27) 

 

where 

 

𝑃𝑠 = 
𝑃𝑒
𝑁𝑠𝑠

 

 

SIR was computed for a 4 × 4 MIMO configuration with Nss = 3 for both links. The SIR 

of each stream is calculated and compared to the corresponding value obtained without the BF 



use. The complementary cumulative distribution function is then plotted (Figure 16 and 

Figure 17). The same previously described environment has been used. The link between one 

transmitter (Transmit2 in Figure 1) and one of the 25 receivers (rec25) for LOS and rec3 for 

NLOS has been chosen as the main link. The links between the second transmitter 

(Transmit1) and the remaining 24 receivers were seen as interfering links. The channel 

matrices are calculated for 10 subcarriers such as previously stated. Thus statistics were 

performed for 240 (10 subcarriers × 24 interfering configurations) realizations of the matrix H 

of the main link. 

Figure 16 and Figure 17 compare the CCDF of 𝑆𝐼𝑅 with and without beamforming in the 

case of a main link in NLOS (Figure 16) and LOS (Figure 17). In 90% of the realizations of 

the first spatial stream, 𝑆𝐼𝑅 is improved by 9 dB in NLOS conditions. The same remarks can 

be drawn in the case of LOS conditions except that SIR is significantly higher as the desired 

Rx is closer to its transmitter. 

The difference between 𝑆𝐼𝑅 with and without TxBF is tightening for the second or the 

third spatial streams. Thus TxBF improves 𝑆𝐼𝑅 especially when the main link corresponds to 

LOS conditions. 

 

 

 
Figure 16.  CCDF of SIR with NLOS condition in main link, 3 streams on  4 × 4 MIMO system. 
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Figure 17.  CCDF of SIR with LOS condition in the main link, 3 spatial streamson 4×4 MIMO system. 

 

 

5. Conclusion 

 
For indoor environments, MIMO systems are the basis of the increased data rate, at least 

theoretically. In practice, the multipath propagation channel is behind the performance 

degradation. However, the use of several options provided by system standards such as 

IEEE802.11n/ac may bring several solutions. Therefore, the transmit beamforming is 

analyzed in this paper. Simulations were performed for a typical residential environment. The 

matrices of the propagation channels were calculated using a ray tracing tool. The SVD 

precoding algorithm has been added to the transmission chain. The obtained results show that 

enabling TxBF increases the received power when NTx is important compared to Nss             

(if Nss = NTx there is no power gain). The received power gain is greater than that of a 

Rayleigh channel, but the fading depth reduction is less important because the channel 

corresponding to the studied environment is probably less scattered. Concerning SNR, for a 

given Nss, it was shown that with TxBF enabled, it is more advantageous to increase the 

number of Rx antennas than the Tx antennas number. The residential MIMO channel is 

sufficiently rich in multipath to improve capacity gain with 3 or 4 spatial streams for a 4 × 4 

MIMO system. Two optimal values of transmitting antenna spacing favor TxBF gain: around 

0.5𝜆 and 1.25𝜆. This result was verified for two different Tx positions and is to be confirmed 

and generalized to other environments. Tx-BF can improve the transmission range especially 

when Nss is sufficiently small compared to NTx. For future work, we plan to analyze the 

impact of the equivalent isotropic radiated power (EIRP) constraints imposed in some 

countries on these conclusions. 
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