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Passive control of singularities by topological optimization.

The second order mixed shape derivatives of energy func-

tionals for variational inequalities

Günter Leugering, Jan Soko lowski and Antoni Zochowski

Abstract. The class of nonsmooth shape optimization problems for variational inequalities is con-

sidered. The variational inequalities model elliptic boundary value problems with the Signorini type

unilateral boundary conditions. The shape functionals are given by the first order shape derivatives

of the elastic energy. In such a way the singularities of weak solutions to elliptic boundary value

problems can be characterized. An example in solid mechanics is given by the Griffith’s functional,

which is defined in the plane elasticity to measure SIF, the so-called stress intensity factor, at the

crack tips. Thus, the topological optimization can be used for passive control of singularities of

weak solutions to variational inequalities.

The Hadamard directional differentiability of metric projection onto the positive cone in

fractional Sobolev spaces is employed to the topological sensitivity analysis of weak solutions of

nonlinear elliptic boundary value problems. The first order shape derivatives of energy functionals

in the direction of specific velocity fields depend on the solutions to variational inequalities in

a subdomain. The domain decomposition technique is used in order to separate the unilateral

boundary conditions and the energy asymptotic analysis.

The topological derivatives of nonsmooth integral shape functionals for variational inequalities

are derived. The singular geometrical doamin perturbations in an elastic body Ω are approximated

by the regular perturbations of bilinear forms in variational inequality, without any loss of precision

for the purposes of the second order shape-topological sensitivity analysis. The second-order shape-

topological directional derivatives are obtained for the Laplacian and for the linear elasticity in

two and three spatial dimensions. In the proposed method of sensitivity analysis, the singular

geometrical perturbations ǫ → ωǫ ⊂ Ω centered at x̂ ∈ Ω are replaced by regular perturbations of

bilinear forms supported on the manifold ΓR = {|x − x̂| = R} in an elastic body, with R > ǫ > 0.

The obtained expressions for topological derivatives are easy to compute and therefore useful in

numerical methods of topological optimization for contact problems.

Keywords. Signorini problem, variational inequality, shape functional, shape sensitivity, topological

sensitivity, domain decomposition, Steklov-Poincaré operator, contact problems.

1. Introduction

Topological derivatives of shape functionals Ω → J(Ω) are introduced in (25) for linear elliptic bound-
ary value problems defined in singularly perturbed domains ǫ→ Ω(ǫ), where ǫ→ 0 is a small parameter
which governs the size of small hole or inclusion in the bounded domain Ω ⊂ Rd, d = 2, 3. The topo-
logical derivatives are given by expressions depending on pointwise values of solutions as well as of its
gradients (22). Therefore, the obtained expressions for topological derivatives are not well defined on
the energy spaces associated with the boundary value problems under considerations.
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In this paper the topological sensitivity analysis of solutions to variational inequalities is per-
formed by the domain decomposition technique. The regular perturbations defined on the energy
space ε→ εdb(ΓR; ·, ·) for bilinear forms ε→ a(Ω(ǫ); ·, ·) of boundary value problems, with respect to
small parameter ǫ → 0, are introduced. Such perturbations are given by line integrals in two spatial
dimensions, or by surface integrals in three spatial dimensions. As a result, the topological derivatives
of shape functionals can be derived for solutions of variational inequalities posed in the intact domain
Ω.

In order to derive the topological derivatives by an application of the domain decomposition
technique the artificial interface Σ ⊂ Ω is introduced and Ω := Ω1 ∪ Σ ∪ Ω2 is decomposed into two
subdomains.

For the boundary value problem under considerations such a decomposition is indeed useful. In
some applied problems we are interested in the influence of singular perturbations in subdomain Ω1 on
the behaviour of solutions in subdomain Ω2. The functional under consideration is the elastic energy
E(Ω) of whole domain Ω. The mixed second order derivatives of shape-topological or topological-
shape types for the elastic energy are evaluated. The shape sensitivity analysis is performed e.g.,
in Ω2, then the asymptotic analysis is performed in the second subdomain Ω1. In the framework of
shape-topological sensitivity analysis the velocity method is applied in order to determine the shape
functional J(Ω) := dE(Ω;V ), where V is the specific vector field in derivation of V → dE(Ω;V ). Then
the asymptotic expansion of ǫ→ J(Ωǫ) is evaluated. In the framework of topological-shape sensitivity
analysis, first the asymptotic expansion of ǫ → E(Ωǫ) is performed, and the first order term of such
an expansion is called the topological derivative. It turns out (25; 22) that the topological derivative
of energy functional is not well defined for arbitrary elements from the energy space of the elasticity
boundary value problems under considerations. Therefore, we introduce the equivalent representations
of topological derivatives which are well defined in the energy space. These representations can be used
as well to modify the state equations by replacing the singular domain perturbations by the regular
perturbations of bilinear forms in variational setting.

The asymptotic expansion of the energy functional performed in one subdomain, e.g., Ω1, can
be used in the second subdomain Ω2 to evaluate the asymptotic expansion of the Steklov-Poincaré
operator on the interface between subdomains. The method is justified by the fact that the first order
expansion of the energy functional in the subdomain leads to the first order asymptotic expansion
of the Dirichlet-to-Neumann mapping on the interface between subdomains. Thus, the first order
expansion of the Steklov-Poincaré operator on the interface for the second subdomain is obtained. In
this way the first order expansion of the energy functional in the truncated domain Ω2 is derived.
The precision of the obtained expansion is sufficient (27; 28) to replace the original energy functional
by its first order expansion, provided the obtained expression is well defined on the energy space.
Furthermore, the first order approximation of the energy functional in Ω is established. We point
out that another method of approximation of the state equation by using the so-called self-adjoint
extensions of the elliptic operators can be considered (20; 21).

1.1. Asymptotic approximation for variational inequalities

The proposed domain decomposition method is important for variational inequalities. The asymp-
totic analysis of solutions to variational inequalities is more involved (2) compared to the analysis of
solutions to linear elliptic boundary value problems.

The variational inequality under consideration results from the minimization problem of qua-
dratic functional

v → I(v) =
1

2
a(v, v) − L(v) (1.1)

over a convex, closed subset K ⊂ H of the Hilbert space H called the energy space. The function
space H := H(Ω) is a Sobolev space which contains the functions defined over a domain Ω ⊂ Rd,
d = 2, 3. The singular geometrical perturbation ωǫ centered at x̂ ∈ Ω of the domain Ω is denoted by
Ωǫ, the size of perturbation is governed by a small parameter ǫ→ 0. As an example can serve the hole
or inclusion at the origin Bǫ := {|x| < ǫ}.
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The quadratic functional defined on H := H(Ωǫ) becomes

v → Iǫ(v) =
1

2
aǫ(v, v) − Lǫ(v) (1.2)

with the minimizers denoted by uǫ ∈ K := K(Ωǫ).
The expansion of associated energy functional

ǫ→ E(Ωǫ) := Iǫ(uǫ) =
1

2
aǫ(uǫ, uǫ) − Lǫ(uǫ) (1.3)

is considered at ǫ = 0.
Namely, we are looking for its asymptotic expansion

E(Ωǫ) = E(Ω) + ǫdT (x̂) + o(ǫd), (1.4)

where x̂ → T (x̂) is the topological derivative (25; 22). We show that there are regular perturbations
of bilinear form defined on the energy space H(Ω),

v → b(v, v)

such that the perturbed quadratic functional defined on the unperturbed function space H(Ω)

v → Iǫ(v) =
1

2

[
a(v, v) + ǫdb(v, v)

]
− L(v) (1.5)

furnishes the first order expansion (1.4). In our applications to contact problems in linear elasticity it
turns out that the bilinear form v → b(v, v) is supported on ΓR := {|x− x̂| = R} ⊂ Ω with R > ǫ > 0.

Remark 1. The contact problems in elastic bodies are modeled by variational inequalities

u ∈ K : a(u, v − u) ≥ L(v − u) ∀v ∈ K. (1.6)

For the sensitivity analysis in singularly perturbed geometrical domains, the weak solutions of contact
problems ǫ→ uǫ are given by perturbed variational inequalities

u ∈ K : a(u, v − u) + ǫdb(u, v − u) ≥ L(v − u) ∀v ∈ K, (1.7)

where ǫ → 0 measures the size of singular perturbation. This is the main contribution of the paper.
Therefore, we need the form of ǫdb(u, v − u) in order to apply our method of sensitivity analysis to
numerical methods of topological optimization.

Variational inequalities are used to model contact problems in elasticity. It is known that the
solutions to variational inequalities are Lipschitz continuous with respect to the shape (29). In general,
the state governed by a variational inequality is not Fréchet differentiable with respect to the shape.
For a class of variational inequalities described by the unilateral constraints in Sobolev spaces of
Dirichlet type the metric projection onto the constraints turns out to be Hadamard differentiable (7).
This property is used in order to obtain the first order directional differentiability of the associated
shape functionals.

In order to show the second order shape differentiability for variational inequalities, we have to
restrict ourselves to energy-type shape functionals. The energy functional is the so-called marginal
function and it is Fréchet differentiable with respect to the shape (7). The first order shape derivative
of the energy functional in the direction of a specific velocity vector field is considered as the shape
functional for topological optimization. Thus, its topological derivative is evaluated.

The possible applications of shape-topological derivatives include the control of singularities of
solutions to variational inequalities by insertion of elastic inclusions far from the singularities.

We describe the shape-topological differentiability of the energy shape functional for the Signorini
problem in two spatial dimensions. The same idea can be used for the frictionless contact problems in
linear elasticity.

Let us consider the Signorini problem posed in Ω ⊂ R2, with boundary ∂Ω = Γ∪Γ0, and Γc ⊂ Γ.
Denote H1

Γ0
(Ω) = {v ∈ H1(Ω) | v = 0 on Γ0 ⊂ ∂Ω}.
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The solution u ∈ K minimizes the quadratic functional

I(v) =
1

2
a(Ω; v, v) − (f, v)Ω

over the cone

K = {v ∈ H1
Γ0

(Ω) | v ≥ 0 on Γc ⊂ Γ ⊂ ∂Ω}.
The shape functional is the energy

E(Ω) =
1

2
a(Ω;u, u) − (f, u)Ω,

where

a(Ω;u, u) =

∫

Ω

∇u · ∇udx,

(f, u)Ω =

∫

Ω

fudx.

We assume that Γ ∩ Γ0 = ∅. Let Γt
0 := Tt(V )(Γ0) be the boundary variations (29) of the Dirichlet

boundary Γ0.
Let us consider the decomposition of Ω = Ω1 ∪ Σ ∪ Ω2, Ω1 ∩ Ω2 = ∅, such that Γ0 ⊂ ∂Ω1 and

Γc ⊂ ∂Ω2. It means that the boundary variations as well as the topological asymptotic analysis are
performed in Ω1, and the unilateral conditions are prescribed in the second subdomain Ω2.

The shape derivative of the energy functional with respect to the boundary variations of Γ0 can
be written in distributed form (29)

dE(Ω;V ) =

∫

Ω1

〈A′(0) · ∇u,∇u〉dx

where A′(0) = div V I −DV −DV ⊤, under the assumption that the velocity field V is supported in
a small neighborhood of Γ0 and that supp V ∩ supp f = ∅.

The second shape functional for the purposes of topological optimization is simply defined by

J(Ω) :=

∫

Ω1

〈A′(0) · ∇u,∇u〉dx. (1.8)

We are going to determine the topological derivatives of Ω → J(Ω) for insertion of small inclusions in
Ω1 far from Γ0. In this way we could control the possible singularities on Γ0 by topology optimization
in Ω.

We consider the domain decomposition method for purposes of the shape-topological differen-
tiability of energy shape functionals. First, the domain Ω is split into two subdomains Ω1,Ω2 and the
interface Σ. The differentiability with respect to small parameter of the Dirichlet-to-Neumann map
which lives on the boundary Σ ⊂ ∂Ω1 is established. This map is called the Steklov-Poincaré operator
for subdomain Ω2.

Once, the derivative of the energy functional is given, we can proceed with the subsequent
topological optimization problem. For topological optimization another decomposition Ω := ΩR ∪
ΓR ∪ Ωc is introduced. The small inclusion ωε centered at the origin x̂ := O is located in subdomain
ΩR ⊂ Ω with the interface ΓR ⊂ ∂ΩR.

2. Applications of Steklov-Poincaré operators in asymptotic analysis

We analyse the precision of proposed method of approximation for variational inequalities in singularly
perturbed geometrical domains. We assume for simplicity that the singular perturbation is a disc
Bǫ = {|x| < ǫ}.
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The Signorini variational inequality in Ωǫ := Ω \Bǫ,

uǫ ∈ K(Ωǫ) : a(Ωǫ;uǫ, v − uǫ) − L(Ωǫ; v − uǫ) ≥ 0 ∀v ∈ uǫ ∈ K(Ωǫ), (2.1)

can be considered in the truncated domain Ωc := Ω\BR for R > ǫ > 0, R small enough. It is assumed
that the source or linear form v → L(Ω; v) := (f, v)Ωc is supported in Ωc. Hence the restriction
uǫ ∈ K(Ωc) of uǫ ∈ K(Ωǫ) to the truncated domain is given by the solution to variational inequality

uǫ ∈ K(Ωc) : a(Ωc;uǫ, v − uǫ) + 〈Aǫ(uǫ), v − uǫ〉 − L(Ωc; v − uǫ) ≥ 0 ∀v ∈ K(Ωǫ), (2.2)

where Aǫ stands for the Steklov-Poincaré operator which replaces the portion of bilinear form defined
over the ring C(R, ǫ) := {R > |x| > ǫ}.

Proposition 2. Assume that the Steklov-Poincaré operator admits the one-term expansion

〈Aǫ(v), v〉 = 〈A(v), v〉 + ǫ2〈B(v), v〉 + o(ǫ2; v, v) (2.3)

with the compact remainder o(ǫ2; v, v), then we can replace in (2.2) the Steklov-Poincaré operator by
its one term approximation

ũǫ ∈ K(Ωc) : a(Ωc; ũǫ, v− ũǫ) + 〈A(ũǫ), v− ũǫ〉+ ǫ2〈B(ũǫ), v− ũǫ〉 −L(Ωc; v− ũǫ) ≥ 0 ∀v ∈ K(Ωǫ),
(2.4)

with the estimate
‖ũǫ − uǫ‖ = o(ǫ2). (2.5)

Remark 3. From Proposition 2 it follows that for the shape-topological differentiability of the energy
functional we can consider the variational inequality

ûǫ ∈ K(Ω) : a(Ω; ûǫ, v − ûǫ) + ǫ2〈B(ûǫ), v − ûǫ〉 − L(Ω; v − ûǫ) ≥ 0 ∀v ∈ K(Ω), (2.6)

since ‖ûǫ − uǫ‖ = o(ǫ2) in Ωc.
In this way, the aproximation (1.5) of quadratic functional (1.2) is justified for the first order

topological derivatives of variational inequalities in truncated domains.

For the quadratic functional (1.1) and the associated boundary value problem, the bilinear form

v → b(ΓR; v, v) := 〈B(v), v〉
is determined. The linear operator B is obtained from the one term expansion of the Steklov-Poincaré
operator Aǫ, the expansion results from the energy expansion in the subdomain ΩR. Therefore, the
perturbed quadratic functional (1.3) can be replaced by its approximation given by (1.5). For the
Signorini problem in two spatial dimensions it means that the variational inequality is obtained for
minimization of perturbed functional (1.3) over the energy space in unperturbed domain Ω, and the
associated energy functional

Eǫ(Ω) =
1

2
a(Ω;uǫ, uǫ) +

ǫ2

2
b(ΓR;uǫ, uǫ) − (f, uǫ)Ω,

is evaluated for the solution of variational inequality

uǫ ∈ K(Ω) : a(Ω;uǫ, v − uǫ) + ǫ2b(ΓR;uǫ, v − uǫ) − (f, v − uǫ)Ω ≥ 0 ∀v ∈ K(Ω).

3. Asymptotic analysis by domain decomposition method

In order to apply the domain decomposition technique to topological differentiability ωǫ → Jǫ(Ω) in
topologically perturbed domains Ω := Ωǫ for the shape functionals Ω → J(Ω) we need the appropriate
results on topological differentiability ǫ → Bǫ of the Steklov-Poincaré pseudodifferential boundary
operators defined on the artificial interface Σ. In the particular case of holes ǫ → ωǫ the notation is
straighforward, with the singularly perturbed domain Ωǫ := Ω \ ωǫ and with the shape functional to
be analysed with respect to small parameter ǫ→ Jǫ(Ω) := J(Ω \ ωǫ). In the case of inclusions ǫ→ ωǫ

the shape functional depends on the characteristic functions ǫ → χǫ of the domain perturbation ωǫ.
For inclusions the state solution ǫ → uǫ ∈ H(Ω) is obtained by solving boundary value problems
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with operator coefficients depending on small parameter ǫ → 0. In both cases the asymptotics of
Steklov-Poincaré operators are obtained by asymptotic analysis of the energy functional for linear
elliptic boundary value problems in subdomains Ω2 which contains the perturbations ǫ→ ωǫ.

Let us consider the direct method of sensitivity analysis in subdomain Ω1 which contains the
contact subset Γc ⊂ ∂Ω. This is possible due to the conical differentiability of metric projection onto
the convex set K which is valid under some assumptions (eg., the convex, closed cone K is polyhedric
in the Dirichlet space H(Ω) (7)).

Ω

ΓR
ε

Γ0

Γc

Figure 1. The domain with the hole and the surrounding circle.

In the case of the Signorini problem in two spatial dimensions the direct method of asymptotic
analysis for the shape functional (1.8)

Jǫ(Ωǫ) :=

∫

Ω1

〈A′(0) · uǫ, uǫ〉dx

can be described as follows for the disc ωǫ := B(ǫ) = {|x| < ǫ} located at the origin.

1. We solve the variational inequality in Ω1 : determine u ∈ K and its coincidence set Ξ := {x ∈
Γc : u(x) = 0}. Thus, the convex cone

S = {v ∈ H1
Γ0

(Ω) : v ≥ 0 on Ξ a(Ω;u, v) = (f, v)Ω}
used in conical differentiability of the element u with respect to the shape can be determined.

2. The asymptotic analysis of solutions to variational inequality in singularly perturbed domain
Ω(ǫ) : Ω \ B(ǫ) with respect to small parameter ǫ → 0 which governs the size of the hole B(ǫ)
leads to the expansion

uǫ = u+ ǫ2q + o(ǫ2)

obtained by the domain decomposition method with the Steklov-Poincaré boundary operators,
where

q ∈ S : a(Ω; q, v − q) + ǫ2〈Bq, v − q〉R ≥ ∀v ∈ S.

3. The shape functional

Jǫ(Ωǫ) :=

∫

Ω1

〈A′(0) · uǫ, uǫ〉dx
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can be expanded in Ω1, the expansion is valid in the whole domain Ω,

Jǫ(Ωǫ) =

∫

Ω

〈A′(0) · u, u〉dx+ 2ǫ2
∫

Ω

〈A′(0) · q, u〉dx+ o(ǫ2),

however the obtained expression for the topological derivative may not be constructive in nu-
merical methods. We want to obtain an equivalent expression, when possible, which replaces the
topological derivative

T (O) = 2

∫

Ω

〈A′(0) · q, u〉dx

in the first order expansion of the energy functional for Signorini problem. In the linear boundary
value problems such an expression can always be obtained by the introduction of an appropriate
adjoint state. We point out that for variational inequalities the existence of an adjoint state in
general cannot be expected.

4. Asymptotic analysis of boundary value problems in rings or spherical shells

4.1. Elasticity boundary value problems

In this section we shall consider asymptotic corrections to the energy function corresponding to the
elasticity system or Laplace equation in IRd, where d = 2, 3. The change of the energy is caused by
creating a small ball-like void of variable radius ǫ in the interior of the domain Ω, with homogeneous
Neumann boundary condition on its surface. We assume that this void has its centre at the origin
O. In order to eliminate the variability of the domain, we take as ΩR the open ball B(O, R) = B(R)
with fixed R. In this way the void B(ǫ) is surrounded by B(R) ⊂ int Ω. We denote also the ring or
spherical shell as C(R, ǫ) = B(R) \B(ǫ), Ω(R) = Ω \B(R) and ΓR = ∂B(R).

Using these notations we define our main tool, namely the Dirichlet-to-Neumann mapping for
linear elasticity or the Steklov-Poincaré operator

Aǫ : H1/2(ΓR) 7−→ H−1/2(ΓR)

by means of the boundary value problem:

(1 − 2ν)∆w + grad divw = 0, in C(R, ǫ), (4.1)

w = v on ΓR,

σ(w).n = 0 on Γǫ

so that
Aǫv = σ(w).n on ΓR. (4.2)

Domain decomposition - Steklov-Poincaré operator. Let uR be the restriction of u to Ω(R) and γRϕ
the projection of ϕ on ΓR. We may then define the functional

IRǫ (ϕǫ) =
1

2

∫

Ω(R)

σ(ϕǫ) : ε(ϕǫ) dx−
∫

ΓN

h.ϕǫ ds+ (4.3)

+
1

2

∫

ΓR

(Aǫγ
R
ϕǫ).γ

R
ϕǫ ds

and the solution uR
ǫ as a minimal argument for

IRǫ (uR
ǫ ) = inf

ϕǫ∈K⊂Vǫ

IRǫ (ϕǫ), (4.4)

Here lies the essence of the domain decomposition concept: we have replaced the the variable domain
by a fixed one, at the price of introducing variable boundary operator Aǫ.

The above expressions have even simpler form in case of a single Laplace equation. It is enough
to replace the displacement by the scalar function u, elasticity operator by −∆, and

σ(u) := gradu, ε(u) := gradu, σ(u).n := ∂u/∂n.
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The goal is to find the expansion

Aǫ = A + ǫdB + Rǫ, (4.5)

where the remainder Rǫ is of order o(ǫd) in the operator norm in the space L(H1/2(ΓR),H−1/2(ΓR)),
and the operator B is regular enough, namely it is bounded and linear:

B ∈ L
(
L2(ΓR),L2(ΓR)

)
.

Under this assumption the following propositions hold.

Proposition 4. Assume that (4.5) holds in the operator norm. Then strong convergence takes place

uR
ǫ → uR (4.6)

in the norm of H1(Ω(R)).

Proposition 5. The energy functional has the representation

IRǫ (uR
ǫ ) = IR(uR) + ǫd〈B(uR),uR〉R + o(ǫ3) , (4.7)

where o(ǫd)/ǫd → 0 with ǫ→ 0 in the same energy norm.

Here IR(uR) denotes the functional IRǫ on the intact domain, i.e. ǫ := 0 and Aǫ := A, applied
to truncation of u.

Generally, the energy correction for both elasticity system and Laplace operator has the form

〈B(uR),uR〉R = −cdeu(O),

where cd = vol(B(1)) with B(1) being the unit ball in IRd. The energy-like density function eu(O) has
the form:

• In case of the Laplace operator

eu(O) =
1

2
‖∇uR(O)‖2

for both d = 2 and d = 3, see (27).
• In case of the elasticity system

eu(O) =
1

2
IPσ(uR(O) : ε(uR(O),

where for d = 2 and plain stress

IP =
1

1 − ν
(4II − I ⊗ I)

and for d = 3

IP =
1 − ν

7 − 5ν
(10II − 1 − 5ν

1 − 2ν
I ⊗ I)

see (22),(26). Here II is the fourth order identity tensor, and I is the second order identity tensor.

This approach is important for variational inequalities since it allows us to derive the formulas
for topological derivatives which are similar to the expressions obtained for the corresponding linear
boundary value problems.

4.2. Explicit form of the operator B for the Laplacian in two spatial dimensions.

If the function u is harmonic in a ball B(R) ⊂ IR2, of radius R > 0 and centre at x0 = O, then the
exact expressions for the first order derivatives of u take on the following form (27)

u/1(O) =
1

πR3

∫

ΓR

u · x1 ds,

u/2(O) =
1

πR3

∫

ΓR

u · x2 ds.
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Since the line integrals on ΓR are well defined for functions in L2(ΓR), it follows that the operator B
can be extended to the bounded operator on L2(ΓR),

B ∈ L(L2(ΓR) → L2(ΓR)).

The symmetric bilinear form for this operator, given by

〈Bu, v〉R =

− 1

2πR6

[(∫

ΓR

ux1 ds

)(∫

ΓR

vx1 ds

)
+

(∫

ΓR

ux2 ds

)(∫

ΓR

vx2 ds

)]

is continuous for all u, v ∈ L2(ΓR). In fact, the bilinear form

L2(ΓR) × L2(ΓR) ∋ (u, v) 7→ b(ΓR;u, v) ∈ R

is continuous with respect to the weak convergence because of the simple structure

b(ΓR;u, v) = l1(u)l1(v) + l2(u)l2(v) u, v ∈ L1(ΓR)

with two linear forms v → li(v), i = 1, 2,

li(u) =
1√
2π
R−3

∫

ΓR

uxi ds

defined as line integrals on ΓR. This gives an additional regularity for the regular non-local perturba-
tion B of the pseudo-differential Steklov-Poincaré boundary operator Aǫ.

4.3. Explicit form of the operator B for the Laplacian in three spatial dimensions.

Similarly as in two spatial dimensions, for harmonic functions in IR3 it may be proved (27) that

u/1(O) =
3

4πR4

∫

S(R)

ux1 ds,

u/2(O) =
3

4πR4

∫

S(R)

ux2 ds,

u/3(O) =
3

4πR4

∫

S(R)

ux3 ds.

Using this one can easily write down the bilinear form

b(ΓR;u, v) = 〈Bu, v〉R = l1(u)l1(v) + l2(u)l2(v) + l3(u)l3(v)

where

li(u, v) =

√
3

8π
R−4

∫

S(R)

uxi ds.

From the computational point of view, the effort in comparison to the two dimensional case grows
similarly as the difficulty of computing integrals over circle versus integrals over sphere.

4.4. Explicit form of the operator B for elasticity in two spatial dimensions.

Let us denote for the plain stress case

k =
λ+ µ

λ+ 3µ
.

It has been proved in (27) that the following exact formulae hold

ε11(O) + ε22(O) =
1

πR3

∫

ΓR

(u1x1 + u2x2) ds,

ε11(O) − ε22(O) =
1

πR3

∫

ΓR

[
(1 − 9k)(u1x1 − u2x2) +

12k

R2
(u1x

3
1 − u2x

3
2)
]
ds,

2ε12(O) =
1

πR3

∫

ΓR

[
(1 + 9k)(u1x2 + u2x1) − 12k

R2
(u1x

3
2 + u2x

3
1)
]
ds.
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These expressions are easy to compute numerically, but contain additional integrals of third powers
of xi. Therefore, strains εij(O) may be expressed as linear combinations of integrals over circle which
have the form ∫

ΓR

uixj ds,

∫

ΓR

uix
3
j ds.

The same is true, due to Hooke’s law, for stresses σij(O). They may then be substituted into expression
for the operator B, yielding

〈B(uR),vR〉R = −1

2
c2IPσ(u) : ε(v).

These formulas are quite similar to the ones obtained for Laplace operator and easy to compute
numerically.

4.5. Explicit form of the operator B for elasticity in three spatial dimensions

It turns out that similar situation holds in three spatial dimensions, but obtaining the formulas is
more difficult. Assuming given values of u on ΓR, the solution of elasticity system in B(R) may be
expressed, following partially the derivation from (16) (pages 285 and later), as

u =

∞∑

n=0

[Un + (R2 − r2)kn(ν)grad divUn]. (4.8)

where kn(ν) = 1/2[(3 − 2ν)n− 2(1 − ν)] and r = ‖x‖. In addition

Un =
1

Rn
[an0dn(x) +

n∑

m=1

(anmc
m
n (x) + bnms

m
n (x))]. (4.9)

The vectors

an0 = (a1n0, a
2
n0, a

3
n0)⊤,

anm = (a1nm, a
2
nm, a

3
nm)⊤,

bnm = (b1nm, b
2
nm, b

3
nm)⊤

are constant and the set of functions

{d0; d1, c
1
1, s

1
1; d2, c

1
2, s

1
2, c

2
2, s

2
2; d3, c

1
3, s

1
3, c

2
3, s

2
3, c

3
3, s

3
3; . . .}

constitutes the complete system of orthonormal harmonic polynomials on ΓR, related to Laplace
spherical functions, see next paragraph. Specifically,

clk(x) =
P̂ l,c
k (x)

‖P̂ l,c
k ‖R

, slk(x) =
P̂ l,s
k (x)

‖P̂ l,s
k ‖R

, dk =
Pk((x)

‖P̂k‖R
.

For example,

c23(x) =
1

R4

√
7

240π
(15x21x3 − 15x22x3),

If the value of u on ΓR is assumed as given, then, denoting

〈φ, ψ〉R =

∫

ΓR

φψ ds,

we have for n ≥ 0, m = 1..n, i = 1, 2, 3:

ain0 = Rn〈ui, dn(x)〉R, (4.10)

ainm = Rn〈ui, cmn (x)〉R,
binm = Rn〈ui, smn (x)〉R.

Since we are looking for εij(O), only the part of u which is linear in x is relevant. It contains two
terms:

û = U1 +R2k3(ν)grad divU3. (4.11)
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For any f(x), grad div (af) = H(f) · a, where a – constant vector and H(f) is the Hessian matrix of
f . Therefore

û =
1

R
[a10d1(x) + a11c

1
1(x) + b11s

1
1(x))] (4.12)

+R2k3(ν)
1

R3

[
H(d3)(x)a30

+

3∑

m=1

(
H(cm3 )(x)a3m +H(sm3 )(x)b3m

)]

From the above we may single out the coefficients standing at x1, x2, x3 in u1, u2, u3. For example,

ε11(O) =
1

R3

√
3

4π
a111 +

1

R5
k3(ν)

[
− 3

√
7

4π
a330 − 9

√
7

24π
a131

− 3

√
7

24π
b231 + 30

√
7

240π
a332 + 90

√
7

1440π
a133 + 90

√
7

1440π
b233

]
,

ε12(O) =
1

R3

√
3

4π
(b111 + a211) +

1

R5
k3(ν)

[
− 3

√
7

24π
a231 −

√
7

24π
b131

+ 15

√
7

60π
b332 − 90

√
7

1440π
a233 + 90

√
7

1440π
b133

]
.

Observe that

ε11(O) + ε22(O) + ε33(O) =
1

R3

√
3

4π

(
R〈u1, c11〉R +R〈u2, s11〉R +R〈u3, d1〉R

)

and c11 = 1
R2

√
3
4πx1, s11 = 1

R2

√
3
4πx2, d1 = 1

R2

√
3
4πx3, exactly the same as for the case of Laplace

equation. This should be expected, since tr ε is a harmonic function.

As a result, the operator B may be defined by the formula

〈Bu,u〉R = −c3IPσ(u((O))) : ε(u((O)))

but the right-hand side consists of integrals of u multiplied by first and third order polynomials in xi
over ΓR resulting from (4.10). This is a very similar situation as in two spatial dimensions. Thus, the
new expressions for strains make possible to rewrite B in the form possessing the desired regularity.

4.6. Laplace spherical polynomials.

For n = 1:

P̂1(x) = x3, P̂ 1,c
1 (x) = x1, P̂ 1,s

1 (x) = x2,

‖P̂1‖R = ‖P̂ 1,c
1 ‖R = ‖P̂ 1,s

1 ‖R = R2

√
4π

3
,
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and for n = 3:

P̂3(x) = x33 −
3

2
x22x3 −

3

2
x21x3, ‖P̂3‖R = R4

√
4π

7
,

P̂ 1,c
3 (x) = 6x1x

2
3 −

3

2
x31 −

3

2
x1x

2
2, ‖P̂ 1,c

3 ‖R = R4

√
24π

7
,

P̂ 1,s
3 (x) = 6x2x

2
3 −

3

2
x32 −

3

2
x21x2, ‖P̂ 1,s

3 ‖R = R4

√
24π

7
,

P̂ 2,c
3 (x) = 15x21x3 − 15x22x3, ‖P̂ 2,c

3 ‖R = R4

√
240π

7
,

P̂ 2,s
3 (x) = 15x1x2x3, ‖P̂ 2,s

3 ‖R = R4

√
60π

7
,

P̂ 3,c
3 (x) = 15x31 − 45x1x

2
2, ‖P̂ 3,c

3 ‖R = R4

√
1440π

7
,

P̂ 3,s
3 (x) = 45x21x2 − 15x32, ‖P̂ 3,s

3 ‖R = R4

√
1440π

7
,

5. Asymptotic analysis of Steklov-Poincaré operators in reinforced rings in two

spatial dimensions

In this section the similar asymptotic analysis of elliptic boundary value problems in subdomain
ΩR ∈ IR2 is performed, but we modify the situation, assuming that the hole is filled only partially,
different material constituting a fixed part of it. In this way, we may consider double asymptotic
transition, where both the size of the hole, as well as the proportion of the different material contained
in it can vary. Mechanically this situation corresponds e.g. to the hole with hardened walls.

The analysis is based again on exact representation of solutions and allows to obtain the per-
turbation of solutions, using the fact that these solutions may be considered as minimizers of energy
functional. The method is also suitable for double asymptotic expansions of solutions as well as energy
form. The ultimate goal is to use obtained formulas in the evaluation of topological derivatives for
elliptic boundary value problems.

5.1. Model problem

Let us consider the the domain Ω containing the hole with boundary made of modified material as
depicted in Fig.1. For simplicity the hole is located at the origin of the coordinate system. In order to
write down the model problem, we introduce some notations.

Bs = { x ∈ IR2 | ‖x‖ < s }
Cs,t = { x ∈ IR2 | s < ‖x‖ < t }

Γs = { x ∈ IR2 | ‖x‖ = s }
Ωs = Ω \Bs

Then the problem in the intact domain Ω has the form

k1∆w0 = 0 in Ω

w0 = g0 on ∂Ω
(5.1)
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The model problem in the modified domain reads:

k1∆wρ = 0 in Ωρ

wρ = g0 on ∂Ω

wρ = vρ on Γρ

k2∆vρ = 0 in Cλρ,ρ

(5.2)

k2
∂vρ
∂n2

= 0 on Γλρ

k1
∂wρ

∂n1
+ k2

∂vρ
∂n2

= 0 on Γρ,

where n1 – exterior normal vector to Ωρ, n2 – exterior normal vector to Cλρ,ρ, and 0 < λ < 1.

We want to investigate the influence of the small ring-like inclusion made of another material on
the difference wρ −w0 in ΩR, where ΓR surrounds Cλρ,ρ and R is fixed. We assume that ρ → 0+ and
λ is considered temporarily constant.

If we define

uρ =

{
wρ in Ωρ

vρ in Cλρ,ρ

then the problem (5.2) reduces to finding minimum of the energy functional

E1(uρ) =
1

2

∫

Ωρ

k1∇uρ · ∇uρ dx+
1

2

∫

Cλρ,ρ

k2∇uρ · ∇uρ dx (5.3)

for uρ ∈ H1(Ωρ), uρ = g0 on ∂Ω.

This expression may be rewritten as

E1(uρ) =
1

2

∫

ΩR

k1∇wρ · ∇wρ dx+

+
1

2

∫

Cρ,R

k1∇wρ · ∇wρ dx+

+
1

2

∫

Cλρ,ρ

k2∇vρ · ∇vρ dx.

Using integration by parts we obtain

E1(uρ) =
1

2

∫

ΩR

k1∇wρ · ∇wρ dx+

+
1

2

∫

Γρ

(
wρk1

∂wρ

∂n1
+ vρk2

∂vρ
∂n2

)
ds+

+
1

2

∫

ΓR

k1wρ
∂wρ

∂n3
ds,

where n3 – exterior normal to ΩR. Hence, due to boundary and transmission condition,

E1(uρ) =
1

2

∫

ΩR

k1∇wρ · ∇wρ dx+
1

2

∫

ΓR

k1wρ
∂wρ

∂n3
ds (5.4)

5.2. Steklov-Poincaré operator

Observe that E1(w0) corresponds to the problem (5.1). Therefore the main goal is to find the Steklov-
Poincaré operator

Aλ,ρ : w ∈ H1/2(ΓR) 7−→ ∂wρ

∂n3
∈ H−1/2(ΓR) (5.5)
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where the normal derivative is computed from auxiliary problem

k1∆wρ = 0 in Cρ,R

wρ = w on ΓR

wρ = vρ on Γρ

k2∆vρ = 0 in Cλρ,ρ

k2
∂vρ
∂n2

= 0 on Γλρ

k1
∂wρ

∂n1
+ k2

∂vρ
∂n2

= 0 on Γρ

(5.6)

The geometry of domains of definition for functions is shown in Fig.2. Now let us adopt the polar

Γρ ΓRΓλρ

wρ

vρ

Figure 2. Domains of definition for wρ and vρ.

coordinate system around origin and assume the Fourier series form for w on ΓR.

w = C0 +

∞∑

k=1

(Ak cos kϕ+Bk sinkϕ) (5.7)

The general form of the solution wρ is

wρ = Aw +Bw log r +

∞∑

k=1

(wc
k(r) cos kϕ+ ws

k(r) sin kϕ) , (5.8)

where

wc
k(r) = Ac

kr
k +Bc

k

1

rk
, ws

k(r) = As
kr

k +Bs
k

1

rk
.

Similarly for vρ:

vρ = Av +Bv log r +

∞∑

k=1

(vck(r) cos kϕ+ vsk(r) sin kϕ) , (5.9)
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where

vck(r) = ackr
k + bck

1

rk
, vsk(r) = askr

k + bsk
1

rk
.

Additionally, we denote the Fourier expansion of vρ on Γρ by

vρ = c0 +

∞∑

k=1

(ak cos kϕ+ bk sinkϕ) (5.10)

From boundary conditions on Γλρ it follows easily Bv = 0, Av = c0, and then Bw = 0, Aw = Av =
c0 = C0. There remains to find ak, bk, ack, bck, ask, bsk, Ac

k, Bc
k, As

k, Bs
k assuming Ak, Bk as given.

5.3. Asymptotic expansion

In order to eliminate the above mentioned coefficients we consider first the terms at cos kϕ. From
boundary and transmission conditions we have for k = 1, 2, . . .

Ac
kR

k +Bc
k

1

Rk
= Ak

Ac
kρ

k +Bc
k

1

ρk
− ak = 0

ackρ
k + bck

1

ρk
− ak = 0

ack(λρ)k−1 − bck
1

(λρ)k+1
= 0

k1A
c
kρ

k−1 − k1B
c
k

1

ρk+1
− k2a

c
kρ

k−1 + k2b
c
k

1

ρk+1
= 0

(5.11)

This may be rewritten in the matrix form: grouping unknown parameters into a vector pk = [Ac
k, B

c
k, a

c
k, b

c
k, ak]⊤

we obtain

T (k1, k2, R, λ, ρ)pk = RkAke1

where

T =




R2k 1 0 0 0
ρ2k 1 0 0 −ρk
0 0 (λρ)2k 1 −ρk
0 0 (λρ)2k −1 0

k1ρ
2k −k1 −k2ρ2k k2 0




(5.12)

where e1 = [1, 0, 0, 0, 0]⊤. It is easy to see that

pk = p0
kAk + ρ2kp1

kAk + o(ρ2k) (5.13)

where

p0
k = lim

ρ→0+
lim

λ→0+

pk(k1, k2, R, λ, ρ)

Ak

and p0
k = [1/Rk, 0, 0, 0, 0]⊤, which corresponds to the ball BR filled completely with material k1.

Similar reasoning may be conducted for terms containing sin kϕ.

As a result,

Aλ,ρ = A0,0 + ρ2A1
λ,ρ(k1, k2, R, λ, ρ, A1, B1) + o(ρ2). (5.14)

The exact form of A1
λ,ρ(k1, k2, R, λ, ρ, A1, B1) is obtained from inversion of matrix T , but, what is

crucial, it is linear in both A1 and B1. They in turn are computed as line integrals

A1(w) =
1

πR2

∫

ΓR

wx1 ds, B1(w) =
1

πR2

∫

ΓR

wx2 ds.
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As a result, for computing uρ we may use the following energy form

E(uρ) =
1

2

∫

Ω

k1∇uρ · ∇uρ dx+

+ ρ2Q(k1, k2, R, λ, ρ, A1, B1) + o(ρ2),

(5.15)

where A1 = A1(uρ), B1 = B1(uρ) and Q is a quadratic function of A1, B1. This constitutes a
regular perturbation of the energy functional which allows computing perturbations of any functional
depending on this solution and caused by small inclusion of the described above form.

5.4. Extension to linear elasticity

Let us consider the plane elasticity problem in the ring CR,ρ. We use polar coordinates (r, θ) with
er pointing outwards and eθ perpendicularly in the counter-clockwise direction. Then there exists an
exact representation of both solutions, using the complex variable series. It has the form (12), (16),(19)

σrr − iσrθ = 2ℜφ′ − e2iθ(z̄φ′′ + ψ′)

σrr + iσθθ = 4ℜφ′

2µ(ur + iuθ) = e−iθ(κφ− zφ̄′ − ψ̄).

(5.16)

The functions φ, ψ are given by complex series

φ = A log(z) +
k=+∞∑

k=−∞

akz
k

ψ = −κĀ log(z) +

k=+∞∑

k=−∞

bkz
k.

(5.17)

Here µ – the Lame constant, ν – the Poisson ratio, κ = 3 − 4ν in the plain strain case, and κ =
(3 − ν)/(1 + ν) for plane stress.

Similarly as in the simple case described in former sections, the displacement data may be given
in the form of Fourier series,

2µ(ur + iuθ) =

k=+∞∑

k=−∞

Ake
ikθ (5.18)

The traction-free condition on some circle means σrr = σrθ = 0. From (5.16),(5.17) we get for
displacements the formula

2µ(ur + iuθ) = 2κAr log(r)
1

z
− Ā

1

r
z+

+

p=+∞∑

p=−∞

[κrap+1 − (1 − p)ā1−pr
−2p+1

− b̄−(p+1)r
−2p−1]zp.

(5.19)

Similarly we obtain representation of tractions on some circle

σrr − iσrθ = 2A
1

z
+ (κ+ 1)

1

r2
Āz+

+

p=+∞∑

p=−∞

(1 − p)[(1 + p)ap+1 + ā1−pr
−2p

+
1

r2
bp−1]zp.

(5.20)

As we see, in principle it is possible to repeat the same procedure again, glueing solutions in two rings
together and eliminating the intermediary Dirichlet data on the interface. The only difference lies
in considerably more complicated calculations, see e.g. (9). This could be applied for making double
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asymptotic expansion, in term of both ρ and λ. However, in our case λ does not need to be small in
comparison to ρ.

6. Asymptotic expansions of the Steklov-Poincaré operators and perturbations of

bilinear forms in particular cases

The explicit form of solutions in BR allows us to conclude that for

‖wρ‖H1/2(ΓR) ≤ Λ0

the correction to the energy functional contains part proportional to ρd and the remainder of order
o(ρd). This in turn (27), (28) implies the possibility of representation

wρ = w0 + ρ2q + o(ρ2) in H1(ΩR)

for both standard and contact problems, justifying computations of topological derivatives.
It is well known that the singularities of solutions to Partial Differential Equations due to the

singularities of geometrical domains can be characterized by specific shape derivatives of the associ-
ated energy shape functionals (7). Therefore, the influence of topological changes in domains on the
singularities can be measured by the appropriate second-order topological derivatives of the energy
functionals. It means that we evaluate the shape derivatives of the energy functional by using the
velocity field method, and subsequently the second order topological derivatives of the functionals by
an application of the domain decomposition method,

• the portion Γ0 of the boundary with the homogeneous Dirichlet boundary conditions is deformed
to obtain t → Tt(V )(Γ0) as well as t → E(Ωt) for the energy shape functional; as a result the
first order shape derivative J(Ω) := dE(Ω;V ) is obtained in the distributed form as a volume
integral.

• the second order derivative of the energy functional is evaluated with respect to small paramater
ε→ 0, the parameter governs the size of small inclusion with the material defined by a contrast
parameter γ ∈ [0,∞).

We consider the energy shape functional Ω → E(Ω) for Signorini problems for the Laplacian as
well for the frictionless contact. The shape derivative J(Ω) := dE(Ω;V ) of this functional is evaluated
with respect to the boundary variations of the portion Γ0 ⊂ ∂Ω. In another words the velocity vector
field V is supported in a small neighbourhood of Γ0. The topological derivatives of J(Ω) are evaluated
with respect to nucleation of small inclusions far from Γ0. The domain decomposition method is
applied in order to obtain the robust expressions for topological derivatives.

7. Directional differentiability of metric projection onto positive cone in fractional

Sobolev spaces

Let us consider the subdomain Ωc := Ω \ ΩR with the contact zone Γc in the scalar case as well as in
an elastic body, see Figure 3.

We recalll that the convex cone for the contact problem in elasticity with linearized non-
penetration conditions takes the form

K := {v ∈ H1(Ωc) : v n ∈ K(Γc) ⊂ H1/2(Γc)},
where K(Γc) is the positive cone in the fractional Sobolev space H1/2(Γc). The particular case is the

space H
1/2
00 (Γc) for Γc ⊂ Σ and the homogeneous Dirichlet conditions on the complement Σ \ Γc, for

the cracks.
Therefore, we establish the Hadamard differentiability (11; 18) of the metric projection in the

Dirichlet space H1/2(Γc) onto its positive cone (7).
Let us consider the directional differentiability of the metric projection onto the positive cone in

the fractional Sobolev spaces H1/2(Γc).
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In order to present the results, we are going to consider a simple geometry of the contact zone
Γc. In the general setting the results can be obtained in the similar way.

Therefore, we consider the subset B = {|x| < R}, x = (x1, · · · , xd) ⊂ Ω, of an elastic body Ω,
with the contact set Γc := {x = (x′, xd) ∈ Rd : xd = 0, |x′| < R/2} and Σ defined by an extension of

the subset Σ̃ := {x = (x′, xd) ∈ B : xd = 0}. In such a case, the unit normal vector to the contact set
n := (0, . . . , 0, 1) is constant on Γc, and the unit tangent vector orthogonal to n on the boundary ∂Γc

is n := (n1, . . . , nd−1, 0). For the displacement field u = (u1, · · · , ud) it follows that un = ud, hence,

the unilateral constraints for the normal component over the contact set H
1/2
00 (Γc) ∋ un = ud ≥ 0.

Thus, the convex cone of admissible displacements for the contact problem takes the form

Uad = {v = (v1, · · · , vd) ∈ H1(Ωc) : vd ≥ 0 on Γc}

and our analysis of the metric projection is reduced to the positive cone in H
1/2
00 (Γc), hence, in H1/2(Σ).

Remark 6. We recall that in general for a domain Ω with the boundary Γ, the Sobolev spaces H1(Ω)
and H1/2(Γ) are (1; 10) the so-called Dirichlet spaces. It means that for the scalar product a(·, ·),
with v+ := sup {v, 0} and v− := sup {−v, 0}, the property a(v+, v−) ≤ 0 holds for all elements of the
Sobolev spaces.

Remark 7. The metric projection in the Dirichlet space onto the cone of nonnegative elements is
considered for the purpose of sensitivity analysis of solutions to frictionless contact problems in (29).
This result is extended to the crack problem. In order to avoid unnecessary technicalities, we restrict
ourselves to a model problem. Now, we consider the Hadamard differentiability of metric projection in
Dirichlet space onto the cone of positive elements, and recall the result on its conical differentiability.

Consider the convex, closed cone

K = {v ∈ H1/2(Σ) : v ≥ 0 on Σ}

and the metric projection H1/2(Σ) ∋ f → u = PK(f) ∈ K onto K which is defined by the variational
inequality

u ∈ K : (u− f, v − u)1/2,Σ ≥ 0 ∀v ∈ K.

We denote v+ = v ∧ 0 := sup {v, 0} and v− = −v ∧ 0 := sup {−v, 0} in H1/2(Σ).

With the element u = PK(f) we associate the convex cone

CK(u) = {v ∈ H1/2(Σ) : u+ tv ∈ K for some t > 0}

and denote by TK(u) the closure of CK(u) in H1/2(Σ). On the other hand (7) there is a nonnegative
Radon measure m such that for all v ∈ H1/2(Σ) we have the equality

∫
v dm = (u− f, v)1/2,Σ, hence,

we denote

m[v] := (u− f, v)1/2,Σ.

Definition 8. The convex cone K is polyhedric (11; 18) at u ∈ K if

TK(u) ∩m⊥ = CK(u) ∩m⊥ .

We recall the result on polyhedricity of the positive cone in a Dirichlet space (7).

Lemma 9. The convex cone

CK(u) ∩m⊥ := {v ∈ H1/2(Σ) : v ∈ CK(u) such that (u − f, v)1/2,Σ = 0}

is dense in the closed, convex cone

TK(u) ∩m⊥ := {v ∈ H1/2(Σ) : v ∈ TK(u) such that (u− f, v)1/2,Σ = 0}.
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Proof. Using the property of the Dirichlet space

(v+, v−)1/2,Σ ≤ 0 for all v ∈ H1/2(Σ)

then

TK(u) ∩m⊥ = CK(u) ∩m⊥

follows easily.

Indeed, let

w ∈ TK(u) ∩m⊥ .

Then w = 0 m-a.e. Let CK(u) ∋ vn → w. Then v−n → w−, v+n → w+ and v+n ∧ w+ − v−n → w, here
v∧w = inf {v, w}. Now, if v ∈ CK(u) then u+ tv ≥ 0. We claim v+n ∧w+ − v−n ∈ CK(u)∩m⊥. Indeed,
u+ t[v+n ∧w+ − v−n ] ≥ 0 so v+n ∧w+ − v−n ∈ CK(u) and m[v+n ∧w+ − v−n ] = m[v+n ∧w+] = 0, because
of m[w+] = 0. �

Remark 10. In (7) the tangent cone TK(u) is derived for u ∈ K, in the case of the positive cone
K = {v ∈ H : v ≥ 0} in the Dirichlet space H equipped with the scalar product (u, v)H. We have

TK(u) = {v ∈ H : v ≥ 0 on {u = 0}}.

The convex cone S := TK(u) ∩m⊥ is important for our applications. It is obtained in (7)

TK(u) ∩m⊥ = {v ∈ H : v ≥ 0 on {u = 0} and v = 0 m− a.e.}.

The following result on the directional differentiability of metric projection holds for polyhedric
convex sets (11; 18).

Lemma 11. Let K be a polyhedric cone. For t > 0, t small enough,

PK(u+ th) = PK(u) + tPS(h) + o(t;h) in H1/2(Σ)

where

S := TK(u) ∩m⊥

and the remainder o(t;h) is uniform on compact subsets of H1/2(Σ). Hence, the directional derivative
of the metric projection is uniquely determined by the variational inequality

q := PS(h) ∈ S : (q − h, v − q)1/2,Σ ≥ 0 ∀v ∈ S.

For a contact set Γc ⊂ Σ we introduce the following convex cones

K(Σ) := {v ∈ H1/2(Σ) : v = 0 on Σ \ Γc, v ≥ 0 on Γc},

and

K(Γc) := {v ∈ H
1/2
00 (Γc) : v ≥ 0 on Γc}.

For the variational problems with unilateral conditions for the normal component of the displacement
vector field over the contact set, the convex cones K(Γc) and K(Σ) are employed in order to show the
polyhedricity of the cone of admissible displacements.

Remark 12. The proof of Lemma 9 applies as well to the convex cone K(Γc) ⊂ H
1/2
00 (Γc) since the

space C∞
0 (Γc) is dense in H

1/2
00 (Γc), hence, a nonnegative distribution is a Radon measure. In addition,

contraction operates (4) for the scalar product (7.9) in H
1/2
00 (Γc). Let us note that the scalar products

in H1/2(Σ) and in H
1/2
00 (Γc) are not the same, the latter is a weighted space.

We recall an abstract result on shape sensitivity analysis of variational inequalities.
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Sensitivity analysis of variational inequalities. The conical differentiability of solutions to variational
inequalities for the contact problem follows from the abstract result given by Theorem 14. The general
result (29) is adapted here to our setting within the domain decomposition framework. Thus, the
bilinear form a(·, ·)+bt(·, ·) defined in the subdomain Ωc is introduced, where bt(·, ·) is the contribution
from the Steklov-Poincaré operator on ΓR = ∂ΩR. The real parameter t > 0 governs the shape
perturbations of the inclusion t → ωt in ΩR, where t → 0 governs the topological changes of ΩR in
the framework of asymptotic analysis.

Two boundary value problems in two subdomains are coupled by the transmission conditions on
the interface ΓR. The linear boundary value problem in ΩR furnishes the expansions of the Steklov-
Poincaré operators resulting from perturbations of the inclusion in the interior of the subdomain. The
sensitivity analysis of solutions to variational inequality in Ωc is performed for compact perturbations
of nonlocal boundary conditions on the interface. As a result, the weak solution to the unilateral
elasticity boundary value problem under considerations is directionally differentiable with respect to
the parameter t→ 0 which governs the perturbations of the inclusion far from the contact set.

Now, we provide the precise result on the conical differentiability of solutions to variational
inequalities (11; 18; 29) (see also (7)) which is given here without the proof.

Let K ⊂ H be a convex and closed subset of a Hilbert space H, and let 〈·, ·〉 denote the duality
pairing between H′ and H, where H′ denotes the dual of H. Let us assume that there are given
symmetric bilinear forms a(·, ·) + bt(·, ·) : H × H → R parametrized by t ≥ 0, and the linear form
f ∈ H′ , such that

Condition 13. 1. There are 0 < α ≤M such that

|a(u, v) + bt(u, v)| ≤M‖u‖‖v‖, α‖u‖2 ≤ a(v, v) + bt(v, v) ∀u, v ∈ H (7.1)

uniformly with respect to t ∈ [0, t0). Furthermore, there exists Q′ ∈ L(H;H′) such that

Qt = Q + tQ′ + o(t) in L(H;H′) , (7.2)

where Qt ∈ L(H;H′)

a(φ, ϕ) + bt(φ, ϕ) = 〈Qt(φ), ϕ〉 ∀φ, ϕ ∈ H.
2. The set K ⊂ H is convex and closed, and the solution operator H′ ∋ f → P(f) ∈ H for (7.6)

P(f) ∈ K : a(P(f), ϕ− P(f)) ≥ 〈f, ϕ− P(f)〉 ∀ϕ ∈ K (7.3)

is differentiable in the sense that

∀h ∈ H′ : P(f + sh) = P(f) + sP ′(h) + o(s) in H (7.4)

for s > 0, s small enough, where the mapping P ′ : H′ → H is continuous and positively
homogeneous, in addition, the remainder o(s) is uniform with respect to the direction h ∈ H′ on
compact subsets of H′.

Let us consider the unique solutions ut = Pt(f) to variational inequalities depending on a
parameter t ∈ [0, t0), t0 > 0,

ut ∈ K : a(ut, ϕ− ut) + bt(ut, ϕ− ut) ≥ 〈f, ϕ− ut〉 ∀ϕ ∈ K . (7.5)

In particular, for t = 0

u ∈ K : a(u, ϕ− u) + b(u, ϕ− u) ≥ 〈f, ϕ− u〉 ∀ϕ ∈ K , (7.6)

with u = P(f) a unique solution to (7.6). The mapping t→ ut is strongly differentiable in the sense of
Hadamard at 0+, and its derivative is given by a unique solution of the auxiliary variational inequality
(29).

Theorem 14. Assume that Condition 13 is satisfied. Then the solutions to the variational inequality
(7.5) are right-differentiable with respect to t at t = 0, i.e. for t > 0, t small enough,

ut = u+ tu′ + o(t) in H , (7.7)
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where

u′ = P ′(−Q′u) . (7.8)

7.1. Metric projection onto positive cone in H
1/2
00 (Γc)

For boundary value problems in domains with contact conditions, the unilateral conditions are pre-
scribed on the contact set for the normal component of the displacement field. Hence, the normal
component of the displacement field belongs to the positive cone in the fractional Sobolev space
H1/2(Γc). The sensitivity analysis of variational inequalities for Signorini problems was reduced in
(29) to the directional differentiability of the metric projection onto the positive cone in a fractional
space which is the Dirichlet space. This result is further extended in (7) to some crack problem. The
method is also used in the present paper, however for the purposes of sensitivity analysis of contact
problems.
Sensitivity analysis of the crack problem. We are going to explain how the results obtained in (29)
for the Signorini problem in linear elasticity can be extended to the crack problems with unilateral
constraints. To this end, the abstract analysis performed in (7) for the differentiability of the metric
projection onto the cone of nonnegative elements in the Dirichlet space is employed.

The framework for analysis is established in function spaces over Ω := Ω+ ∪ Σ ∪ Ω−, where Σ is
a C1,1 regular curve without intersections. The regularity assumption can be weakened, if necessary.

Let Γc ⊂ Σ be the segment {(x1, 0) : 0 < x1 < 1} included in the curve Σ. We denote by n the
unit normal vector field on Σ which points out of Ω+, and by n the unit normal vector field on ∂Γc

orthogonal to n . We consider deformations of the crack in the direction of the vector field V colinear
with n in the neighbourhood of the crack tip A = (1, 0) ∈ Ωc ⊂ R2.

In the Sobolev space defined on the cracked domain Ωc, the elements enjoy jumps over the crack

which are denoted by v := v+ − v−, and we have the regularity property of traces v ∈ H
1/2
00 (Γc). In

our geometry of Ωc, the Sobolev space H
1/2
00 (Γc) coincides with the linear subspace of H1/2(Σ)

H
1/2
00 (Γc) = {ϕ ∈ H1/2(Σ) : ϕ = 0 q.e. on Σ \ Γc},

where q.e. means quasi-everywhere with respect to the capacity, see e.g. (24) for the definition and
elementary properties of the capacity useful for the existence of optimal shapes in shape optimization
problems with nonlinear PDE’s constraints.

In order to investigate the properties of the metric projection in the space of admissible displace-
ment fields onto the convex cone

K := {v ∈ H1(Ωc) : v n ≥ 0},
where H1(Ωc) := H1(Ωc;R

2), we need to show that the positive convex cone

K = {ϕ ∈ H
1/2
00 (Γc) : ϕ ≥ 0 on Γc}.

is polyhedric in the sense of (7; 11; 18).
We consider here the rectilinear crack Γc in two spatial dimensions. The scalar product in

H
1/2
00 (Γc) := H

1/2
00 (0, 1) is defined

〈ϕ, ψ〉c =

∫

Γc

∫

Γc

(ϕ(x) − ϕ(y))(ψ(x) − ψ(y))

|x− y|2 dxdy (7.9)

+

∫

Γc

[
ϕ(x)ψ(x) +

ϕ(x)ψ(x)

dist(x, ∂Γc)

]
dx

Polyhedricity of the positive cone in H
1/2
00 (Γc). In order to show the polyhedricity of the nonnegative

cone K in H := H
1/2
00 (0, 1), it is enough to check the property

〈ϕ+, ϕ−〉c ≤ 0 ∀v ∈ H
1/2
00 (0, 1)
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which is straightforward, here ϕ+(x) = max {v(x), 0}. The full proof of polyhedricity in such a case is
provided in (7). It is easy to check that the polyhedricity with respect to the scalar product implies
the polyhedricity with respect to a bilinear form which is equivalent to the scalar product.

Theorem 15. Let us consider the variational inequality for the metric projection of f + th ∈ H onto K
ut ∈ K : 〈ut − f − th, v − ut〉 ≥ 0 ∀v ∈ K,

where f, h ∈ H are given, denote by Ξ{u} = {x ∈ Γc : u(x) = 0}. Then

ut = u+ tq(h) + o(t;h) in H,
where the remainder o(t;h) is uniform on compact subsets of H, and the conical diffferential of the
metric projection q := q(h) is given by the unique solution to the variational inequality

q ∈ S(u) : 〈q − h, v − q〉 ≥ 0 ∀v ∈ S(u)

and the closed convex cone

S(u) = {ϕ ∈ H : ϕ ≥ 0 q.e. on Ξ{u}, 〈u− f, ϕ〉 = 0}.

8. Rectilinear crack in two spatial dimensions

In this section the general method of shape-topological sensitivity analysis is presented in the domain
Ω := Ωc ∪ ΓR ∪ ΩR, where the first subdomain Ωc contains the rectilinear cracks Γc and the second
subdomain ΩR contains the inclusion ω.

We denote by Ωin := Ωc ∪ Γc, the first subdomain in the elastic body without the crack. We
assume that there is a regular C1,1-curve Σ ⊂ Ωin, without intersections, which contains the rectilinear
crack Γc := {(x1, 0) : 0 ≤ x1 ≤ 1}.

To simplify the presentation, let us consider a torus Ω := T := T2 with 2π-periodic coordinates
x = (x1, x2).

The deformations of the subdomain Ωc are defined by the vector field (x, t) → V (x, t) =
(v(x, t), 0), where the C∞

0 (Ω+) function (x, t) → v(x, t) is supported in [1 − δ, 1 + δ]2 × [−t0, t0] ⊂
Ω+ ⊂ R2 × R and v(x, t) ≡ 1 on [1 − δ/2, 1 + δ/2]2 × [−t0/2, t0/2]. In our notation, the real variable
t ∈ R is a parameter.

It means that the vector field V deforms the reference domain Ω+
c to t → Tt(V )(Ω+

c ) just by
moving the tip of the crack X = (1, 0) → x(t) = (x1(t), 0) in the direction of the x1-axis. The mapping
Tt : X → x(t) is given by the system of equations

dx

dt
(t) = V (x(t), t), x(0) = X.

The boundary value problem of linear isotropic elasticity in Ωc is defined by the variational
inequality

u ∈ K : a(u, v − u) ≥ (f, v − u) ∀u ∈ K , (8.1)

where

K = {v ∈ H1(Ωc) : v · n := (v+ − v−) · n ≥ 0 on Γc}, (8.2)

here v = v+ − v− is the jump of the displacement field over the crack Γc. The bilinear form

a(u, v) =

∫

Ωc


µ

2

2∑

j,k=1

(∂juk + ∂kuj)(∂jvk + ∂kvj) + λdiv udiv v


 dx

is associated with the operator

Lu := −µ∆u− (λ+ µ)grad div u. (8.3)

The deformation tensor 2ε(u) = ∂juk + ∂kuj as well as the stress tensor σ(u) = associated with the
displacement field u are useful in the description of the boundary value problems in linear elasticity.
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The energy functional E(Ωc) = 1/2a(u, u)− (f, u)Ωc is twice differentiable (7) in the direction of
a vector field V , for the specific choice of the field V = (v, 0). The first order shape derivative

V → dE(Ωc;V ) =
1

t
lim
t→0

(E(Tt(Ωc)) − (E(Ωc))

can be interpreted as the derivative of the elastic energy with respect to the crack length, we refer the
reader to (13) for the proof, the same result for the Laplacian is given in (14; 15).

Theorem 16. We have

dE(Ωc;V ) =
1

2

∫

Ωc

{divV · εij(u) − 2Eij(V ;u)}σij(u) −
∫

Ωc

div(V fi)ui . (8.4)

Now we restrict our consideration to the perturbation of the crack tip only in the direction
which coincides with the crack direction. The derivative is evaluated in the framework of the velocity
method (29) for a specific velocity vector field V selected in such a way that the result dE(Ωc;V ) is
independent of the field V and it depends only on the perturbation of the crack tip. That is why,
this derivative is called the Griffith’s functional J(Ωc) := dE(Ωc;V ) defined for the elastic energy in
a domain with crack. We are interested in the dependence of this functional on domain perturbations
far from the crack. As a result, shape and topological derivatives of the nonsmooth Griffith’s shape
functional are obtained with respect to the boundary variations of an inclusion.

8.1. Green formulae and Steklov-Poincaré operators

The Steklov-Poincaré operator on the interface for the domain Ωc ∪ ΓR ∪ ΩR is defined by the Green
formula, first as the Dirichlet-to-Neumann map in ΩR, then it is used on the interface as nonlocal
boundary operator. Therefore, we recall here the Green formula for linear elasticity operators in two
and three spatial dimensions.

We start with analysis in two spatial dimensions. To simplify the presentation let us consider
the reference domain without a crack in the form of the torus T := T2 with 2π-periodic coordinates
x = (x1, x2).

For the purpose of shape-topological sensitivity analysis we assume that the elastic body without
the crack is decomposed into two subdomains, Ωin and ΩR, separated from each other by the interface
ΓR.

Thus, the elastic body with the crack Γc is written as

Ω := Ωc ∪ ΓR ∪ ΩR .

The rectilinear crack Γc ⊂ Σ ⊂ Ωin is an open set, where the ficticious interface Σ ⊂ Ωin is a closed
C1,1-curve without intersections. In our notation Ωc = Ωin \ Γc.

The bilinear form of the linear isotropic elasticity is associated with the operator

Lu := −µ∆u− (λ+ µ)grad div u

for given Lame coefficients µ > 0, λ ≥ 0.
The displacement field u in the elastic body Ω is given by the unique solution of the variational

inequality

u ∈ K : a(u, v − u) ≥ (f, v − u) ∀u ∈ K , (8.5)

where

K = {v ∈ H1(Ωc) : v · n := (v+ − v−) · n ≥ 0 on Γc}, (8.6)

here v = v+ − v− is the jump of the displacement field over the crack Γc.
Given the unique solution u ∈ K of the variational inequality and the admissible vector field V

compactly supported in Ωc, we consider the associated shape functional (8.4) evaluated in Ωc, which
is called the Griffith’s functional

J(Ωc) := dE(Ωc;V ) . (8.7)
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Let ω ⊂ ΩR be an elastic inclusion. Introduce the family of inclusions t → ωt ⊂ ΩR governed by the
velocity field W compactly supported in ΩR. The elastic energy in ΩR with the inclusion ωt is denoted
by

ωt → Et(ΩR) :=
1

2
at(ΩR ; u, u) − (f, u)ΩR .

Its shape derivative dE(ΩR;W ) in the direction W is obtained by differentiation at t = 0 of the
function

t→ Et(ΩR) :=
1

2
at(ΩR ; u, u) − (f, u)ΩR .

Proposition 17. Assume that the energy shape functional in the subdomain ΩR,

ω → E(ΩR) :=
1

2
a(ΩR ; u, u) − (f, u)ΩR

is differentiable in the direction of the velocity field W compactly supported in a neighbourhood of
the inclusion ω ⊂ ΩR, then the Griffith’s functional (8.7) is directionally differentiable in the direction
of the velocity field W . Therefore, the second order directional shape derivative dE(Ω;V,W ) of the
energy functional in Ω in the direction of fields V,W is obtained.

This result can be proved by the domain decomposition technique :

• the shape differentiability of the energy functional in the subdomain ΩR implies the differen-
tiability of the associated Steklov-Poincaré operator defined on the Lipschitz curve given by
the interface ΩR ∩ Ωc with respect to the scalar parameter t → 0 which governs the boundary
variations of the inclusion ω;

• the expansion of the Steklov-Poincaré nonlocal boundary pseudodifferential operator obtained
in the subdomain ΩR is used in the boundary conditions for the variational inequality defined in
the cracked subdomain Ωc and leads to the conical differential of the solution to the unilateral
problem in the subdomain;

• the one term expansion of the solution to the unilateral problem is used in the Griffith’s functional
in order to obtain the directional derivative with respect to the boundary variations of the
inclusion.

Remark 18. For the cicular inclusion ω := {x ∈ ΩR : |x − y| < r0}, r0 > 0, the scalar parameter
t→ 0 which governs the shape perturbations of ∂ω in the direction of a field W (29) can be replaced
by the parameter r → r0. Thus, the moving domain t → ωt is replaced by the moving domain
r → {x ∈ ΩR : |x − y| < r}. In this way the shape sensitivity analysis (29) for r0 > 0 and the
topological sensitivity analysis (22) for r0 = 0+ are performed in the same framework for the simple
case of circular inclusion.

9. Shape and topological derivatives of elastic energy in two spatial dimensions for

an inclusion

In the subdomain Ωc the unique weak solutions

ε→ u := uε

of the elasticity boundary value subproblem are given by the variational inequality

u ∈ K : a(Ωc;u, v − u) + bε(ΓR;u, v − u) ≥ (f, v − u)Ωc ∀v ∈ K.

In order to differentiate the solution mapping for this variational inequality, it is required to differen-
tiate the bilinear form ε→ bε(ΓR;u, v), which is performed in this section.
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9.1. Shape and topological derivatives of the energy functional in ΩR with respect to the inclusion ω

In order to evaluate the topological derivative of energy functional in isotropic elasticity, the shape
sensitivity analysis is combined with the asymptotic analysis (22). In this section the small parameter
is denoted by ε→ 0, and the circular inclusion ε→ ωε := Bε is considered.

The general shape of inclusion ε → ωε can be considered in the same way for shape sensitivity
analysis (29) and the asymptotic analysis (22).

For the sake of simplicity, the subscript R is omitted, thus, we denote Ω := ΩR, since the inclusion
is located in the subdomain ΩR. We also allow for the Neumann ΓN and Dirichlet ΓD pieces of the
boundary ∂Ω := ∂ΩR, thus, ∂ΩR := ΓN ∪ ΓD ∪ Γ.

Thus, we evaluate the shape and topological derivative (22) of the total potential energy asso-
ciated to the plane stress linear elasticity problem, considering the nucleation of a small inclusion,
represented by Bε ⊂ Ω, as the topological perturbation. In this way the expansion of the Steklov-
Poincaré operator on the interface Γ := ΓR is obtained.

9.1.1. Steklov-Poincaré operator. Let us consider the nonhomogeneous Dirichlet linear elasticity bound-
ary value problem in the domain Ω with the boundary ∂Ω := ΓN ∪ ΓD ∪ Γ.





Find u, such that
divσ(u) = 0 in Ω ,

σ(u) = C∇us ,
u = 0 on ΓD ,
u = u on Γ ,

σ(u)n = 0 on ΓN ,

(9.1)

where the only nonhomogeneous term is the Dirichlet condition u = u on the interface Γ. Let

a(u, u) :=

∫

Ω

σ(u) · ∇us

stands for the associated bilinear form, thus the elastic energy of the solution u is given by

E(Ω;u) =
1

2
a(u, u).

Then by Green’s formula

E(Ω;u) = 〈T (u), u〉Γ. (9.2)

In the case of an inclusion ωε ⊂ Ω, the formula becomes

Eε(Ω;u) = 〈Tε(u), u〉Γ. (9.3)

Hence, the expansion of the energy functional in Ω, on the left hand side of (9.3) with respect to the
parameter ε→ 0 can be used in order to determine the associated expansion of the Steklov-Poincaré
operator u→ T (u) on the right hand side of (9.3).

Therefore, let us consider the smooth domain Ω with the boundary ∂Ω := ΓN ∪ ΓD ∪ Γ, here
Γ is the interface on which the Steklov-Poincaré operator introduced in our domain decomposition
method is defined.
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[27] J. Soko lowski, Żochowski, A., Modelling of topological derivatives for contact problems, Nu-
merische Mathematik, 102, no. 1, pp. 145-179, 2005.
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