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Abstract

In this paper, we prove that the blowing-up preserve the local monomiality of foliated space.

1 Locally monomial foliations

Let M be an analytic manifold of dimension n and D ⊂ M be a divisor with normal crossings. We
denote respectively by OM and ΘM [logD] the sheaf of holomorphic functions and the sheaf of vector
fields on M which are tangent to D.

A singular foliation on (M,D) is coherent subsheaf F of ΘM [logD] which is reduced and integrable
(see [1] and [2]). The dimension (or the rank) of F is given by

s = max
p∈M

dimF(p)

where F(p) ⊂ TpM denote the vector subspace generated by the evaluation of F at p.
Let F be a field (we usually take F = Q,R or C). We shall say that F is F-locally monomial if for

each point p ∈ M there exists

1. a local system of coordinates x = (x1, . . . , xn) at p

2. an s-dimensional vector subspace V ⊂ Fn

such that D is locally given by

Dp = {xi = 0 : i ∈ I}, for some I ⊂ {1, . . . , n}

and Fp is the OM,p-module generated by the abelian Lie algebra

L(V ) = {
n∑

i=1

aixi

∂

∂xi

: a ∈ V }
⊕

iĪ:ei∈M

F
∂

∂xi

where Ī = {1, . . . , n} \ I. We shall say that the triple (M,D,F) is locally monomially foliated space
and that (x, I, V ) is a local presentation at p.

Lemma 1.1. Let (x, I, V ) be a local presentation for (M,D,F) at a point p. Then, for each vec-
tor m ∈ V ⊥, the (possibly multivalued) function f(x) = xm is a first integral of F .

2 Blowing-up

Let Y ⊂ M be a smooth submanifold of codimension r. We shall say that Y has normal crossings
with (M,D,F) if for each point p ∈ Y there exists a local presentation (x, I, V ) at p such that Y is
given by

Y = {x1 = x2 = . . . = xr = 0}.
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Proposition 1.2. Let Φ : M̃ → M be the blowing-up with a center Y which has normal crossings with
(M,D,F). Let

D̃ = Φ−1(D) and F̃ ⊂ Θ
M̃
[log D̃]

denote the total transform of D and the strict transform of F respectively. Then, the triple (M̃, D̃, F̃)
is a locally monomially foliated space.

The proof is based on the following result on linear algebra.

3 Some linear algebra

Let F be a field and let V ⊂ Fn be a vector subspace of dimension s. Let us fix a disjoint partition of
indices {1, . . . , n} = I1 ⊔ I2 write Fn = FI1 ⊕ FI2 and let πI : Fn → FI denote the projection in the
corresponding subspace FI generated by {ei : i ∈ I}.

Lemma 3.1. There exists a basis for V such that for each vector v in this basis, either

v = πI2(v) or v = πI2 (v) + ei

for some i ∈ I1

Proof. Up to a permutation of coordinates, we can suppose that I1 = {1, . . . , n1} and I1 = {n1 +
1, . . . , n} (with the convention that n1 = 0 if I1 = ∅)

Let M = [m1, . . . ,ms] be a s×n matrix whose rows are an arbitrary basis of V . By a finite number
of elementary row operations and permutations of columns (which leave invariant the subsets I1 and
I2), we can suppose that the matrix M has the form

M =

(
Idk1×k1

Ak1×l1 0k1×k2
Bk1×l2

0k2×k1
0k2×l1 Idk2×k2

Ck2×l2

)

where ki + li = |Ii| for i = 1, 2, k1+ k2 = s and Idk,l and 0k,l denote the k× l identity and zero matrix
respectively.

Now, it suffices to define vi = ei +
∑

n1+k2+1≤j mi,jej , for i = 1, . . . , k1 and vi = ei+n1
+∑

n1+k2+1≤j mi,jej for i = k1 + 1, . . . , s.
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