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Introduction

A Brascamp-Lieb datum on R n is a finite sequence [START_REF] Barthe | On a reverse form of the Brascamp-Lieb inequality[END_REF] (c 1 , B 1 ), . . . , (c m , B m )

where c i is a positive number and B i : R n → R ni is linear and onto. The Brascamp-Lieb constant associated to this datum is the smallest real number C such that the inequality

(2)

R n m i=1 (f i • B i ) ci dx ≤ C m i=1 R n i f i dx ci
holds for every set of non-negative integrable functions f i : R ni → R. The Brascamp-Lieb theorem [START_REF] Brascamp | Best constants in Young's inequality, its converse, and its generalization to more than three functions[END_REF][START_REF] Lieb | Gaussian kernels have only Gaussian maximizers[END_REF] asserts that (2) is saturated by Gaussian functions. In other words if [START_REF] Barthe | Inverse Brascamp-Lieb inequalities along the heat equation[END_REF] holds for every functions f 1 , . . . , f m of the form

f i (x) = e -Aix,x /2
where A i is a symmetric positive definite matrix on R ni then (2) holds for every set of functions f 1 , . . . , f m . The reversed Brascamp-Lieb constant associated to [START_REF] Barthe | On a reverse form of the Brascamp-Lieb inequality[END_REF] is the smallest constant C r such that for every non-negative measurable functions f 1 , . . . , f m , f satisfying

(3) m i=1 f i (x i ) ci ≤ f m i=1 c i B * i x i for every (x 1 , . . . , x m ) ∈ R n1 × • • • × R nm we have (4) m i=1 R n i f i dx ci ≤ C r R n f dx.
It was shown by Barthe [1] that again Gaussian functions saturate the inequality. The original paper of Brascamp and Lieb [START_REF] Brascamp | Best constants in Young's inequality, its converse, and its generalization to more than three functions[END_REF] rely on symmetrization techniques. Barthe's argument uses optimal transport and works for both the direct and the reversed inequality. More recent proofs of the direct inequality [START_REF] Bennett | Heat-flow monotonicity related to the Hausdorff-Young inequality[END_REF][START_REF] Bennett | The Brascamp-Lieb inequalities: finiteness, structure and extremals[END_REF][START_REF] Carlen | Subadditivity of the entropy and its relation to Brascamp-Lieb type inequalities[END_REF][START_REF] Carlen | Loss, A sharp analog of Young's inequality on S N and related entropy inequalities[END_REF] all rely on semi-group techniques. There are also semi-group proofs of the reversed inequality, at least when the Brascamp-Lieb datum has the following property

B i B * i = id R n i , ∀i ≤ m, m i=1 c i B * i B i = id R n , (5) 
called frame condition in the sequel. This was achieved by Barthe and Cordero-Erausquin [START_REF] Barthe | Inverse Brascamp-Lieb inequalities along the heat equation[END_REF] in the rank 1 case (when all dimensions n i equal 1) and Barthe and Huet [START_REF] Barthe | On Gaussian Brunn-Minkowski inequalities[END_REF] in any dimension.

The purpose of the present article is to give a short probabilistic proof of the Brascamp-Lieb and Barthe theorems. Our main tool shall be a representation formula for the quantity ln e g(x) γ(dx) ,

where γ is a Gaussian measure. Let us describe it briefly. Let (Ω, A, P) be a probability space, let (F t ) t∈[0,T ] be a filtration and let

(W t ) t∈[0,T ]
be a Brownian motion taking values in R n (we fix a finite time horizon T ). Assuming that the covariance matrix A of the random vector W 1 has full rank, we let H be the Cameron-Martin space associated to W ; namely the Hilbert space of absolutely continuous paths u : [0, T ] → R n starting from 0, equipped with the norm

u H = T 0 A -1 us , us ds 1/2 .
In the sequel we call drift any adapted process U which belongs to H almost surely.

The following formula is due to Boué and Dupuis [START_REF] Boué | A variational representation for certain functionals of Brownian motion[END_REF] (see also [START_REF] Borell | Diffusion equations and geometric inequalities[END_REF][START_REF] Lehec | Representation formula for the entropy and functional inequalities[END_REF]).

Proposition 1. Let g : R n → R be measurable and bounded from below, then

log Ee g(WT ) = sup E g(W T + U T ) - 1 2 U 2

H

where the supremum is taken over all drifts U .

In [START_REF] Borell | Diffusion equations and geometric inequalities[END_REF], Borell rediscovers this formula and shows that it yields the Prékopa-Leindler inequality (a reversed form of Hölder's inequality) very easily. Later on Cordero and Maurey noticed that under the frame condition, both the direct and reversed Brascamp-Lieb inequalities could be recovered this way (this was not published but is explained in [START_REF] Lehec | Representation formula for the entropy and functional inequalities[END_REF]). The purpose of this article is, following Borell, Cordero and Maurey, to show that the Brascamp-Lieb and Barthe theorems in full generality are direct consequences of Proposition 1.

The direct inequality

Replace f i by x → f i (x/λ) in inequality [START_REF] Barthe | Inverse Brascamp-Lieb inequalities along the heat equation[END_REF]. The left-hand side of the inequality is multiplied by λ n and the right-hand side by λ m i=1 cini . Therefore, a necessary condition for C to be finite is

m i=1 c i n i = n.
This homogeneity condition will be assumed throughout the rest of the article.

Theorem 2. Assume that there exists a positive definite matrix A satisfying

(6) A -1 = m i=1 c i B * i (B i AB * i ) -1 B i .
Then the Brascamp-Lieb constant is

C = det(A) m i=1 det(B i AB * i ) ci 1/2
, and there is equality in (2) for the following Gaussian functions

(7) f i : x ∈ R ni → e -(BiAB * i ) -1 x,x /2 , i ≤ m.
Remark. If the frame condition (5) holds then A = id R n satisfies (6) and the Brascamp-Lieb constant is 1.

Proof. Because of ( 6), if the functions f i are defined by [START_REF] Borell | Diffusion equations and geometric inequalities[END_REF] then

m i=1 f i (B i x) ci = e -A -1 x,x /2 .
The equality case follows easily (recall the homogeneity condition c i n i = n). Let us prove the inequality. Let f 1 , . . . , f m be non-negative integrable functions on R n1 , . . . , R nm , respectively and let

f : x ∈ R n → m i=1 f i (B i x) ci .
Fix δ > 0, let g i = log(f i + δ) for every i ≤ m and let

g(x) = m i=1 c i g i (B i x).
The functions (g i ) i≤m , g are bounded from below. Fix a time horizon T , let (W t ) t≥T be a Brownian motion on R n , starting from 0 and having covariance A; and let H be the associated Cameron-Martin space. By Proposition 1, given ǫ > 0, there exists a drift U such that

log Ee g(WT ) ≤ E g(W T + U T ) - 1 2 U 2 H + ǫ = m i=1 c i Eg i (B i W T + B i U T ) - 1 2 E U 2 H + ǫ. (8) 
The process

B i W is a Brownian motion on R ni with covariance B i AB * i . Set A i = B i AB *
i and let H i be the Cameron-Martin space associated to B i W . Equality (6) gives

A -1 x, x = m i=1 c i A -1 i B i x, B i x for every x ∈ R n . This implies that u 2 H = m i=1 c i B i u 2
Hi for every absolutely continuous path u :

[0, T ] → R n . So that (8) becomes log Ee g(WT ) ≤ m i=1 c i E g i (B i W T + B i U T ) - 1 2 B i U 2 Hi + ǫ.
By Proposition 1 again we have

E g i (B i W T + B i U T ) - 1 2 B i U 2 Hi ≤ log Ee gi(BiWT )
for every i ≤ m. We obtain (dropping ǫ which is arbitrary)

(9) log Ee g(WT ) ≤ m i=1 c i log Ee gi(BiWT ) .
Recall that f ≤ e g and observe that

m i=1 E(e gi (B i W T ) ci ≤ m i=1 Ef i (B i W T ) ci + O(δ c ),
for some positive constant c. Inequality ( 9) becomes (dropping the O(δ c ) term) ( 10)

Ef (W T ) ≤ m i=1 Ef i (B i W T ) ci . Since W T is a centered Gaussian vector with covariance T A Ef (W T ) = 1 (2πT ) n/2 det(A) 1/2 R n f (x)e -A -1 x,x /2T dx,
and there is a similar equality for Ef i (B i W T ). Then it is easy to see that letting T tend to +∞ in inequality [START_REF] Carlen | Subadditivity of the entropy and its relation to Brascamp-Lieb type inequalities[END_REF] yields the result (recall that

c i n i = n).
Example (Optimal constant in Young's inequality). Young's convolution inequality asserts that if p, q, r ≥ 1 and are linked by the equation

(11) 1 p + 1 q = 1 + 1 r , then F * G r ≤ F p G q ,
for all F ∈ L p and G ∈ L q . When either p, q or r equals 1 or +∞ the inequality is a consequence of Hölder's inequality and is easily seen to be sharp. On the other hand when p, q, r belong to the open interval (1, +∞) the best constant C in the inequality F * G r ≤ C F p G q , is actually smaller than 1. Let us compute it using the previous theorem. Observe that by duality C is the best constant in the inequality

(12) R 2 f c1 (x + y)g c2 (y)h c3 (x) dxdy ≤ C R f c1 R g c2 R h c3 , where c 1 = 1 p , c 2 = 1 q , c 3 = 1 - 1 r .
In other words C is the Brascamp-Lieb constant in R 2 associated to the data

(c 1 , B 1 ), (c 2 , B 2 ), (c 3 , B 3 ),
where B 1 = (1, 1), B 2 = (0, 1) and B 3 = (1, 0). According to the previous result, we have to find a positive definite matrix A satisfying

A -1 = 3 i=1 c i B * i (B i AB * i ) -1 B i .
Letting A = x z z y , this equation turns out to be equivalent to

(1 -c 2 )xy + yz + c 2 z 2 = 0 (1 -c 3 )xy + xz + c 3 z 2 = 0 c 1 + c 2 + c 3 = 2.
The third equation is just the Young constraint [START_REF] Carlen | Loss, A sharp analog of Young's inequality on S N and related entropy inequalities[END_REF]. The first two equations admit two families of solutions: either (x, y, z) is a multiple of (1, 1, -1) or (x, y, z) is a multiple of

c 3 (1 -c 3 ), c 2 (1 -c 2 ), -(1 -c 2 )(1 -c 3 ) .
The constraint xyz 2 > 0 rules out the first solution. The second solution is fine since c 1 , c 2 and c 3 are assumed to belong to the open interval (0, 1). By Theorem 2, the best constant in ( 12) is

C = det(A) 3 i=1 det(B i AB * i ) ci 1/2 = (1 -c 1 ) 1-c1 (1 -c 2 ) 1-c2 (1 -c 3 ) 1-c3 c c1 1 c c2 2 c c3 3 1/2 .
In terms of p, q, r we have

C = p 1/p q 1/q r ′ 1/r ′ p ′ 1/p ′ q ′ 1/q ′ r 1/r 1/2
where p ′ , q ′ , r ′ are the conjugate exponents of p, q, r, respectively. This is indeed the best constant in Young's inequality, first obtained by Beckner [START_REF] Beckner | Inequalities in Fourier analysis[END_REF].

The reversed inequality

Theorem 3. Again, assume that there is a matrix A satisfying [START_REF] Bennett | The Brascamp-Lieb inequalities: finiteness, structure and extremals[END_REF]. Then the reversed Brascamp-Lieb constant is

C r = det(A) m i=1 det(B i AB * i ) ci 1/2 .
There is equality in (4) for the following Gaussian functions

f i : x ∈ R ni → e -BiAB * i x,x /2 , i ≤ m. f : x ∈ R n → e -Ax,x /2 .
Remark. Observe that under condition (6) the Brascamp-Lieb constant and the reversed constant are the same, but the extremizers differ.

We shall use the following elementary lemma.

Lemma 4. Let A 1 , . . . , A m be positive definite matrices on R n1 , . . . , R nm , respectively and let

A = m i=1 c i B * i A -1 i B i -1
.

Then for all x ∈ R n Ax, x = inf m i=1 c i A i x i , x i , m i=1 c i B * i x i = x .
Proof. Let x 1 , . . . , x m and let

(13) x = m i=1 c i B * i x i .
Then by the Cauchy-Schwarz inequality (recall that the matrices A i are positive definite)

Ax, x = m i=1 c i Ax, B * i x i = m i=1 c i B i Ax, x i ≤ m i=1 c i A -1 i B i Ax, B i Ax 1/2 m i=1 c i A i x i , x i 1/2 = Ax, x 1/2 m i=1 c i A i x i , x i 1/2 . Besides, given x ∈ R n , set x i = A -1 i B i
Ax for all i ≤ m. Then (13) holds and there is equality in the above Cauchy-Schwarz inequality. This concludes the proof.

Proof of Theorem 3. The equality case is a straightforward consequence of the hypothesis [START_REF] Bennett | The Brascamp-Lieb inequalities: finiteness, structure and extremals[END_REF] and Lemma 4, details are left to the reader. Let us prove the inequality. There is no loss of generality assuming that the functions f 1 , . . . , f m are bounded from above (otherwise replace f i by max(f i , k), let k tend to +∞ and use monotone convergence). Fix δ > 0 and let g i = log(f i + δ) for every i ≤ m. By (3) and since the functions f i are bounded from above, there exist positive constants c, C such that the function

g : x ∈ R n → log f (x) + Cδ c , satisfies (14) m i=1 c i g i (x i ) ≤ g m i=1 c i B * i x i
for every x 1 , . . . , x m . Observe that the functions (g i ) i≤m , g are bounded from below. Let (W t ) t≤T be a Brownian motion on R n having covariance matrix A.

Set A i = B i AB * i , then A -1 i B i W is a Brownian motion on R ni with covariance matrix (A -1 i B i )A(A -1 i B i ) * = A -1 i (B i AB * i )A -1 i = A -1 i .
Let H i be the associated Cameron-Martin space. By Proposition 1 there exists a

(R ni -valued) drift U i such that (15) log Ee gi(A -1 i BiWT ) ≤ E g i (A -1 i B i W T + (U i ) T ) - 1 2 U i 2 Hi + ǫ.
By ( 14) and ( 6)

m i=1 c i g i (A -1 i B i W T + (U i ) T ) ≤ g m i=1 c i B * i (A -1 i B i W T + (U i ) T ) = g A -1 W T + m i=1 c i B * i (U i ) T .
The Brownian motion (A -1 W ) t≤T has covariance matrix A -1 A(A -1 ) * = A -1 . Let H be the associated Cameron-Martin space. Lemma 4 shows that

A m i=1 c i B * i x i , m i=1 c i B * i x i ≤ m i=1 c i A i x i , x i
for every x 1 , . . . , x m in R n1 , . . . , R nm , respectively. Therefore

m i=1 c i B * i u i 2 H ≤ m i=1 c i u i 2 Hi .
for every sequence of absolutely continuous paths (u i : [0, T ] → R ni ) i≤m . Thus multiplying (15) by c i and summing over i yields

m i=1 c i log Ee gi(A -1 i BiWT ) ≤ E g A -1 W T + m i=1 c i B * i (U i ) T - 1 2 m i=1 c i B * i U i 2 H + m i=1 c i ǫ.
Hence, using Proposition 1 again and dropping ǫ again, (16)

m i=1 c i log Ee gi(A -1 i BiWT ) ci ≤ log Ee g(A -1 WT ) .
Recall that f i ≤ e gi for every i ≤ m and that e g = f + Cδ c . Since δ is arbitrary, inequality (16) becomes

m i=1 Ef i (A -1 i B i W T ) ci ≤ Ef (A -1 W T ).
Again, letting T tend to +∞ in this inequality yields the result.

The Brascamp-Lieb and Barthe theorems

So far we have seen that both the direct inequality and the reversed version are saturated by Gaussian functions when there exists a matrix A such that (17)

A -1 = m i=1 c i B * i (B i AB * i ) -1 B i .
In this section, we briefly explain why this yields the Brascamp-Lieb and Barthe theorems.

Applying [START_REF] Barthe | Inverse Brascamp-Lieb inequalities along the heat equation[END_REF] to Gaussian functions gives (18)

m i=1 det(A i ) ci ≤ C 2 det m i=1 c i B * i A i B i ,
for every sequence A 1 , . . . , A m of positive definite matrices on R n1 , . . . , R nm . Let C g be the Gaussian Brascamp-Lieb constant; namely the best constant in the previous inequality. We have C g ≤ C and it turns out that applying (4) to Gaussian functions yields C g ≤ C r (one has to apply Lemma 4 at some point).

It is known since the work of Carlen and Cordero [START_REF] Carlen | Subadditivity of the entropy and its relation to Brascamp-Lieb type inequalities[END_REF] that there is a dual formulation of (2) in terms of relative entropy. In the same way, there is a dual formulation of (18). For every positive matrix A on R n , one has

log det(A) = inf B>0 tr(AB) -n -log(det(B)) ,
with equality when B = A -1 . Using this and the equality m i=1 c i n i = n, it is easily seen that C g is also the best constant such that the inequality

(19) det(A) ≤ C 2 g m i=1 det(B i AB * i ) ci
holds for every positive definite matrix A on R n .

Example. Assume that m = n, that c 1 = • • • = c n = 1 and that B i (x) = x i for i ∈ [n]
. Inequality (18) trivially holds with constant 1 (and there is equality for every A 1 , . . . , A n ). On the other hand (19) becomes

det(A) ≤ n i=1 a ii ,
for every positive definite A, with equality when A is diagonal. This is Hadamard's inequality.

Lemma 5. If A is extremal in (19) then A satisfies (17).
Proof. Just compute the gradient of the map

A > 0 → log det(A) - m i=1 c i log det(B i AB * i ).
Therefore, if the constant C g is finite and if there is an extremizer A in (19) then A satisfies (17) and together with the results of the previous sections we get the Brascamp-Lieb and Barthe equalities (20)

C = C r = C g .
Although it may happen that C g < +∞ and no Gaussian extremizer exists, there is a way to bypass this issue. For the Brascamp-Lieb theorem, there is an abstract argument showing that is it is enough to prove the equality C = C g when there is Gaussian extremizer. This argument relies on:

(1) A criterion for having a Gaussian extremizer, due to Barthe [START_REF] Barthe | On a reverse form of the Brascamp-Lieb inequality[END_REF] in the rank 1 case (namely when the dimensions n i are all equal to 1) and Bennett, Carbery, Christ and Tao [START_REF] Bennett | The Brascamp-Lieb inequalities: finiteness, structure and extremals[END_REF] in the general case. (2) A multiplicativity property of C and C g due to Carlen, Lieb and Loss [START_REF] Carlen | Loss, A sharp analog of Young's inequality on S N and related entropy inequalities[END_REF] in the rank 1 case and obtained in full generality in [START_REF] Bennett | The Brascamp-Lieb inequalities: finiteness, structure and extremals[END_REF] again. There is no point repeating this argument here, and we refer to [START_REF] Carlen | Loss, A sharp analog of Young's inequality on S N and related entropy inequalities[END_REF][START_REF] Bennett | The Brascamp-Lieb inequalities: finiteness, structure and extremals[END_REF] instead. This settles the case of the C = C g equality. As for the C = C r equality, we observe that the above argument can be carried out verbatim once the mutliplicativity property of the reversed Brascamp-Lieb constant is established. This is the purpose of the rest of the article. Definition 6. Given a proper subspace E of R n , we let for i ≤ m

B i,E : E → B i E x → B i x, B i,E ⊥ : E ⊥ → (B i E) ⊥ x → q i (B i x),
where q i is the orthogonal projection onto (B i E) 

dim(E) = m i=1 c i dim(B i E). Then C r = C r,E × C r,E ⊥ .
Bennett, Carbery, Christ and Tao proved the corresponding property of C and C g , we adapt their argument to prove the multiplicativity of C r .

Let us prove the inequality C r ≤ C r,E ×C r,E ⊥ first. This does not require E to be critical. Let f 1 , . . . , f m , f be functions on R n1 , . . . , R nm , R respectively, satisfying

m i=1 f i (z i ) ci ≤ f m i=1 c i B * i z i for all z 1 , . . . , z m . Fix (x 1 , . . . , x n ) ∈ B 1 E × • • • × B m E. Since (B i,E ⊥ ) * y i = B * i y i for every y i ∈ (B i E) ⊥ , applying the reversed Brascamp-Lieb inequality on E ⊥ to the functions y ∈ (B i E) ⊥ → f i (x i + y), i ≤ m yields m i=1 (BiE) ⊥ f i (x i + y i ) dy i ci ≤ C r,E ⊥ E ⊥ f m i=1 c i B * i x i + y dy = C r,E ⊥ E ⊥ f m i=1 c i (B i,E ) * x i + y dy.
For the latter equality, observe that (B i,E ) * x i = p(B * i x i ) where p is the orthogonal projection with range E and use the translation invariance of the Lebesgue measure. Applying the reversed Brascamp-Lieb inequality (this time on E) and using Fubini's theorem we get

m i=1 R n i f i dx ci ≤ C r,E C r,E ⊥ R n f dx,
which is the result. We start the proof of the inequality C r,E C rE ⊥ ≤ C r with a couple of simple observations.

Lemma 8. Upper semi-continuous functions having compact support saturate the reversed Brascamp-Lieb inequality.

Proof. The regularity of the Lebesgue measure implies that given a non-negative integrable function f i on R ni and ǫ > 0 there exists a non-negative linear combination of indicators of compact sets g i satisfying

g i ≤ f i and R n i f i dx ≤ (1 + ǫ) R n i g i dx.
The lemma follows easily.

The proof of the following lemma is left to the reader.

Lemma 9. If f 1 , . . . , f m are compactly supported and upper semi-continuous on R n1 , . . . , R nm respectively, then the function f defined on R n by

f (x) = sup m i=1 f i (x i ) ci , m i=1 c i B * i x i = x ,
is compactly supported and upper semi-continuous as well.

Remark. If the Brascamp-Lieb datum happens to be degenerate, in the sense that the map 1 , . . . , x m ) → m i=1 B * i x i is not onto, then Brascamp-Lieb constants are easily seen to be +∞. Still the previous lemma remains valid, provided the convention sup ∅ = 0 is adopted.

Let us prove that C r,E × C r,E ⊥ ≤ C r . By Lemma 8, it is enough to prove that the inequality m i=1 BiE

f i dx ci × m i=1 (BiE) ⊥ g i dx ci ≤ C r E f dx E ⊥ g dx .
holds for every compactly supported upper semi-continuous functions (f i ) i≤m and (g i ) i≤m , where f and g are defined by On the other hand, we let the reader check that for every x ∈ E, y ∈ E ⊥ h(ǫx + y) ≤ f (x)g ǫ (y), where g ǫ (y) = sup g(y ′ ), |yy ′ | ≤ Kǫ and K is a constant depending on the diameters of the supports of the functions f i . Therefore

f : x ∈ E → sup m i=1 f i (x i ) ci ,
ǫ -dim E R n h dx = E×E ⊥ h(ǫx + y) dxdy ≤ E f dx E ⊥ g ǫ dx .
Inequality (21) becomes

m i=1 BiE f i dx ci × m i=1 (BiE) ⊥ g i dx ci ≤ C r E f dx E ⊥ g ǫ dx .
By Lemma 9, the function g has compact support and is upper semi-continuous. This implies easily that lim

ǫ→0 E ⊥ g ǫ dx = E ⊥
g dx, which concludes the proof.

c

  i (B i,E ) * x i = x g : y ∈ E ⊥ → sup m i=1 g i (y i ) ci , m i=1 c i (B i,E ⊥ ) * y i = y . Let ǫ > 0. For i ≤ m define a function h i on R ni by h i (x + y) = f i (x/ǫ)g i (y), ∀x ∈ B i E, ∀y ∈ (B i E) ⊥ , and let h : z ∈ R n → sup m i=1 h i (z i ) ci , m i=1 c i B * i z i = z .By definition of the reversed Brascamp-Lieb constant C r dim(B i E) = dim(E) we get ǫ -dim(E)

  ⊥ . Observe that both B i,E and B i,E ⊥ are onto. Now we let C r,E be the reversed Brascamp-Lieb constant on E associated to the datum(c 1 , B 1,E ), . . . , (c m , B m,E )and C r,E ⊥ be the reversed Brascamp-Lieb constant on E ⊥ associated to the datum(c 1 , B 1,E ⊥ ), . . . , (c m , B m,E ⊥ ) Proposition 7.Let E be a proper subspace of R n , and assume that E is critical, in the sense that
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