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Introduction

A Salem number is an algebraic integer τ > 1 of degree n ≥ 4, whose other conjugates, except for τ -1 , have modulus 1. Its minimal polynomial P = x n + a 1 x n-1 + • • • + a n is reciprocal, i.e., x n P (1/x) = P (x). P is called a Salem polynomial of degree n=2d. The trace of τ is -a 1 . The Lehmer's Salem number is the positive root 1.176280818. . . of the polynomial: L(x) = x 10 + x 9 -x 7 -x 6 -x 5 -x 4 -x 3 + x + 1. It is the smallest known Salem number and has trace -1.

A classical question was the following: do there exist Salem numbers of negative trace below -1 ?

J. McKee and C. J. Smyth proved in 2005 that there are Salem numbers of every trace [START_REF] Mckee | There are Salem numbers of every trace[END_REF] and proved the following theorem.

Theorem For every negative integer -T there is a Salem number of trace -T and degree at most exp exp(22 + 4T logT ).

Then J. McKee and C. J. Smyth in 2004 [START_REF] Mckee | Salem numbers of trace -2 and traces of totally positive algebraic integers[END_REF] found a Salem number of degree 20 and trace -2. They used the relation between Salem numbers and totally positive algebraic integers. In 2011 J. McKee gave [START_REF] Mckee | Computing totally positive algebraic integers of small trace[END_REF] a Salem number of degree 54 and trace -3 using the interlacing method [START_REF] Mckee | There are Salem numbers of every trace[END_REF]. In this work, we give a Salem number of degree 34 and trace -3 and it is expected of smallest possible degree.

Relations between Salem numbers and totally positive algebraic integers.

In a Salem polynomial P with degree 2d, we make the change of variable z = x + 1/x + 2. Then we get a monic integer polynomial Q of degree d whose all roots are real and positive, d-1 are in (0, 4) and one, i.e., τ + τ -1 + 2 is > 4. Its trace is 2d -a 1 . Thus, here we are interested in finding totally positive integer polynomials with degree d = 17 and trace 2d -3 = 31. The first step is to localize the zeros of Q. We use the classical method of explicit auxiliary functions. This method was introduced into number theory by C.J. Smyth [START_REF] Smyth | The mean value of totally real algebraic numbers[END_REF] to study the absolute trace of totally positive algebraic integer α of degree d which is trace(α)/d. This is the Schur-Siegel-Smyth trace problem. For an account of this method before 2006 see [START_REF] Aguirre | The trace problem for totally positive algebraic integers, Number Theory and Polynomials[END_REF]. We use a very effective version of auxiliary function due to V. Flammang [START_REF] Flammang | Construction de fonctions auxiliaires. Application aux mesures de certaines familles d'entiers algébriques[END_REF] to prove that the polynomials Q (degree 17 and trace 31) necessarily have their 17 roots in the interval (0, 6.69).

The problem of establishing lists of degree d monic irreducible polynomials with integer coefficients, only positive real roots and minimal trace is a classical question in Number Theory. In [START_REF] Otmani | Finding degree-16 monic irreducible integer polynomials of minimal trace by optimization methods[END_REF] we have obtained 11 degree 16 polynomials with trace 29 = 2 * 16 -3 (none was found with degree 15). The computer program developped at that time was written in C++, and used the callable GLPK library which supplies a solver for linear programming. This program worked well up to degree 16. Unfortunately, for higher degrees, the program often crashed, looping infinitely with obscure messages about numerical instability in the primal simplex phase. For us, there was no need to seek further afield at that time since our objective was above all to find degree 16 polynomials with trace 29 (none was found for degree 15 and trace 27). For the purpose of this article, it became essential to be able to handle higher degrees, because the goal was to find Salem numbers, and none was found with degree 16. Then, we chose to use the implementation of GLPK in the Python framework, which allows a very good control on the progress of the calculation, via control parameters passed to the dedicated functions.

Formulation as an optimization problem

The way of expressing our problem as a linear programming problem is widely detailed in [START_REF] Otmani | Finding degree-16 monic irreducible integer polynomials of minimal trace by optimization methods[END_REF], so that we just outline the approach for the reader's convenience. Considering a monic irreducible integer polynomial p(x) = x 17 + 16 i=0 a i x i having all roots real and positive, we know (see Section 1) that its roots are necessarely in the interval (0, 6.69). For such a polynomial p, any (β 1 , . . . , β 16 ) which separates its roots is such that p(0) < 0, p(β 1 ) > 0, p(β 2 ) < 0, . . ., p(β 16 ) < 0, p(6.69) > 0. Then, the basic idea is to sample (independently and at random) a great number of 16-tuples (β 1 , . . . , β 16 ) in the interval (0, 6.69) and to use them as roots separators for potential relevant polynomials as follows: we search for the minimum of the linear function 2 (a 0 , . . . , a 16 ) -→ i=0 a i over a feasible set defined by a finite number of linear constraints. The first linear constraints simply derive from inequalities p(0) < 0, p(β 1 ) > 0, . . . , p(6.69) > 0. Another constraint is that all entries of the solution vector are integer since the unkowns a 0 , a 1 , . . . , a 16 of the problem are the integer coefficients of the polynomials which we look for. Coefficient a 16 has the fixed value -31.

Specific research of a Salem number of degree 34 It can easily be seen that searching for a Salem number with degree 34 and trace -3 reduces, via the change of variable z = x → x + 1/x + 2, to search for a degree 17 monic irreducible integer polynomial with a 16 = -31, with 16 real roots in (0.0, 4.0) and one real root in (4.0, 6.69). This is just a particular case of our global framework, so that we performed specific calculations in this purpose.

Implementation and results

Implementation

We have implemented our search algorithm as a single Python program using specific libraries, namely the Linear Programming modeler PuLP (see [START_REF] Mitchell | PuLP: A Linear Programming Toolkit for Python[END_REF]) that calls GLPK (see [START_REF][END_REF]), the GNU Linear Programming Kit intended for solving (among other things) mixed integer programming problems by means of the revised simplex method. The principle of the algorithm is to perform three-steps loops as follows:

1. Sampling a 16-tuple (β 1 , . . . , β 16 ), 2. Solving a linear integer programming problem, 3. Testing the possibly obtained polynomial (irreducibility).

For the most part of samples, we get no polynomial. The obtained polynomials have integer coefficients thanks to the constraints, but they must be tested because it is not certain that they are irreducible. The tests of irreducibility are made via the GP-PARI number theory library ( [START_REF] Pari/Gp | version 2.5.0[END_REF]). We stopped the calculations when our algorithm supplied numerous times the same polynomials.

Results

A list of 41 monic integer irreducible polynomials

with degree 17 and trace 31.

Below, we just give the beginning of the list found by our method. Our full list is available online: please see http://iecl.univ-lorraine. fr/ ~Jean-Marc.Sac-Epee/fulllist17.html ⊲ x 17 -31x 16 +431x 15 -3555x 14 +19398x 13 -73951x 12 +202885x 11 -406759x 10 +599430x 9 -648390x 8 +510888x 7 -289314x 6 +115459x 5 -31585x 4 + 5690x 3 -634x 2 + 39x -1 ⊲ x 17 -31x 16 +431x 15 -3557x 14 +19441x 13 -74353x 12 +205042x 11 -414146x 10 +616419x 9 -675267x 8 +540336x 7 -311494x 6 +126691x 5 -

35256x 4 + 6412x 3 -709x 2 + 42x -1 ⊲ . . .
Let us remind that these 41 degree 17 trace 31 polynomials are totally positive.

3.2.2

A Salem number with degree 34 and trace -3.

Fixing the two last roots separators to 4.0 and 6.69, our method provided the polynomial x 17 -31x 16 + 433x 15 -3608x 14 + 20013x 13 -78079x 12 +220717x 11 -458940x 

Final remarks

Since our method is based on uniform samples, the fact that each obtained polynomial was repeatedly found argues in favour of the completeness of our list. Moreover, our Python program is very stable, so that it is very easy to tackle higher degrees. For example, we did it easily for degrees 18, 19 and 20 and we obtained several Salem numbers with degree 36, 38 and 40, and trace -3, available at http://iecl. univ-lorraine.fr/ ~Jean-Marc.Sac-Epee/fulllist17.html Finally, this algorithm seems to be adaptable to a great number of problems.

  10 +705459x 9 -799257x 8 +660596x 7 -391294x 6 + 161786x 5 -44982x 4 + 7979x 3 -837x 2 + 46x -1 which has 16 roots in (0.0, 4.0) and one root in (4.0, 6.69). Using the usual transformation (see section 2) z = x → x + 1/x + 2, we get the reciprocal polynomial x 34 +3x 33 +2x 32 -10x 31 -40x 30 -89x 29 -149x 28 -208x 27 -257x 26 -293x 25 -315x 24 -322x 23 -311x 22 -281x 21 -237x 20 -191x 19 -156x 18 -143x 17 -156x 16 -191x 15 -237x 14 -281x 13 -311x 12 -322x 11 -315x 10 -293x 9 -257x 8 -208x 7 -149x 6 -89x 5 -40x 4 -10x 3 +2x 2 +3x+1, and the Salem number is τ = 2.7616448085 . . .
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