
HAL Id: hal-01100948
https://hal.science/hal-01100948v1

Submitted on 7 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SPAGHETtI: Scheduling/Placement Approach for
Task-Graphs on HETerogeneous archItecture

Denis Barthou, Emmanuel Jeannot

To cite this version:
Denis Barthou, Emmanuel Jeannot. SPAGHETtI: Scheduling/Placement Approach for Task-Graphs
on HETerogeneous archItecture. Euro-Par, Aug 2014, Lisboa, Portugal. pp.174 - 185, �10.1007/978-
3-319-09873-9_15�. �hal-01100948�

https://hal.science/hal-01100948v1
https://hal.archives-ouvertes.fr

SPAGHETtI: Scheduling/Placement Approach
for task-Graphs on HETerogeneous archItecture

Denis Barthou12 and Emmanuel Jeannot2

1 Bordeaux Institute of Technology, France
2 Inria, LaBRI, France

Abstract. We propose a new algorithm, called SPAGHETtI, for static
scheduling tasks on an unbounded heterogeneous resources where re-
sources belongs to different architecture (e.g. CPU or GPU). We show
that this algorithm is optimal in complexity O(|E||A|2 + |V ||A|), where
|E| is the number of edges, |V | the number of vertices of the scheduled
DAG and |A| the number of architectures – usually a small value – and
that it is able to compute the optimal makespan. Moreover, the number
of resources to be used for executing the schedule is given by a linear
time algorithm. When the resources are bounded we provide a method to
reduce the number of necessary resources up to the bound providing a set
of compromises between the makespan and the size of the infrastructure.

1 Introduction

Directed acyclic graphs (DAGs) have been used to model [7, 8, 15], execute [2, 5,
12] and predict [14] the performance of parallel applications. There exists many
scheduling algorithms for mapping tasks of a DAG onto the resources of parallel
machines [13, 17, 20]. A lot of work have been proposed to schedule task graphs
on heterogeneous resources when execution and communication time depend on
the machine that executes a task [3, 16, 17]. However, recent advances in High-
Performance Computing (HPC) have led to two important considerations:

– HPC systems feature a relatively low heterogeneity. Contrary to proposed
solutions of the literature where each individual machine can perform dif-
ferently, one often face a fix number of architectures (e.g. CPU, GPU, MIC,
etc.) where performance is homogeneous.

– HPC systems and their applications are of very large-scale. Top end HPC
systems can have as many as hundreds of thousands of processors. The tiled
version of the dense Cholesky factorization for instance has more than 10
million tasks (matrix of order 204800 and tiles size of 512). Therefore, the
complexity to schedule the DAGs is crucial in this setting.

In this paper, we propose a new static scheduling algorithm designed for this
kind of systems. Instead of considering each individual processor independently
it considers the architectures of the target machine. Within each architecture
the communication and execution time is considered homogeneous. Thanks to

that feature, for an unbounded number of resources, it is able to schedule the
input graph optimally in terms of makespan, with an optimal complexity of
O(|E||A|2 + |V ||A|) where |E| is the number of edges, |V | of vertices of the DAG
and |A| the number of architectures and potentially resorting to task duplication.

The remaining of the paper is organized as follows. In Section 2, we discuss
the related work. The models are described in Section 3. The algorithm is detailed
in Section 4. How to go from an unbounded number of resources to a bounded
number is discussed in Section 5. Experimental results are provided in Section 6.

2 Related Work

Static scheduling task graphs on homogeneous resources is NP-hard even for
two machines (reduction from 2-partition [9]). However, for unbounded resources
and no communication cost it is clearly in P as it requires to use new resources
(resource augmentation) to have a schedule of the length of the critical path.
In the case of communication cost, optimal scheduling can be found for some
special input graph only (without [19] or with [1] duplication).

There exists a lot of static scheduling heuristics for heterogeneous scheduling
(see [6] for some examples. If duplication is not allowed, HEFT [17] provides a
good schedule in a reasonable complexity O(|V |2p), with p the number of pro-
cessing units. In [6], it has been experimentally shown that HEFT is one of the
best heuristics (in terms of makespan) for random graphs among 20 different
heuristics. In case duplication is allowed, TANH [3] is a heuristic of interest for
our study as it provides a low complexity (O(|V |(p log p) + |V |2)) and is opti-
mal under some hypothesis. The authors show that TANH provides an optimal
schedule (in terms of makespan) if a “A fork node i that is not a join node is as-
sumed to have the same execution time on all processors.”. Such hypothesis does
not hold in many cases. For instance in the Cholesky task graph, the POTRF
task is a fork task that is not a join task and its runtime is very different if you
execute it on a CPU or on a GPU.

In conclusion static scheduling heuristics have a complexity that depends
on the number of processors and are not able in the general case, due to NP-
completeness, to provide an optimal schedule.

3 Models and Definitions

We consider an application modeled by a directed acyclic task graph (DAG) G =
(V,E) where V is the set of tasks to be executed and E represents precedence
constraints between tasks. The execution model of the DAG is close to the macro-
dataflow model where a task can be executed only after all its predecessors have
terminated and when communications from its predecessors and this task have
been performed. However, it differs in the way costs are modeled.

We want to model a large platform where we have different architectures.
Think for instance of a node with a set of multicore processors (a NUMA ma-
chine with several hundreds of cores) with some accelerators (e.g. GPU cards

having each several hundreds of CUDA cores or Xeons Phi each featuring 60
cores with 4 threads each). In this case, we assume that the communication
cost between two architectures is the same whatever the actual instances that
are sending and receiving the data. Moreover, the communication costs are con-
sidered constant when data move within one architecture (whether this task is
executed on the same instance as its predecessor or not). This later assumption is
different from the standard DAG scheduling model where a distinction is made if
the communication is occuring within the same instance (has no cost) or between
different instances (has a non zero cost). This is justified as follows. First, in our
model, this constant cost can be zero in order to neglect intra-architecture com-
munications compared to inter-architecture communications. Second, we want
to produce a schedule where high-level decisions are taken such has: ”On which
architecture should I schedule this task ?” We think the impact of locality on a
multi-architecture machine is more important than locality inside one given ho-
mogeneous architecture. Third, the assumption of constant communication time
within an architecture makes all the difference theoretically speaking: it is this
assumption that allows us to find an optimal solution. Finally, the experiment
section will show that it leads to predictable execution time and is therefore
reasonable in real settings.

Formally, let ω be the communication time function, defined for each edge
of the graph, and τ is the execution time function, defined for each vertex. We
consider a set of different architectures, A. The communication time for a given
edge depends on the architecture executing the vertices of this edge. Hence, the
function ω is defined over E×A2 → R: For each edge, we have a communication
matrix of order |A| ∗ |A| that provides the communication times of this edge
depending on the source and destination architecture. Similarly the execution
time function is defined as V ×A→ R: for each task we have a vector of execution
time of order |A| (see an example in Fig. 1).

Definition 1 (Start time). For a task graph G and an architecture set A, the
start time is a function:

θ : V ×A→ N
i, j → t

that associates to task i and architecture j a time t for i to start on j. We denote
the starting time of task i on architecture j: θi[j].

The start time is a total function, defined for all vertices and architectures. It
does not imply that tasks are systematically duplicated on all architectures,
but only represents possible starting times according to architectures. The ear-
liest completion time is defined as the minimal time to start a task, added to
the time to execute the task, considering all possible architectures: Cearliesti =
minj∈A θi[j]+τi[j] The makespan is then simply deducted: Cmax = maxi∈V C

earliest
i .

The makespan usually involves the latest completion time, when tasks are du-
plicated. The earliest completion time is equal to the latest completion time for

non-duplicated tasks. This is not a limitation, since it is always possible to de-
fine an additional sink task, having as predecessors the tasks initially with no
successors. Besides, our mapping algorithm will ensure that the tasks with an
earliest completion time equal to the makespan are not duplicated.

The mapping function defines more precisely the resource executing task i:

Definition 2 (Mapping). A mapping of a task graph G is a function

µ : V ×A→ N ∪ {⊥}
i, j → r

that associates to each task i and architecture j the resource number r that ex-
ecutes i. When i is not executed on architecture j, r corresponds to the special
value ⊥. When the same task is mapped to different architectures, there is du-
plication. We denote the resource executing task i on architecture j: µi[j].

Definition 3 (Constraints). Given a graph G, a set of architectures A and
a vector of resources r = (rk)k∈A, the functions µ and θ define resp. a valid
mapping and schedule if and only if the following constraints are checked:

1. Resource constraint. One task is executed at a time on the same resource.

∀i, j ∈ V, k ∈ A, i 6= j, µi[k] = µj [k] 6= ⊥ ⇒ (θi[k] + τi[k] ≤ θj [k])

∨ (θj [k] + τj [k] ≤ θi[k]) (1)

2. Architecture constraint. Resources are bounded by r:

∀i ∈ V, k ∈ A,µi[k] ≤ rk (2)

3. Dependence constraints. The start time follows the precedence constraint and
communication costs:

∀(i, j) ∈ E,∀k,∃h, θj [k] ≥ θi[h] + τi[h] + ωij [h, k] (3)

4 The SPAGHETtI Algorithm

We consider here the computation of the minimum makespan when there is no
resource constraint (1) and no architecture constraint (2). Within this formula-
tion, it is possible to define a schedule and a mapping function giving for each
task the architecture(s) where it executes.

4.1 Minimizing Makespan

Consider first the case where there is only one architecture available, i.e. |A| = 1.
Then ω and τ are only functions of tasks. The optimal makespan can be evaluated
by computing the earliest start time of each task. According to the dependence
constraint (3), this start time fulfills the following property:

θearliestj = max
(i,j)∈E

(θearliesti + τi + ωij)

We can arbitrarily define the earliest start time for tasks with no predecessor
in G as 0. This formulation then corresponds to a longest path problem on the
DAG G (critical path). This can be solved in O(|V |+|E|) time with a topological
sort and then the evaluation in topological order of the function θearliest.

Now, consider the case where |A| ≥ 1. The dependence constraint defines the
value of the earliest start time as:

θearliestj [k] = max
(i,j)∈E

min
h∈A

(θearliesti [h] + τi[h] + ωij [h, k]).

Using (min,+) notation algebra, where the addition corresponds to a min and
multiplication to +, the min term can be rewritten into:

∑
h∈A(θearliesti [h] ∗

τi[h] ∗ ωij [h, k]. This corresponds to a matrix vector product with θi and τi
vectors indexed by A and ωi,j a square matrix of rank |A|. The vector definition
of θearliestj is therefore:

θearliestj = max
(i,j)∈E

θearliesti ∗ diag(τi) ∗ ωi,j (4)

with max the component-wise maximum and diag(τi) the diagonal matrix ob-
tained from the vector. This recursive definition of θearliestj is similar to the case
where |A| = 1, and leads to the definition of the SPAGHETtI algorithm.

Algorithm 1: Compute the earliest starting time for each vertex in G
Input: G = (V,E) // The input DAG
Input: τ // Function defining the duration time vector
Input: ω // Function defining the communication time vector

1 forall the i ∈ G do // Assign a time vector, for all architectures
2 θi ← 0

3 Cmax ← 0
4 S ← Topological sort(G)
5 forall the i ∈ S do // Visit G in topological order, starting with source
6 for every vertex j predecessor of i in G do
7 θi = max(θi, θj ∗ diag(τj) ∗ ωj,i)// Element-wise maximum on vectors

8 Cmax ← max(Cmax,maxk∈A θi[k] + τi[k])

Figure 1 shows an example of the schedule and makespan computed by
SPAGHETtI on a graph, for two architectures, CPU and GPU. CPU values
are put in the first row/column of vectors and matrices, GPU in the second.
For instance, CPU→CPU communication between a and e takes 1, CPU→GPU
takes 3. The earliest starting time for task a is 0 for both architectures. The
starting time for task b, when started on CPU, is at least the time to complete a
on CPU and then communicate with b, or complete a on GPU and communicate
accross architectures. This leads to a starting time of 2. This is the same case for
GPU, and for task c. Task e on CPU cannot complete before either task a has
completed on CPU and CPU→CPU communication has finished (duration 1),
or task a has completed on GPU and GPU→CPU communication has finished
(duration 4): the earliest starting time for e on CPU is therefore 2. We let the
reader continue the reasoning and check the values of the table on the right.

a"
1,1"

c"
1,5"

b"
5,1"

e"
6,6"

d"
2,2" f"

1,1"

1" 1"

1" 1" 1" 1"

1" 1"

1" 3"

4" 2"

1" 4"

4" 1"
1" 4"

4" 1"

0" 1"

1" 0"

1" 1"

1" 1"

Task θearliestCPU θearliestGPU Mapping

a 0 0 CPU

b 2 2 GPU

c 2 2 CPU

d 7 7 CPU

e 2 3 CPU

f 8 9 CPU

Fig. 1. On the left, the task graph with the values of τ for each task and ω for each
edge. On the right, the earliest starting time for each task, given when the task starts
on CPU and on GPU. Then the last column corresponds to the architecture where the
task is mapped in order to reach the optimal makespan (9 in this example).

Theorem 1. Algorithm 1 computes the optimal makespan of G with the optimal
complexity O(|A|2 ∗ |E|+ |A| ∗ |V |).

Proof. First, let us show that the SPAGHETtI algorithm computes indeed the
optimal makespan. Assume that Algorithm 1 does not compute the optimal
makespan. There exists a scheduling function θ′ verifying the dependence con-
straint (3) such that for all architectures k, θ′sink[k] ≤ θsink[k] and for at least
one architecture, this inequality is strict. Such relation is denoted θ′sink < θsink.
Consider a task i0, minimal according to the topological order, such that θ′i < θi.
θi0 is defined as:

θi0 = max
(j,i0)∈E

(θj ∗ diag(τj) ∗ ωj,i0).

As θj = θ′j for all the predecessors j of i0 and there exists a k ∈ A such that
θ′i0 [k] < θi0 [k], we have:

θ′i0 [k] < max
(j,i0)∈E

min
h∈A

(θ′j [h] ∗ τj [h] ∗ ωj,i0 [h, k]).

Thus there exists a predecessor j of i0 such that for all architecture h ∈ A:

θ′i0 [k] < θ′j [h] ∗ τj [h] ∗ ωj,i0 [h, k].

This is in contradiction with the dependence constraint (3), and contradicts the
definition of θ′. Hence Algorithm 1 computes the optimal makespan.

Now line 7 corresponds to O(|A|2 ∗ |E|) operations, the |A|2 term coming
from the matrix vector product θj ∗ diag(τj) ∗ ωj,i. Line 8 takes O(|A| ∗ |V |)
operations due to the max operation. The total complexity corresponds to the
size of the inputs. Since the makespan may depend on all of them, this shows
the complexity is optimal. �

4.2 Mapping Tasks to Architectures

Finding a mapping function corresponds to finding one or several architectures
for each task, compatible with earliest starting time constraints. As there is no

resource constraints, µ is here an indicator function returning a boolean: a task
i is mapped on an architecture j ∈ A if µi[j] = 1 otherwise µi[j] = 0. A task is
duplicated on two different architectures j, k, j 6= k if µi[j] = µi[k] = 1.

For all tasks with no successor in G, the architecture is chosen so that the
earliest completion time can be attained:

∀h ∈ A, h = min{k ∈ A | θi[k] + τi[k] = Cearliesti } ⇒ µi[h] = 1. (5)

Note that these tasks are not duplicated, since h is uniquely defined. The makespan
corresponds to the earliest completion time of one of these tasks, hence the map-
ping here is chosen so that the optimal makespan is reached.

For all the other tasks, the dependence constraint guides the choice of archi-
tecture that can execute them: Consider a task i ∈ G and an edge (i, j) ∈ E.
Assume j is mapped on architecture k ∈ A, then the schedule computed by
the SPAGHETtI algorithm ensures there exists an architecture h ∈ A such that
θi[h] ≤ θj [k]− τi[h]− ωij [h, k]. This defines a value for µi:

∀(i, j) ∈ E,∀k, l ∈ A,
µj [k] = 1 ∧ l = min{h ∈ A | θi[h] ≤ θj [k]− τi[h]− ωij [h, k]} ⇒ µi[l] = 1. (6)

An alternative definition of µ can prevent useless task duplication, whenever
possible. Instead of Equation (6), the following equation can be used:

Hi = {h | ∀(i, j) ∈ E,∀k ∈ A,µj [k] = 1⇒ θi[h] ≤ θj [k]− τi[h]− ωij [h, k]},
Hi 6= ∅ ⇒ µi[minHi] = 1.(7)

When this equation does not define a value for µi, Equation (6) has to be used
and duplication is necessary. Equations (5), (6) and (7) define recursively the
function µ: Starting from tasks with no successor, µ is defined for all tasks in
a reverse topological order. The definition of µ shows that this computation re-
quires O(|A|2|E|) operations when applying definitions (6) or (7) and O(|A||V |)
operations when applying definition (5). This is the optimal complexity since, as
for the schedule, it corresponds to the size of the inputs G, τ and ω. Therefore,
this procedure, combined with the SPAGHETtI algorithms provides a solution
that is optimal in terms of makespan and complexity.

Figure 1 shows the result of the mapping computation on the task graph. As
the task f as a lower completion time 8 + 1 = 9 when executed on CPU, this
is the mapping of this task. Task e and d are indifferently mapped to CPU or
GPU (here CPU, ordered first). For task b, there is only one possible mapping
to ensure that d is scheduled at time 7: b has to be scheduled on GPU.

4.3 Determining the Number of Resources for Each Architecture

The required amount of resources for each architecture is not given by the previ-
ous algorithms. To determine this number of resources we use a greedy algorithm
that allocates task to architecture instances, extending the previous architecture

mapping computed in the previous section and computing the actual instance
µi[k] of task i when mapped on architecture k. For each architecture we consider
the tasks by increasing start time and we allocate them to the first resource of
the architecture that can respect the start scheduling constraints. If no resource
is available we proceed with resource augmentation and create a new instance of
this architecture. Therefore, the number of resources used is the minimal num-
ber of resources that respect the schedule (i.e. the task start time). Moreover,
this allocation is optimal in terms of platform dimensioning only if there is no
sufficient slack in the schedule to delay tasks in order to save resources.

5 Exploring Tradeoffs for Heterogeneous Machines

Here, we deal with the case where the number of resources is higher than the
available ones. There exists several ways of reducing the number of resources
used by a schedule. In homogeneous setting an effective way was explored by the
Pyrros project [19] where, after DSC [20] clusters were merged using the work
profiling method of [10]. Another technique, presented in the context of register
allocation, consists in adding some dependence edges in the graph in order to
reduce the number of simultaneously live variables [18].

In heterogeneous environments, merging architectures has no meaning. We
propose here a method similar to the one proposed for register allocation, where
instructions are replaced by tasks and resources are processing units instead of
registers. We reduce the inherent parallelism of the task graph by iteratively
adding edges and then re-computing the schedule, the mapping and the number
of resources until we reach the target number of resources. The procedure is
depicted in Algorithm 2.

Algorithm 2: Adding n edges to the DAG G to reduce its parallelism
Input: G = (V,E) // The input DAG
Input: n // Number of edges to add

1 S ← Topological sort(G)
2 I ← Interference graph(G);
3 forall the n edges to be added do // We will add n edges
4 i← Highest degree node(I)
5 j ← Highest degree node(neighbor(i))
6 if i ≺S j then // If i is before j in the topological order
7 Add (i, j) in G // Communication cost is set to 0

8 else
9 Add (j, i) in G // Communication cost is set to 0

10 Remove (i, j) in I // and decrease degree of i and j

To add edges to the graph in order to reduce its parallelism, we first sort
nodes in topological order. Then, we build the interference graph I of the DAG.
In the interference graph, vertices are the same as in the original DAG. There
is an edge between two vertices if there is no path between them in the DAG
(they could be scheduled in parallel). In this interference graph we choose the
node i of highest degree and a neighbor of i of highest degree. Then, this edge
is added to the DAG G and the interference graph is updated. We iterate until

n edges have been added. Therefore we add a batch of n edges before applying
again the SPAGHETtI algorithm. The rational behind adding several edges at
the same time is to amortize the interference graph construction. The rational
behind choosing the highest degree nodes in the interference graph is that a node
with high degree has a lot of freedom in terms of parallelism and we are therefore
more likely to impact the whole graph parallelism by reducing the parallelism of
this kind of nodes. We avoid adding cycles in the original DAG: the added edge
is directed so that it respects the topological order (line 6).

Moreover, each time we add a set of n edges, we compute the makespan
of the new SPAGHETtI’s schedule. This outputs a new compromise between
the execution time and the number of resources. Hence, with this procedure we
explore a full set of compromises (time vs. resources) until we reach the required
bound. This is helpful for decision makers to correctly dimension their platform.
In the following experiments, n was chosen between 10 and 100.

6 Experimental Results

We have implemented all the algorithms and procedures of the previous section.
They take an input DAG, the communication and computation cost of each task
on each architecture and the target number of resources for each architecture.
In the following experiments intra-architecture communications are always zero.

We have also designed a simple runtime system that executes the static
schedule on the given environments. In our experiments we have used nodes
featuring 2 6-cores intel Xeons (X5650) at 2.67GHz with 36 Gb of RAM and 3
NVIDIA Tesla M2070 GPU at 1.15 GHz with 6 Gb of memory.

We have coded the dense tiled Cholesky factorization [11]. It features 4 ker-
nels (POTRF, TRSM, SYRK and GEMM) that are executed using the Intel
MKL library 12.1.9 for the CPUs and the CUBLAS version 4.2 for the GPUs.
The Cholesky DAG can be seen here [4].

 10

 100

 1000

 10000

 100000

 1 10 100 1000

Ti
m

e
in

 m
s

Number of kernels

Predicted Scheduled Time
Real Execution Time

(a)

 1

 10

 100

 1000

 4 6 8 10 12 14 16

Ti
m

e
in

 m
s

Number of tiles

Predicted Scheduled Time
Real Execution Time

(b)

Fig. 2. Model validation experiments on (a) a chain of SYRK kernels alternatively on
CPU and GPU, (b) on a tiled Cholesky factorization with 4096x4096 tile size.

Model Validation To validate our model we have executed a real schedule,
measured the execution time of each kernel and compared the predicted schedule
time with the measured values.

In Fig. 2(a), we execute a chain of SYRK kernels that are scheduled alter-
natively between a GPU and CPU. We see that as the chain size increases, the
performance between the predicted time and the actual execution time becomes
closer. This validates our execution and inter-architecture communication model.

In Fig. 2(b), we execute the Cholesky factorization3 using tile size of 4096
and the decomposition of the matrix varies between 4 and 16 tiles (hence, the
order of the matrix varies between 16384 and 65536). Here, we see that the
predicted execution time is just a little higher than the real execution time. This
validates the kernel execution time and communication time within a GPU as
all the tasks, in this case, are scheduled on the GPUs.

 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000

 10 100

M
ak

es
pa

n

number of resources of each architecture

Spaghetti
HEFT

(a)

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

M
ak

es
pa

n

Number of nodes in the triangle graph

HEFT high density of problematic nodes
HEFT low density of problematic nodes

Spaghetti high density of problematic nodes
Spaghetti low density of problematic nodes

(b)

Fig. 3. HEFT and SPAGHETtI comparison (a) for bounded number of resources for
the Cholesky Graph, (b) for unbounded number of resources in case of duplication.

Comparison with HEFT Being a list scheduling algorithm, HEFT is not
able to make a short-term sacrifice to achieve a gain in the long term. This is
exemplified with Fig. 3(a). In this Figure, we schedule a Cholesky DAG of 1540
nodes on two different architectures. Communicating within an architecture is
free but communicating between architecture is very costly. In this case, the first
task to be scheduled is faster on architecture 1 than on architecture 2 and the
other tasks are faster on architecture 2. HEFT will execute the first task on
architecture 1 and stay on this architecture until the end of the execution. On
the other hand, the execution cost of the tasks on architecture 2 can amortize
the communication time: SPAGHETtI pays the cost of executing the first task
on architecture 2 and continues to execute all the tasks on this architecture.
The optimal makespan is 2505 for 191 resources of architecture 2. We output
all the compromises found by our method between 191 and 5 resources. For 191
resources, SPAGHETtI’s makespan is 1.9 faster than the HEFT one. But if we
reduce the number of resources to 5 for both architectures, SPAGHETtI still

3 The factorization was checked correct by post-processing the result.

outperforms HEFT by a factor of 2.2. We explain the increase of performance
ratio as follows. For a large number of resources SPAGHETtI does not need to
use duplication but when the number of resources decreases, SPAGHETtI finds
that duplication reduces the makespan even more. Indeed, it starts using this
feature when the number of available resources is lower than 105.

In order to assess the importance of duplication, we have tested the case of
a triangle DAG, where from time to time, two nodes (called problematic nodes)
sharing the same predecessors, have an opposite behavior in terms of execution
time (one is more efficient on one architecture while the other is more efficient
on the other architecture) and in terms of communication time (going from
the architecture they favor to the other architecture is very costly). The other
tasks are homogeneous (they have the same execution time on every architec-
tures). In this case, it is better to duplicate nodes that are predecessors of these
problematic nodes in order to avoid to pay the communication cost while these
nodes are executed on their privileged architecture. This is what is depicted on
Fig 3(b) where we see that, the inability of HEFT to duplicate nodes, adds a big
overhead in the makespan. We also see that for small number of nodes, HEFT
and SPAGHETtI perform identically: this is due to the fact that there is no
problematic nodes for small instances.

7 Conclusion

Being able to schedule a DAGs on a large parallel machine is a challenge. Most
heterogeneous static scheduling heuristics have a complexity that depends on the
number of resources. In this paper we propose to classify the resources by archi-
tecture in order to reduce the complexity of the scheduling process and to cope
with modern HPC environments where the heterogeneity is relatively low. We
also use a model where the communication time depends only on the source and
destination architecture and not on the instances of these architecture. Thanks
to this hypothesis, we are able to provide an optimal mapping strategy with a
very low complexity. We then show that we can find the minimal number of
resources required to respect the schedule start time and we are able to propose
a set of compromises (makespan vs. platform size) in order to help decision mak-
ers to dimension their environment depending on the time-to-solution constraint
they impose. Results show that the proposed model is verified in some real set-
tings and that we are able to amortize the execution of some task on suboptimal
resources or to duplicate tasks when necessary.

Future works are directed towards a better optimization of the part where we
switch from unbounded to bounded resources. We plan to do this by exploiting
the slack of the schedule and map tasks on suboptimal resources as long as the
schedule length is not increased.

Acknowledgement.

We would like to thank Valentin Fréchaud for his help in the implementation
and test of the SPAGHETtI method.

References

1. Ahmad, I., Kwok, Y.K.: On exploiting task duplication in parallel program schedul-
ing. Parallel and Distributed Systems, IEEE Transactions on 9(9), 872–892 (1998)

2. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: Starpu: a unified platform
for task scheduling on heterogeneous multicore architectures. Concurrency and
Computation: Practice and Experience 23(2), 187–198 (2011)

3. Bajaj, R., Agrawal, D.P.: Improving scheduling of tasks in a heterogeneous envi-
ronment. Parallel and Distributed Systems, IEEE Transactions on 15(2), 107–118
(2004)

4. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra, J.:
Dague: A generic distributed dag engine for high performance computing, innova-
tive computing laboratory technical report. Tech. rep., ICL-UT-10-01 (2010)

5. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra, J.:
Dague: A generic distributed dag engine for high performance computing. Parallel
Computing 38(1), 37–51 (2012)

6. Canon, L.C., Jeannot, E., Sakellariou, R., Zheng, W.: Comparative evaluation
of the robustness of dag scheduling heuristics. In: Grid Computing. pp. 73–84.
Springer (2008)

7. Chong, F.T., Sharma, S.D., Brewer, E.A., Saltz, J.: Multiprocessor runtime support
for fine-grained, irregular dags. Parallel Processing Letters 5(04), 671–683 (1995)

8. El-Rewini, H., Lewis, T., Ali, H.: Task Scheduling in Parallel and Distributed
Systems. Prentice Hall (1994)

9. Garey, M., Johnson, D.: A Guide to the Theory of NP-Completeness. W.H. Free-
man and company, New York (1979)

10. GEoRGE, A., HEAth, M.T., Liu, J.: Parallel cholesky factorization on a shared-
memory multiprocessor. Linear Algebra and its applications 77, 165–187 (1986)

11. Gustavson, F.G., Karlsson, L., K̊agström, B.: Distributed sbp cholesky factoriza-
tion algorithms with near-optimal scheduling. ACM Transactions on Mathematical
Software (TOMS) 36(2), 11 (2009)

12. Jeannot, E.: Automatic multithreaded parallel program generation for message
passing multiprocessors using parameterized task graphs. In: International Confer-
ence on Parallel Computing (2001)

13. Leung, J.Y.T. (ed.): Handbook of Scheduling. Chapman & Hall/CCR (2004)
14. Mak, V.W., Lundstrom, S.F.: Predicting performance of parallel computations.

Parallel and Distributed Systems, IEEE Transactions on 1(3), 257–270 (1990)
15. Sinnen, O.: Task scheduling for parallel systems, vol. 60. Wiley. com (2007)
16. Tang, X., Li, K., Liao, G., Li, R.: List scheduling with duplication for heterogeneous

computing systems. J. of parallel and distributed computing 70(4), 323–329 (2010)
17. Topcuoglu, H., Hariri, S., Wu, M.y.: Performance-effective and low-complexity task

scheduling for heterogeneous computing. Parallel and Distributed Systems, IEEE
Transactions on 13(3), 260–274 (2002)

18. Touati, S.A.A., Eisenbeis, C.: Early control of register pressure for software
pipelined loops. In: Proceedings of the International Conference on Compiler Con-
struction. pp. 17–32. CC’03, Springer-Verlag, Berlin, Heidelberg (2003)

19. Yang, T., Gerasoulis, A.: Pyrros: Static Task Scheduling and Code Generation
for Message Passing Multiprocessor. In: Supercomputing’92. pp. 428–437. ACM,
Washington D.C. (Jul 1992)

20. Yang, T., Gerasoulis, A.: DSC Scheduling Parallel Tasks on an Unbounded Number
of Processors. IEEE Trans. on Parallel and Distributed Systems 5(9) (1994)

