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Abstract

Chaining techniques show that if X is an isotropic log-concave random
vector in R

n and Γ is a standard Gaussian vector then

E‖X‖ ≤ Cn
1/4

E‖Γ‖

for any norm ‖ · ‖, where C is a universal constant. Using a completely
different argument we establish a similar inequality relying on the thin-

shell constant

σn = sup
(

√

Var(|X|); X isotropic and log-concave on R
n
)

.

In particular, we show that if the thin-shell conjecture σn = O(1) holds,
then n

1/4 can be replaced by log(n) in the inequality. As a consequence,
we obtain certain bounds for the mean-width, the dual mean-width and
the isotropic constant of an isotropic convex body. In particular, we give
an alternative proof of the fact that a positive answer to the thin-shell
conjecture implies a positive answer to the slicing problem, up to a loga-
rithmic factor.

1 Introduction

Given a stochastic process (Xt)t∈T , the question of obtaining bounds for the
quantity

E
(

sup
t∈T

Xt

)

is a fundamental question in probability theory dating back to Kolmogorov, and
the theory behind this type of question has applications in a variety of fields.

The case that (Xt)t∈T is a Gaussian process is perhaps the most important
one. It has been studied intensively over the past 50 years, and numerous bounds
on the supremum in terms of the geometry of the set T have been attained by
Dudley, Fernique, Talagrand and many others.

The case of interest in this paper is a certain generalization of the Gaussian
process. We consider the supremum of the process

(Xt = 〈X, t〉)t∈T
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where X is a log-concave random vector in R
n and T ⊂ R

n is a compact
set. Throughout the article 〈x, y〉 denotes the inner product of x, y ∈ R

n and
|x| =

√

〈x, x〉 the Euclidean norm of x. Our aim is to obtain an upper bound on
this supremum in terms of the supremum of a corresponding Gaussian process
Yt = 〈Γ, t〉 where Γ is a gaussian random vector having the same covariance
structure as X .

Before we formulate the results, we begin with some notation. A probability
density ρ : Rn → [0,∞) is called log-concave if it takes the form ρ = exp(−H)
for a convex function H : R

n → R ∪ {+∞}. A probability measure is log-
concave if it has a log-concave density and a random vector taking values in R

n

is said to be log-concave if its law is log-concave. Two canonical examples of
log-concave measures are the uniform probability measure on a convex body and
the Gaussian measure. It is a well-known fact that any log-concave probability
density decays exponentially at infinity, and thus has moments of all orders.
A log-concave random vector X is said to be isotropic if its expectation and
covariance matrix satisfy

E(X) = 0, cov(X) = id.

Let σn be the so-called thin-shell constant:

σn = sup
X

√

Var(|X |) (1)

where the supremum runs over all isotropic, log-concave random vectors X in
R

n. It is trivial that σn ≤ √
n and it was proven initially by Klartag [K2] that

in fact
σn = o(

√
n).

Shortly afterwards, Fleury-Guédon-Paouris [FGP] gave an alternative proof of
this fact. Several improvements on the bound have been established since then,
and the current best estimate is σn = O(n1/3) due to Guédon-Milman [Gu-M].
The thin-shell conjecture, which asserts that the sequence (σn)n≥1 is bounded,
is still open. Another related constant is:

τ2n = sup
X

sup
θ∈Sn−1

n
∑

i,j=1

E
(

XiXj〈X, θ〉
)2
, (2)

where the supremum runs over all isotropic log-concave random vectors X in
R

n. Although it is not known whether τn = O(σn), we have the following
estimate, proven in [E]

τ2n = O
(

n
∑

k=1

σ2
k

k

)

. (3)

The estimate σn = O(n1/3) thus gives τn = O(n1/3), whereas the thin-shell
conjecture yields τn = O(

√
logn).

We denote by Γ the standard Gaussian vector in R
n (with identity covariance

matrix). We are now ready to formulate our main theorem.
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Theorem 1. Let X be an isotropic log-concave random vector in R
n and let

‖ · ‖ be a norm. Then there is a universal constant C such that

E‖X‖ ≤ C
√

logn τn E‖Γ‖. (4)

Remark. It is well known that, as far as E‖X‖ is concerned, there is no loss of
generality assuming additionally that the support of X is contained in a ball of
radius C0

√
n for some sufficiently large constant C0 (see for instance Lemma 8

below). Then it is easily seen that X satisfies the following ψ2 estimate

P
(

|〈X, θ〉| ≥ t) ≤ Ce−ct2/
√
n, ∀t ≥ 0, ∀θ ∈ S

n−1,

where C, c are universal constants. Combining this with chaining methods de-
veloped by Dudley-Fernique-Talagrand (more precisely, using Theorem 1.2.6.
and Theorem 2.1.1. of [T]), one gets the inequality

E‖X‖ ≤ C′n1/4
E‖Γ‖,

we refer to [Bou] for more details. This means that using the current best-known
bound for the thin-shell constant: σn = O(n1/3), the above theorem does not
give us anything new. On the other hand, under the thin-shell hypothesis we
obtain using (3)

E‖X‖ ≤ C lognE‖Γ‖.
As an application of Theorem 1, we derive several bounds related to the

mean width and dual mean width of isotropic convex bodies and to the so-
called hyperplane conjecture. We begin with a few definitions. A convex body
K ⊂ R

n is a compact convex set whose interior contains the origin. For x ∈ R
n,

we define
‖x‖K = inf{λ; x ∈ λK}

to be the gauge associated to K (it is a norm if K is symmetric about 0). The
polar body of K is denoted by

K◦ = {y ∈ R
n; 〈x, y〉 ≤ 1, ∀x ∈ K}.

Next we define

M(K) =

∫

Sn−1

‖x‖K σ(dx),

M∗(K) =

∫

Sn−1

‖x‖K◦ σ(dx),

where σ is the Haar measure on the sphere, normalized to be a probability
measure. These two parameters play an important rôle in the asymptotic theory
of convex bodies.
The convex body K is said to be isotropic if a random vector uniform on K is
isotropic. When K is isotropic, the isotropic constant of K is then defined to
be

LK = |K|−1/n,
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where |K| denotes the Lebesgue measure of K. More generally, the isotropic
constant of an isotropic log-concave random vector is LX = f(0)1/n where f is
the density of X . The slicing or hyperplane conjecture asserts that LK ≤ C for
some universal constant C. The current best estimate is LK ≤ Cn1/4 due to
Klartag [K1]. We are ready to formulate our corollary:

Corollary 2. Let K be an isotropic convex body. Then one has,

(i) M∗(K) ≥ c
√
n/(

√
logn τn),

(ii) LK ≤ Cτn(log n)
3/2,

where c, C > 0 are universal constants.

Remark. Part (ii) of the corollary is nothing new. Indeed, in [EK], it is shown
that LK ≤ Cσn for a universal constant C > 0. Our proof uses different
methods and could therefore shed some more light on this relation, which is the
reason why we provide it.

Using similar methods, we attain an alternative proof of the following cor-
relation inequality proven initially by Hargé in [H].

Proposition 3 (Hargé). Let X be a random vector on R
n. Assume that E(X) =

0 and that X is more log-concave than Γ, i.e. the density of X has the form

x 7→ exp
(

−V (x) − 1

2
|x|2

)

for some convex function V : Rn → (−∞,+∞]. Then for every convex function
ϕ : Rn → R we have

Eϕ(X) ≤ Eϕ(Γ).

The structure of the paper is as follows: in section 2 we recall some prop-
erties of a stochastic process constructed in [E], which will serve as one of the
central ingredients in the proof of Theorem 1, as well as establish some new facts
about this process. In section 3 we prove the main theorem and Proposition 3.
Finally, in section 4 we prove Corollary 2.

In this note, the letters c, c̃, c′, C, C̃, C′, C′′ will denote positive universal con-
stants, whose value is not necessarily the same in different appearances. Further
notation used throughout the text: id will denote the identity n×n matrix. The
Euclidean unit sphere is denoted by S

n−1 = {x ∈ R
n; |x| = 1}. The operator

norm and the trace of a matrix A are denoted by ‖A‖op and Tr(A), respectively.
For two probability measures µ, ν on R

n, we let T2(µ, ν) be their transportation
cost for the Euclidean distance squared:

T2(µ, ν) = inf
ξ

∫

Rn×Rn

|x− y|2 ξ(dx, dy)

where the infimum is taken over all measures ξ on R
2n whose marginals onto the

first and last n coordinates are the measures µ and ν respectively. Finally, given
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a continuous martingale (Xt)t≥0, we denote by [X ]t its quadratic variation. If
X is Rn-valued, then [X ]t is a non-negative matrix whose i, j coefficient is the
quadratic covariation of the i-th and j-th coordinates of X at time t.

Acknowlegements. The authors wish to thank Bo’az Klartag for a fruitful dis-
cussion and Bernard Maurey for allowing them to use an unpublished result of
his.

2 The stochastic construction

We make use of the construction described in [E]. There it is shown that, given
a probability measure µ having compact support and whose density with respect
to the Lebesgue measure is f , and given a standard Brownian motion (Wt)t≥0

on R
n; there exists an adapted random process (µt)t≥0 taking values in the

space of absolutely continuous probability measures such that µ0 = µ and such
that the density ft of µt satisfies

dft(x) = ft(x)〈A−1/2
t (x− at), dWt〉, ∀t ≥ 0, (5)

for every x ∈ R
n, where

at =

∫

Rn

xµt(dx),

At =

∫

Rn

(x− at)⊗ (x− at)µt(dx)

are the barycenter and the covariance matrix of µt, respectively.
Let us give now the main properties of this process. Some of these properties

have already been established in [E], in this case we will only give the general
idea of the proof. We refer the reader to [E, Section 2,3] for complete proofs.
Firstly, for every test function φ the process

(

∫

Rn

φdµt

)

t≥0

is a martingale. In particular

E

∫

Rn

φdµt =

∫

Rn

φdµ, ∀t ≥ 0. (6)

The Itô differentials of at and At read

dat = A
1/2
t dWt (7)

dAt = −At dt+

∫

Rn

(x− at)⊗ (x− at)〈A−1/2
t (x− at), dWt〉µt(dx). (8)

Recall that µ is assumed to have compact support, and observe that the support
of µt is included in that of µ, almost surely. This shows that the processes
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(at) and (At) as well as the process involved in the local martingale part of
equation (8) are uniformly bounded. In particular the local martingales of the
last two equations are actually genuine martingales. Thus we get from (8)

d

dt
ETr(At) = −ETr(At).

Integrating this differential equation we obtain

ETr(At) = e−tTr(A0), t ≥ 0. (9)

Combining this with (7) we obtain

E|at|2 = |a0|2 +
∫ t

0

ETr(As) ds = |a0|2 + (1− e−t)Tr(A0).

The process (at)t≥0 is thus a martingale bounded in L2. By Doob’s theorem, it
converges almost surely and in L2 to some random vector a∞.

Proposition 4. The random vector a∞ has law µ.

Proof. Let φ, ψ be functions on R
n satisfying

φ(x) + ψ(y) ≤ |x− y|2, x, y ∈ R
n. (10)

Then

φ(at) +

∫

Rn

ψ(y)µt(dy) ≤
∫

Rn

|at − y|2 dy = Tr(At).

Taking expectation and using (6) and (9) we obtain

∫

Rn

φdνt +

∫

Rn

ψ dµ ≤ Tr(A0)e
−t,

where νt is the law of at. This holds for every pair of functions satisfying
the constraint (10). By the Monge-Kantorovich duality (see for instance [V,
Theorem 5.10]) we obtain

T2(νt, µ) ≤ e−tTr(A0)

where T2 is the transport cost associated to the Euclidean distance squared,
defined in the introduction. Thus νt → µ in the T2 sense, which implies that
at → µ in law, hence the result.

Let us move on to properties of the operator norm of At. We shall use
the following lemma which follows for instance from a theorem of Brascamp-
Lieb [BL, Theorem 4.1.]. We provide an elementary proof using the Prékopa-
Leindler inequality.
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Lemma 5. Let X be a random vector on R
n whose density ρ has the form

ρ(x) = exp

(

−1

2
〈Bx, x〉 − V (x)

)

where B is a positive definite matrix, and V : Rn → (−∞ + ∞] is a convex
function. Then one has,

cov(X) ≤ B−1.

In other words, if a random vector X is more log-concave than a Gaussian vector
Y , then cov(X) ≤ cov(Y ).

Proof. There is no loss of generality assuming that B = id (replace X by B1/2X
otherwise). Let

Λ: x 7→ logE(e〈x,X〉).

Since log-concave vectors have exponential moment Λ is C∞ in a neighborhood
of 0 and it is easily seen that

∇2Λ(0) = cov(X). (11)

Fix a ∈ R
n and define

f : x 7→ 〈a, x〉 − 1

2
|x|2 − V (x),

g : y 7→ −〈a, y〉 − 1

2
|y|2 − V (y),

h : z 7→ −1

2
|z|2 − V (z).

Using the inequality

1

2
〈a, x− y〉 − 1

4
|x|2 − 1

4
|y|2 ≤ 1

2
|a|2 − 1

8
|x+ y|2,

and the convexity of V we obtain

1

2
f(x) +

1

2
g(y) ≤ 1

2
|a|2 + h

(x+ y

2

)

, ∀x, y ∈ R
n.

Hence by Prékopa-Leindler

(

∫

Rn

ef(x) dx
)1/2(

∫

Rn

eg(y) dy
)1/2

≤ e|a|
2/2

∫

Rn

eh(z) dz.

This can be rewritten as

1

2
Λ(a) +

1

2
Λ(−a)− Λ(0) ≤ 1

2
|a|2.

Letting a tend to 0 we obtain 〈∇2Λ(0)a, a〉 ≤ |a|2 which, together with (11),
yields the result.
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Recalling (5) and applying Itô’s formula to log(ft) yields

d log(ft)(x) = 〈A−1/2
t (x− at), dWt〉 −

1

2
〈A−1

t (x− at), x− at〉 dt

This shows that the density of the measure µt satisfies

ft(x) = f(x) exp
(

ct + 〈bt, x〉 −
1

2
〈Btx, x〉

)

(12)

where ct, bt are some random processes, and

Bt =

∫ t

0

A−1
s ds. (13)

Lemma 6. If the initial measure µ is more-log-concave than the standard Gaus-
sian measure, then almost surely

‖At‖op ≤ e−t, ∀t ≥ 0.

Proof. Since µ is more log-concave than the Gaussian, equation (12) shows that
the density ft of µt satisfies

ft(x) = exp
(

−1

2
|x|2 − 1

2
〈Btx, x〉 − Vt(x)

)

for some convex function Vt. By the previous lemma, the covariance matrix At

of µt satisfies

At ≤ (Bt + id)−1 ≤ 1

λt + 1
id,

where λt is the lowest eigenvalue of Bt. Therefore

‖At‖op ≤ 1

λt + 1
.

On the other hand, the equality (13) yields

λt ≥
∫ t

0

‖As‖−1
op ds,

showing that
∫ t

0

‖As‖−1
op ds+ 1 ≤ ‖At‖−1

op .

Integrating this differential inequality yields the result.

The following proposition will be crucial for the proof of our main theorem.
Its proof is more involved than the proof of previous estimate, and we refer
to [E, Section 3].

Proposition 7. If the initial measure µ is log-concave then

E‖At‖op ≤ C0‖A0‖opτ2n log(n) e−t, ∀t ≥ 0,

where C0 is a universal constant.
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3 Proof of the main theorem

We start with an elementary lemma.

Lemma 8. Let X be a log-concave random vector in R
n and let ‖ ·‖ be a norm.

Then for any event F

E
(

‖X‖; F
)

≤ C1

√

P(F )E
(

‖X‖
)

,

where C1 is a universal constant. In particular, if P(F ) ≤ (2C1)
−2, one has

E
(

‖X‖
)

≤ 2E
(

‖X‖; F c
)

, (14)

where F c is the complement of F .

Proof. This is an easy consequence of Borell’s lemma, which states as follows.
There exist universal constants C, c > 0 such that,

P

(

‖X‖ > tE
(

‖X‖
)

)

≤ Ce−ct.

By Fubini’s theorem and the Cauchy-Schwarz inequality

E
(

‖X‖; F
)

=

∫ ∞

0

P
(

‖X‖ > t, F
)

dt ≤
(

∫ ∞

0

√

P
(

‖X‖ > t
)

dt
)

×
√

P(F ).

Plugging in Borell’s inequality yields the result, with constant C1 = 2C/c.

The next ingredient we will need is the following proposition, which we learnt
from B.Maurey. The authors are not aware of any published similar result.

Proposition 9. Let (Mt)t≥0 be a continuous martingale taking values in R
n.

Assume that M0 = 0 and that the quadratic variation of M satisfies

∀t > 0, [M ]t ≤ id,

almost surely. Then (Mt)t≥0 converges almost surely, and the limit satisfies the
following inequality. Letting Γ be a standard Gaussian vector, we have for every
convex function ϕ : Rn → R ∪ {+∞}

Eϕ(M∞) ≤ Eϕ(Γ).

Proof. The hypothesis implies that M is bounded in L2, hence convergent by
Doob’s theorem. Let X be a standard Gaussian vector on R

n independent of
(Mt)t≥0. We claim that

Y =M∞ + (id− [M ]∞)1/2X

is also a standard Gaussian vector. Indeed, for a fixed x ∈ R
n one has

E

(

ei〈x,Y 〉 | (Mt)t≥0

)

= exp

(

i〈x,M∞〉+ 1

2
〈[M ]∞x, x〉 −

1

2
|x|2

)

= exp

(

iL∞ +
1

2
[L]∞ − 1

2
|x|2

)

,

9



where L is the real martingale defined by Lt = 〈Mt, x〉. Itô’s formula shows
that

Dt = exp

(

iLt +
1

2
[L]t

)

is a local martingale. On the other hand the hypothesis yields

|Dt| = exp

(

1

2
〈[M ]tx, x〉

)

≤ exp

(

1

2
|x|2

)

almost surely. This shows that (Dt)t≥0 is a bounded martingale; in particular

E(D∞) = E(D0) = 1,

since M0 = 0. Therefore
E
(

ei〈x,Y 〉) = e−|x|2/2,

proving the claim. Similarly (just replace X by −X)

Z =M∞ − (id− [M ]∞)1/2X

is also standard Gaussian vector. Now, given a convex function φ, we have

Eϕ(M∞) = Eϕ

(

Y + Z

2

)

≤ 1

2
E (ϕ(Y ) + ϕ(Z)) = Eϕ(Y ),

which is the result.

We are now ready to prove the main theorem.

Proof of Theorem 1. Let us prove that given a norm ‖ · ‖ and a log-concave
vector X satisfying E(X) = 0 we have

E‖X‖ ≤ Cτn(logn)
1/2 ‖cov(X)‖1/2op E‖Γ‖, (15)

for some universal constant C. If X is assumed to be isotropic, then cov(X) = id
and we end up with the desired inequality (4).
Our first step is to reduce the proof to the case that X has a compact support.
Assume that (15) holds for such vectors, and for r > 0, let Yr be a random vector
distributed according to the conditional law of X given the event {|X | ≤ r}.
Then Yr is a compactly supported log-concave vector, and by our assumption,

E‖Yr − E(Yr)‖ ≤ Cτn(logn)
1/2‖cov(Yr)‖1/2op E‖Γ‖. (16)

Besides, it is easily seen by dominated convergence that

lim
r→+∞

E‖Yr − EYr‖ = E‖X‖,

lim
r→+∞

cov(Yr) = cov(X).

So letting r tend to +∞ in (16) yields (15). Therefore, we may continue the
proof under the assumption that X is compactly supported.
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We use the stochastic process (µt)t≥0 defined in the beginning of the previous
section, with the starting law µ being the law of X .
Let T be the following stopping time:

T = inf
(

t ≥ 0,

∫ t

0

As ds > C2τ2n logn ‖A0‖op
)

,

where C is a positive constant to be fixed later and with the usual convention
that inf(∅) = +∞. Define the stopped process aT by

(aT )t = amin(t,T ).

By the optional stopping theorem, this process is also a martingale and by
definition of T its quadratic variation satisfies

[aT ]t ≤ C2τ2n logn ‖A0‖op, ∀t ≥ 0.

Also (aT )0 = a0 = E(X) = 0. Applying Proposition 9 we get

E‖aT ‖ = E‖(aT )∞‖ ≤ Cτn(logn)
1/2 ‖A0‖1/2op E‖Γ‖. (17)

On the other hand, using Proposition 7 and Markov inequality we get

P(T < +∞) = P

(
∫ ∞

0

‖As‖op ds > C2τ2n logn ‖A0‖op
)

≤ C0

C2
.

So P(T < +∞) can be rendered arbitrarily small by choosing C large enough.
By Proposition 4 we have a∞ = X in law; in particular a∞ is log-concave. If
P(T < +∞) is small enough, we get using Lemma 8

E‖X‖ = E‖a∞‖ ≤ 2E
(

‖a∞‖; T = ∞
)

= 2E
(

‖aT ‖; T = ∞
)

≤ 2E‖aT‖.
Combining this with (17) and recalling that A0 = cov(X) we obtain the re-
sult (15).

The proof of Proposition 3 follows the same lines. The main difference is
that Proposition 6 is used in lieu of Proposition 7.

Proof of Proposition 3. Let Yr b a random vector distributed according to the
conditional law of X given |X | ≤ r. Then Yr is also more log-concave than Γ
and

Eϕ(Yr) → Eϕ(X)

as r → +∞. So again we can assume that X is compactly supported, and
consider the process (µt)t≥0 starting from the law of X .
By Lemma 6, the process (at)t≥0 is a martingale whose quadratic variation
satisfies

[a]t =

∫ t

0

As ds ≤ id, ∀t ≥ 0,

almost surely. Since again a0 = E(X) = 0, Proposition 9 yields the result.

Remark. This proof is essentially due to Maurey; although his (unpublished)
argument relied on a different stochastic construction.
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4 Application to Mean Width and to the Isotropic

Constant

In this section, we prove Corollary 2.
Let Γ be a standard Gaussian vector in R

n and let Θ be a point uniformly
distributed in S

n−1. Integration in polar coordinates shows that for any norm
‖ · ‖,

E‖Γ‖ = cnE‖Θ‖,
where

cn = E|Γ| = √
n+O(1),

since Γ has the thin-shell property. Theorem 1 can thus be restated as follows. If
Y is an isotropic log-concave random vector and K is a convex body containing
0 in its interior then

E‖Y ‖K ≤ C
√

n logn τnM(K). (18)

Now let K be an isotropic convex body and let X be a random vector uniform
on K. Since X ∈ K almost surely, we have ‖X‖K◦ ≥ |X |2, hence

E‖X‖K◦ ≥ E|X |2 = n.

Applying (18) to K◦ and to X thus gives

M∗(K) ≥ c
√
n√

logn τn
,

which is (i).
In [Bou], Bourgain combined the inequality

E‖X‖ ≤ Cn1/4
E‖Γ‖ (19)

with a theorem of Pisier to get the estimate

LK ≤ Cn1/4 logn.

Part (ii) of the corollary is obtained along the same lines, replacing (19) by our
main theorem. We sketch the argument for completeness.
Recall that K is assumed to be isotropic and that X is uniform on K. Let T
be a positive linear map of determinant 1. Then by the arithmetic-geometric
inequality

E‖X‖(TK)◦ ≥ E〈X,TX〉 = Tr(T ) ≥ n.

Applying (18) to the random vector X and the convex body (TK)◦ we get

M∗(TK) ≥ c
√
n√

logn τn
. (20)
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Now we claim that given a convex body K containing 0 in its in interior, there
exists a positive linear map T of determinant 1 such that

M∗(TK) ≤ C|K|1/n√n logn. (21)

Taking this for granted and combining it with (20) we obtain

|K|−1/n ≤ C′(logn)3/2τn.

which is part (ii) of the corollary.
It remains to prove the claim (21). Clearly

M∗(K) ≤M∗(K −K),

and by the Rogers-Shephard inequality (see [RS])

|K −K| ≤ 4n|K|.

This shows that it is enough to prove the claim when K is symmetric about
the origin. Now if K is a symmetric convex body in R

n, Pisier’s Rademacher-
projection estimate together with a result of Figiel and Tomczak-Jaegermann
(see e.g. [P, Theorem 2.5 and Theorem 3.11]) guarantee the existence of T such
that

M(TK)M∗(TK) ≤ C log(n),

where C is a universal constant. On the other hand, using Jensen’s inequality
and integrating in polar coordinate we get

M(TK) =

∫

Sn−1

‖θ‖TK σ(dθ) ≥
(

∫

Sn−1

‖θ‖−n
TK σ(dθ)

)−1/n

=
( |Bn

2 |
|TK|

)1/n

≥ c√
n |K|1/n ,

finishing the proof of (21).
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[Gu-M] Guédon, O., Milman, E., Interpolating thin-shell and sharp large-
deviation estimates for isotropic log-concave measures. Geom. Funct.
Anal. 21 (2011), no. 5, 1043–1068.
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