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Cover times and generic chaining

Joseph Lehec∗

January 7, 2015

Abstract

A recent result of Ding, Lee and Peres expresses the cover time of the random

walk on a graph in terms of generic chaining for the commute distance. Their

argument is based on the Ray-Knight isomorphism theorem. The purpose of

this article is to present an alternative approach to this problem, based only on

elementary hitting times estimates and chaining arguments.

1 Introduction

Let (Xn)n≥0 be an irreducible Markov chain on some state space M . Given A ⊂ M
let

T (A) = inf{n ≥ 0: Xn ∈ A}
be the first time the chain hits A and let

Tcov(A) = sup
x∈A

T (x)

be the first time the chain X has visited every point of A. The cover time of A is by
definition

cov(A) = sup
x∈A

(

Ex Tcov(A)
)

,

where Ex stands for conditional expectation given X0 = x (similarly Px shall stand for
conditional probability given X0 = x in the sequel). To avoid trivial situations, the
chain is assumed to be positive recurrent throughout so that cov(A) < +∞ if and only
if A is finite.
Using the strong Markov property it is easily seen that given x, y, z in M

Ex T (y) + Ey T (z)

is the expectation (under Px) of the first time the chain has visited y and z (in this
order). This implies that

Ex T (y) + Ey T (z) ≥ Ex T (z).

∗Université Paris-Dauphine
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Therefore the commute time

d(x, y) = Ex T (y) + Ey T (x)

is a distance on M . This article deals with a problem dating back to Matthews’
article [6] at least: Can cov(A) be estimated in terms of metric properties of (A, d)?
An arguably definitive answer to this question has recently be given by Ding Lee and
Peres [3]; their result is expressed in terms of generic chaining.

1.1 The generic chaining

The generic chaining is a tool designed by Talagrand to estimate suprema of Gaussian
processes. Let us describe it briefly and refer to the book [7] for details.
Throughout we let (Nn)n≥0 be the following sequence of integers:

N0 = 1, Nn = 22
n

, n ≥ 1. (1)

Given a set S, a sequence (An)n≥0 of partitions of S is called admissible if An+1 is a
refinement of An and if |An| ≤ Nn for every n ≥ 0, where |An| is just the cardinality of
An. The cardinality condition implies in particular that A0 = {S}. Given a sequence
of partitions (An)n≥0 of S and s ∈ S we let An(s) be the only element of An containing
s.

Definition 1. Let (S, d) be a metric space. Set

γ2(S, d) = inf
[

sup
s∈S

(

+∞
∑

n=0

2n/2∆(An(s), d)
)]

,

where the infimum is taken over all admissible partitions (An)n≥0 of S, and ∆(A, d)
denotes the diameter of A.

Recall that a Gaussian process is a family (Ys)s∈S of random variables such that
every linear combination of the variables Ys is Gaussian. The process is said to be
centered if EYs = 0 for every s. The fundamental result of Talagrand reads as follows.

Theorem 2. Let (Ys)s∈S be a centered Gaussian process. Then

1

L
γ2(S, d) ≤ E sup

s∈S
Ys ≤ Lγ2(S, d) (2)

where L is a universal constant and d is the following distance on S

d(s, t) =
√

E(Ys − Yt)2. (3)

The upper bound is not specific to Gaussian processes, it applies to any centered
process (Ys)s∈S satisfying

P(Ys − Yt ≥ u) ≤ e−u2/2d(s,t)2 (4)
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for all s, t ∈ S, for all u > 0 and for some distance d. Using a union bound it is not
hard to see that a centered process satisfying (4) satisfy

E sup
s∈A

Ys ≤ C
√

log|A| max
s,t∈A

d(s, t), (5)

for every finite subset A of S. The proof of the upper bound of (2) consists in applying
this union bound repeatedly and at different scales.
The lower bound is another story, it is specific to Gaussian processes and much more
difficult to prove. Roughly speaking the argument relies on two properties: the concen-
tration of the Gaussian measure and the Sudakov inequality. Let us state the latter; if
(Ys)s∈S is a centered Gaussian process then for all finite subset A of S

E sup
s∈A

Ys ≥ c
√

log|A| min
s6=t∈A

d(x, y) (6)

where c is a universal constant and d is the L2-distance (3).

1.2 The Ding, Lee and Peres theorem

Cover times satisfy inequalities analoguous to (5) and (6) due to Matthews [6]: for any
finite subset A of M

cov(A) ≤ (1 + log|A|) max
x,y∈A

(

Ex T (y)
)

cov(A) ≥ log|A| min
x 6=y∈A

(

Ex T (y)
)

.
(7)

In view of these inequalities it seems natural to conjecture that the correct order of
magnitude for cov(A) is

γ1(A, d) = inf
[

sup
x∈A

(

+∞
∑

n=0

2n∆(An(x), d)
)]

,

rather than γ2(A, d) (recall that d is the commute distance d(x, y) = Ex T (y)+Ey T (x)).
This is not quite correct. Here is the result of Ding, Lee and Peres.

Theorem 3. If the Markov chain (Xn)n≥0 is reversible (and if the state space M is
finite) then

1

L

[

γ2(M,
√
d)
]2 ≤ cov(M) ≤ L

[

γ2(M,
√
d)
]2

for some universal constant L.

Remark. Actually the inequality remains valid when M is infinite. Indeed since
d(x, y) ≥ 1 when x 6= y, we then have γ2(M,

√
d) = +∞.

The correct order of magnitude γ2(M,
√
d)2 is comparable to our wrong guess:

clearly

γ1(M,d) ≤
[

γ2(M,
√
d)
]2
.
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1.3 Purpose of the present article

The proof of Ding, Lee and Peres is very involved. In particular it relies on the Ray-
Knight isomorphism theorem which makes a connection between local times of the
chain and the Gaussian free field associated to the chain. It may be interesting to have
a simpler proof relying only on elementary hitting times estimates and on Talagrand’s
generic chaining. The purpose of this article is to provide such a proof.
Unfortunately we fail to recover entirely Theorem 3, here is what we prove.

Theorem 4. If (Xn)n≥0 is irreducible and positive recurrent, then

cov(M) ≤ L
[

γ2(M,
√
d)
]2
. (8)

for some universal L. More generally we have

cov(A) ≤ L
[

γ2(A,
√
d)
]2
, (9)

for every subset A of M .

Inequality (8) is slightly stronger than the upper bound of Theorem 3 since the chain
is no longer assumed to be reversible. Besides, it is not clear whether the approach of
Ding, Lee and Peres yields (9).

Theorem 5. If in addition the chain (Xn)n≥0 is reversible then

γ1(M,d) ≤ L cov(M), (10)

where L is a universal constant. Again we actually have

γ1(A, d) ≤ L cov(A),

for every A ⊂ M .

Remark. The reversibility assumption is necessary. Indeed, consider the discrete torus
ZN and the Markov kernel given by

P (x, x+ 1) = 1, ∀x ∈ ZN .

Clearly d(x, y) = N for all x 6= y, which implies that

γ1(T, d) ≈ N log(N).

On the other hand Tcov(ZN ) = N almost surely (whatever the starting point).

Since γ1(M,d) ≤ [γ2(M,
√
d)]2 inequality (10) is weaker than the lower bound of

Theorem 3. Let us comment a little bit more on this. In order to compute γ1(M,d)
one can restrict to partitions (An)n≥0 satisfying

An = {{x}, x ∈ M}

for n ≥ k, where k is the only integer satisfying

Nk−1 < |M | ≤ Nk.
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Then by convexity we get

(

∞
∑

n=0

2n/2
√

∆(An(x), d)
)2

=
(

k
∑

n=0

2n/2
√

∆(An(x), d)
)2

≤ (k + 1)

∞
∑

n=0

2n∆(An(x), d)

for every x ∈ M , yielding

[

γ2(M,
√
d)
]2 ≤ C log(log|M |)γ1(M,d)

for some universal C (provided |M | ≥ 3). Therefore the estimate (10) is off the correct
order of magnitude by at most a factor log(log|M |). This is sharp; there is a Markov
chain for which the gap is indeed log(log|M |) (see the appendix).

2 The upper bound

Since (Xn)n≥0 is an irreducible, positive recurrent Markov chain, there is a unique
invariant probability measure which we denote by π. The purpose of this section is to
bound

E sup
x∈M

T (x)

through a chaining argument. Since no estimate such as (4) is available for hitting
times, the chaining procedure will be different from Talagrand’s, and is taken from the
articles [2, 4].
We need a couple of additional notations. Let

T 0(x) = 0

T k(x) = inf(n ≥ T k−1(x) + 1, Xn = x), ∀k ≥ 1.

When the chain starts from x, the variable T k(x) is just the k-th return time to x.
Lastly, let

Nk =

k−1
∑

n=0

δXn

be the empirical measure of the chain X . In other words Nk(x) is the number of visits
to x before time k.
The following deviation estimate is due to Kahn, Kim, Lovasz and Vu [4].

Lemma 6. Let x 6= y in M . Then for every ǫ > 0 and for every integer k

Px

(

NTk(x)(y) ≤ (1− ǫ)
kπ(y)

π(x)

)

≤ exp
[

− ǫ2k

4π(x)d(x, y)

]

.

5



Let us sketch the argument. Because of the strong Markov property, under Px the
variables

(

NT i(x)(y)−NT i−1(x)(y)
)

i≥1

are independent and identically distributed. And it is a standard fact (see for in-
stance [1, chapter 2]) that their law is geometric: for every integer r

Px

(

NT 1(x)(y) ≥ r
)

= pxy(1− pyx)
r,

where

pxy = Px(T (y) ≤ T 1(x)) =
1

π(x)d(x, y)
.

The previous lemma is thus a Hoeffding type estimate for sums of independent geo-
metric variables. We refer to [4] for the details.
Our next tool is taken from Barlow, Ding, Nachmias and Peres [2].

Lemma 7. Let A be a finite subset of M , let z ∈ A and let k be an integer. Then

Ez Tcov(A) ≤
Ez T

k(z)

Pz

(

Tcov(A) ≤ T k(z)
)

=
k

π(z)Pz

(

Tcov(A) ≤ T k(z)
)

Again we sketch the proof and refer to [2] for details. Let

N = inf(n ≥ 1, Tcov(A) ≤ T nk(z)).

Then by Wald’s identity

Ez Tcov(A) ≤ Ez T
Nk(z) = Ez(N)Ez T

k(z).

On the other hand if N is larger than n then the walk fails to cover A during any of
the following intervals of time

[0, T k(z)), [T k(z), T 2k(z)), . . . , [T (n−1)k(z), T nk(z))

so that
Px(N > n) ≤ Pz

(

Tcov(A) ≥ T k(z)
)n
.

The result follows.
The authors of [2] combine these two lemmas with a nice chaining argument. Although
it is not written this way, their result is essentially the Dudley version of Theorem 4:

cov(M) ≤ L
(

∞
∑

n=0

en(M,
√
d)2n/2

)2
(11)

where
en(M,

√
d) = inf

A

(

sup
x∈M

√

d(x,A)
)
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where the infimum is taken over all subsets A of M satisfying |A| ≤ Nn. This is weaker
than Theorem 4. Indeed swapping the sup and the sum in the definition of γ2, it is
easily seen that

γ2(M,
√
d) ≤ C

∞
∑

n=0

en(M,
√
d)2n/2,

for some universal constant C. We show that it is possible to modify BDLP’s chaining
argument to obtain Theorem 4.
Let z, x, y in M such that x 6= y and let k, l be two integers larger than 1. Observe
that

Pz(T
l(y) > T k(x)) = Pz(NTk(x)(y) ≤ l − 1)

≤ Pz(NTk(x)(y)−NT 1(x)(y) ≤ l − 1)

= Px(NTk−1(x)(y) ≤ l − 1).

The latest equality being a consequence of the strong Markov property. If (l−1)/π(y) <
(k − 1)/π(x), applying Lemma 6 to k − 1, l − 1 and

ǫ = 1− (l − 1)π(x)

(k − 1)π(y)

gives

Pz(T
l(y) > T k(x)) ≤ exp



−
(

k−1
π(x) − l−1

π(y)

)2

4d(x, y) k−1
π(x)



 . (12)

This will be our key estimate. Lastly, we shall use the following elementary fact: if x
and y are distinct elements of M then

1

π(x)
= Ex T

1(x) ≤ Ex T (y) + Ey T (x) = d(x, y).

Let us reformulate Theorem 4.

Proposition 8. Let A ⊂ M , let z ∈ A and let (An)n≥0 be an admissible sequence of
partitions of A. Then

Ez(Tcov(A)) ≤ L
(

sup
x∈A

∞
∑

n=0

2n/2
√

∆(An(x))
)2

.

Recall that An(x) denotes the only element of An containing x. Also ∆ denotes the
diameter with respect to the commute distance.

Proof. Let t0(A) = z, and for each n and for each B ∈ An let tn(B) be an arbitrary
element of B. Given x ∈ A, we let xn = tn(An(x)). We can assume that A is finite
and that

An = {{x}, x ∈ A}
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for n large enough (the right hand of the desired inequality equals +∞ otherwise).
Therefore xn = x eventually. Let

rn(x) = sup
y∈An(x)

+∞
∑

k=n

2k/2
√

∆(Ak(y))

and
kn(x) = ⌊34 · π(xn)rn(x)r0(x)⌋ + 1,

where ⌊r⌋ denotes the integer part of r. Observe that rn(x) and kn(x) depend only on
An(x). In particular k0(x) depends on nothing. Also

rn(x)− rn+1(x) ≥ 2n/2
√

∆(An(x))

≥ 2n/2
√

d(xn, xn+1).

We claim that for every x and n

Pz

(

T kn+1(x)(xn+1) > T kn(x)(xn)
)

≤ e−2n+3 ≤ 1

Nn+3
. (13)

Indeed, if xn = xn+1 then kn+1(x) ≤ kn(x) and the inequality is trivial. Otherwise
write

kn(x)− 1

π(xn)
− kn+1(x)− 1

π(xn+1)
≥ 34 · (rn(x) − rn+1(x))r0(x) −

1

π(xn)

≥ 34 · 2n/2
√

d(xn, xn+1)r0(x)−
1

π(xn)
.

Since xn 6= xn+1 and
√

d(xn, xn+1) ≤ r0(x) we have

1

π(xn)
≤

√

d(xn, xn+1)r0(x).

Therefore

kn(x)− 1

π(xn)
− kn+1(x)− 1

π(xn+1)
≥ (34 · 2n/2 − 1)

√

d(xn, xn+1)r0(x)

≥ 33 · 2n/2
√

d(xn, xn+1)r0(x).

Also
kn(x)− 1

π(xn)
≤ 34 · rn(x)r0(x) ≤ 34 · r0(x)2.

Since 332/(4 · 34) ≥ 23, combining (12) with the last two inequalities yields (13).
The number of possible couples (xn, xn−1) is at most NnNn+1. Recall the definition (1)
of Nn and observe that N2

n ≤ Nn+1 for all n. A union bound shows that the probability
that there exists x and n such that

T kn+1(x)(xn+1) ≥ T kn(x)(xn)
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is at most
∑

n≥0

NnNn+1

Nn+3
≤

∑

n≥0

1

Nn+2
≤

∑

n≥4

2−n =
1

8
.

Therefore with probability at least 7/8, we have

T kn+1(x)(xn+1) ≤ T kn(x)(xn)

for all x and n, hence

T kn(x)(xn) ≤ T k0(x)(x0) = T k0(z).

Since xn = x for n large enough and kn(x) ≥ 1 we obtain

∀x ∈ A, T (x) ≤ T k0(z)

with probability 7/8 at least. In other words

Pz(Tcov(A) ≤ T k0(z)) ≥ 7

8
.

Together with Lemma 7 we get

Ez Tcov(A) ≤
8k0
7π(z)

≤ 8

7
(34 · r20 +

1

π(z)
).

Unless A = {z}, in which case cov(A) = 0 and there is nothing to prove, we have
1/π(z) ≤ ∆(A) ≤ r20 . Therefore

Ez Tcov(A) ≤
8 · 35
7

(

sup
x∈A

∞
∑

n=0

2n/2
√

∆(An(x))
)2

.

3 The lower bound

We start this section with another definition; given A ⊂ M let

cov−(A) = min
x∈A

Ex Tcov(A)

cov+(A) = max
x∈A

Ex Tcov(A).

Note that the cover time of A, which was previously denoted by cov(A), is now denoted
by cov+(A) to avoid confusions with cov−(A). In this section we prove the following

Proposition 9. Let (Xn)n≥0 be an irreducible, positive recurrent Markov chain on a
discrete state space M . If the chain is reversible then for every finite subset A of M

γ1(A, d) ≤ L(cov−(A) + ∆(A, d)),

where L is a universal constant.
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Remarks. 1. This yields Theorem 5 since clearly

cov−(A) ≤ cov+(A)

∆(A, d) ≤ cov+(A).

2. The term ∆(A, d) cannot be removed from the inequality. Indeed if M = {0, 1}
and the transitions are given by the matrix

(

ǫ 1− ǫ
ǫ 1− ǫ

)

then

γ1(M,d) ≥ ∆(M,d) =
1

ǫ(1− ǫ)

whereas cov−(M) = min(1ǫ ,
1

1−ǫ).

3.1 Talagrand’s growth condition

Recall the majoring measure theorem: if (Ys)s∈S is a centered Gaussian process then

γ2(S, d) ≤ LE sup
s∈S

Ys,

where d is the L2 distance (3). The proof of Talagrand consists in showing (using
Gaussian concentration and Sudakov’s inequality) that the functional

A 7→ E sup
s∈A

Ys

satisfies an abstract growth condition, and that such functionals dominate γ2. Here is
the definition of the growth condition adapted to the γ1 situation (rather than γ2).

Definition 10 (Growth condition). Let (M,d) be a metric space. A functional
F : P(M) → R+ is said to satisfy the growth condition with parameters r > 1 and
τ ∈ N if for every step n ∈ N and every scale a > 0 the followings holds. Let
m = Nn+τ , for every sequence H1, . . . , Hm of non-empty subsets of M satisfying

1. ∆(∪i≤mHi) ≤ ra,

2. d(Hi, Hj) ≥ a for all i 6= j,

3. ∆(Hi) ≤ a/r for all i,

we have
F (∪i≤mHi) ≥ a2n +min

i≤m
F (Hi).

Theorem 11. If F is a non-decreasing for the inclusion and satisfies the growth con-
dition with parameters r and τ then

γ1(M,d) ≤ L2τ (∆(M,d) + rF (M)),

where L is a universal constant.
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We refer to [7, Theorem ??] for a proof of this theorem. The purpose of the rest of
this section is to show that the functional

A 7→ cov−(A)

is non-decreasing and satisfies the growth condition on (M,d) (where d is the commute
distance) with universal parameters τ and r.

Lemma 12. The functional A 7→ cov−(A) is non-decreasing for the inclusion.

Proof. We use the strong Markov property. The shift operator is denoted by σ: for
every integer k

σk(X0, X1, . . . ) = (Xk, Xk+1, . . . ).

Let A ⊂ B and let x ∈ B. Then

Tcov(B) ≥ T (A) + Tcov(A) ◦ σT (A).

In words: at time T (A) the chain has yet to visit every point of A\{XT (A)}. By the
strong Markov property

Ex Tcov(B) ≥ Ex T (A) + Ex

[

EXT (A) Tcov(A)
]

.

≥ Ex T (A) + cov−(A)

≥ cov−(A),

which is the result.

3.2 Variations on Matthews’ bound

The following is due to Matthews [6].

Lemma 13. Let A be a finite subset of M , let a > 0 and assume that Ex T (y) ≥ a for
every x 6= y in A. Then

cov−(A) ≥ a

|A|−1
∑

k=1

1

k
≥ a log(|A|).

Proof. Let x ∈ A. Assuming that |A| ≥ 2 (otherwise the result is trivial) we have

∑

y∈A,y 6=x

Px

(

Tcov(A) = T (y)
)

= 1.

So there exists y ∈ A such that

Px

(

Tcov(A) = T (y)
)

≥ 1

|A| − 1
. (14)

Let A′ = A\{y}, let S = Tcov(A
′) and let T = Tcov(A). Clearly

T = S + (T (y) ◦ σS)1{S<T (y)}.
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By the strong Markov property

Ex T = Ex S + Ex

[(

EXS
T (y)

)

1{S<T (y)}

]

.

On the event {S < T (y)} the point XS is an element of A different from y. Therefore
EXS

T (y) ≥ a. Together with (14) we obtain

Ex Tcov(A) ≥ Ex Tcov(A
′) +

a

|A| − 1
.

An obvious induction on |A| finishes the proof.

The following lemma is proved the same way.

Lemma 14. Let H1, . . . , Hm be non-empty subsets of M satisfying

Ex T (y) ≥ a, ∀(x, y) ∈ Hi ×Hj , ∀i 6= j.

Then for all x ∈ ∪i≤mHi

Ex max
i≤m

T (Hi) ≥ a log(m).

An additional application of the strong Markov property yields the following re-
finement of the previous lemma.

Proposition 15. Let H1, . . . , Hm be non-empty subsets of M satisfying Ex Ty ≥ a for
all (x, y) ∈ Hi ×Hj, for all i 6= j. Then

cov−
(

⋃

i≤m

Hi

)

≥ a log(m) + min
i≤m

cov−(Hi). (15)

Proof. Let x ∈ ∪i≤mHi. Let S = maxi≤m T (Hi) and T = Tcov(∪i≤mHi). If S = T (Hi)
then at time S the chain has yet to visit every point of Hi\{XS}. Therefore

T ≥ S +

m
∑

i=1

(

Tcov(Hi) ◦ σS

)

1{S=T (Hi)}

Using the strong Markov property, we get

Ex T ≥ Ex S +
m
∑

i=1

Ex

[(

EXS
Tcov(Hi)

)

1{S=T (Hi)}

]

≥ Ex S +min
i≤m

cov−(Hi).

Together with the previous lemma we get the result.

We are close to the desired growth condition. We would like to obtain the inequal-
ity (15) under the weaker hypothesis

d(x, y) = Ex T (y) + Ey T (x) ≥ a, ∀x, y ∈ Hi ×Hj , i 6= j.

This is done in the next section. Roughly speaking, reversibility insures that for a
reasonable proportion of x and y the hitting times Ex T (y) and Ey T (x) are of the same
of order of magnitude.
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3.3 Reversibility

Again this part of the argument is taken from Kahn, Kim, Lovasz and Vu’s article [4].
We start with a simple lemma concerning directed graphs. Given a directed graph
G = (V,E), a path of G is a sequence x1, . . . , xm of vertices satisfying (xi, xi+1) ∈ E
for i ≤ m. The length of such a path is defined to be m. An independent set is a
subset A of V satisfying (x, y) /∈ E for all x, y in A.

Lemma 16. If every path of G has length at most m then G has an independent set
of cardinality at least |V |/m.

This is standard, but we still sketch the argument. It is easy to show by induction
on m that G is then m-colorable: it is possible to map the vertices of G to {1, . . . ,m}
in such a way that connected points have different images. Then by the pigeon hole
principle, at least |V |/m vertices have the same image, which is the result.
From now on the chain (Xn)n≥0 is assumed to be reversible. Consequently, we have
the following commuting property for hitting times.

Lemma 17. For every sequence x1, . . . , xm of elements of M we have

Ex1
T (x2) + · · ·+ Exm−1

T (xm) + Exm
T (x1)

= Ex1
T (xm) + Exm

T (xm−1) + · · ·+ Ex2
T (x1).

(16)

We refer to [5, Lemma 10.10] for a proof.

Corollary 18. Let A be a subset of M and a > 0. If ∆(A, d) ≤ 16a and if d(x, y) ≥ a
for all x 6= y in A then there exists a subset A′ of A satisfying

• |A′| ≥ |A|/33.

• Ex T (y) ≥ a/4 for all x 6= y in A′.

Proof. We define a graph G with vertex set A by saying that the edge (x, y) is present
if x 6= y and Ex T (y) ≤ a/4. Let x1, . . . , xm be a path of G. Then the inequalities

Exi
T (xi+1) ≤ a/4

Exi+1
T (xi) ≥ 3a/4

and equation (16) give

(m− 1)a

4
+ Exm

T (x1) ≥
3(m− 1)a

4
+ Ex1

T (xm).

Together with the bound on the diameter of A we obtain m− 1 ≤ 32. Therefore G has
an independent set of cardinality at least |A|/33. This is our set A′.

3.4 The growth condition for the cover time

Proposition 19. The functional A 7→ cov−(A) satisfies the growth condition with
parameters r = 16 and τ = 5.
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Proof. Let n ∈ N, let a > 0 and m = Nn+5. Let H1, . . . , Hm satisfy

1. ∆(∪i≤mHi) ≤ 16a.

2. d(Hi, Hj) ≥ a, for all i 6= j.

3. ∆(Hi) ≤ a/16 for all i ≤ m.

Let x1, . . . , xm belong to H1, . . . , Hm respectively. By the first two properties and
Corollary 18, there exists a subset I of {1, . . . ,m} satisfying

• |I| ≥ m/33.

• Exi
T (xj) ≥ a/4 for every i 6= j in I.

Let i 6= j in I and let (x, y) ∈ Hi ×Hj . Then

Ex T (y) ≥ Exi
T (xj)− Exi

T (x)− Ey T (xj) ≥
a

4
− a

16
− a

16
=

a

8
.

Proposition 15 gives

cov−
(

⋃

i∈I

Hi

)

≥ a

8
log(|I|) + min

i∈I
cov−(Hi).

Since
|I| ≥ Nn+5/33 ≥ Nn+5/N3 ≥ Nn+4 ≥ e8·2

n

we obtain
cov−

(

⋃

i≤m

Hi

)

≥ a2n +min
i≤m

cov−(Hi),

which is the result.

Then, by Theorem 11 we obtain

γ1(M,d) ≤ L(cov−(M) + ∆(M,d)).

Obviously we can replace M by any subset A of M in this inequality: if a functional
F satisfy the growth condition on (M,d) then it also satisfies it on (A, d).

Appendix

We have seen in the introduction that for any metric space (M,d)

[

γ2(M,
√
d)
]2≤ C log(log|M |)γ1(M,d). (17)

We show in this appendix that this is sharp and that the example saturating the
inequality can be chosen to be the state space of a reversible Markov chain equipped
with the commute distance. The example is taken from [4] and was pointed out to the
author by James Lee.
Let M be a rooted tree of depth D (large enough) satisfying

14



• nodes at depth i ≤ D − 1 have Ni + 1 children,

• edges between depth i and depth i+ 1 have multiplicity 2i,

and letX be the random walk on this graph. The stationary measure is given by π(x) =
d(x)/2E for every x, where d(x) is the number of edges (counted with multiplicity)
starting from x and E is the total number of edges. Besides π is reversible. Let us
compute the commute distance d. Because of the tree structure it is easily seen that

d(x, y) =

n−1
∑

i=0

d(xi, xi+1) (18)

where x0, . . . , xn is the shortest path from x to y. Therefore it is enough to compute
d(x, y) when x and y are neighbors, in which case we use the formula (see [1])

Px(T (y) < T 1(x)) =
1

π(x)d(x, y)
.

Because of the tree structure again Px(T (y) < T 1(x)) is just the transition probability
from x to y. We obtain

d(x, y) = 2E · 2−i

when (x, y) is an edge between depth i and depth i + 1. When x and y are any two
nodes of M , equality (18) then implies that

E · 2−i+1 ≤ d(x, y) ≤ E · 2−i+3 (19)

where i is the depth of their closest common ancestor.

Proposition 20. There is a universal constant C such that

D · E
C

≤ γ1(M,d) ≤ C ·D ·E (20)

D ·
√
E

C
≤ γ2(M,

√
d) ≤ C ·D ·

√
E. (21)

Since D is of the order of log(log|M |), this shows that (17) is sharp (up to the
constant).

Proof. Let us start with the upper bound of (20). It is more convenient to use the
following definition for γ1:

γ1(M,d) = inf sup
x∈M

+∞
∑

i=0

2id(x,Mi)

where the infimum is taken over every sequence (Mi)i∈N of subsets of M satisfying
the cardinality condition |Mi| ≤ Ni for every i. It is well known (see [7]) that this
definition coincides with the one with partitions, up to a universal factor.
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For 0 ≤ i ≤ D let Si be the set of vertices of depth at most i. Using (19) we obtain
d(x, Si) ≤ E · 2−i+3 for every x ∈ M . Therefore

sup
x∈M

+∞
∑

i=0

2id(x, Si) ≤ E

D
∑

i=0

2i2−i+3 = 8E · (D + 1).

Besides, it is easily shown that
|Si| ≤ Ni+3.

The sequence (Si)n∈N does not quite satisfies the right cardinality condition, but this is
not a big deal. If we shift the sequence by letting M0 = M1 = M2 = S0 and Mi = Si−3

for i ≥ 3, we still have

sup
x∈M

+∞
∑

i=0

2id(x,Mi) ≤ C · E ·D

for some universal C, which proves the upper bound of (20).
To prove the lower bound we need to show that the previous sequence of approximations
is essentially optimal. Let (Mi)i≥0 be a sequence of subsets of M satisfying |Mi| ≤ Ni

for every i. A vertex x of depth i ≤ D − 1 has Ni + 1 children. So at least one them,
call it y, has the following property: neither y nor any of its offsprings belong to Mi.
Using this observation, we can construct inductively a sequence x0, x1, . . . , xD, where
x0 is the root of M and such that

• xi+1 is a child of xi,

• neither xi+1 nor any of its offsprings belong to Mi,

for every i ≤ D − 1. Let i ≤ D − 1 and let x ∈ Mi. Since x is not an offspring of xi+1

we have d(x, xD) ≥ E · 2−i+1. Thus

∞
∑

i=0

2id(xD,Mi) ≥ E
D−1
∑

i=0

2i2−i+1 = 2E ·D,

which proves the lower bound of (20).
Inequality (21) is proved exactly the same way.
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