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Collectively, viruses have the greatest genetic diversity on Earth, occupy extremely varied
niches and are likely able to infect all living organisms. Viral infections are an important
issue for human health and cause considerable economic losses when agriculturally
important crops or husbandry animals are infected. The advent of metagenomics has
provided a precious tool to study viruses by sampling them in natural environments
and identifying the genomic composition of a sample. However, reaching a clear
recognition and taxonomic assignment of the identified viruses has been hampered by
the computational difficulty of these problems. In this perspective paper we examine
the trends in current research for the identification of viral sequences in a metagenomic
sample, pinpoint the intrinsic computational difficulties for the identification of novel viral
sequences within metagenomic samples, and suggest possible avenues to overcome
them.

Keywords: microbial metagenomics, NGS, virome, host—pathogen interactions, taxonomic assignment

INTRODUCTION
While genomics is the research field relative to the study of the
genome of any organism, metagenomics is the term coined for
the research that focuses on many genomes at the same time, as
typical in some sections of environmental studies. The analysis of
microbial communities has been until recently a complicated if
not untractable task due to their high diversity and to the fact
that many of these organisms cannot be cultured. Harnessing
the major advances achieved in sequencing technologies, metage-
nomics has emerged as the only currently available approach to
extensively characterize these largely unculturable communities.
Besides vastly enriching our knowledge of microbial diversity in a
varied range of environments, and providing information on the
dynamics and on the overall functioning of microbial communi-
ties, metagenomics is also shedding light on many important bio-
logical processes and, in particular, on the role of the microbiome
in biological functions essential for the development of higher
order organisms harboring it (Blottière et al., 2013; Manor et al.,
2014), or in the development of pathological problems (Cénit
et al., 2014; Vayssier-Taussat et al., 2014). In addition, metage-
nomic efforts also vastly enrich the repertoire of genes available
for biotechnological applications (Ni and Tokuda, 2013).

At the same time metagenomics extensively relies on bioin-
formatics to tackle the huge amounts of sequence data involved,
and recognizes the need to develop computational methods that
maximize our understanding of the genetic composition and
the biological activities expressed in communities so complex
that they can only be sampled, never completely characterized.
Computational analysis has become a genuine bottleneck for

metagenomics due not only to the large amount of sequence
data, but also to the new questions such as, for example, the
need for simultaneous assembly of multiple genomes or tran-
scriptomes and the analysis of complex networks of host-microbe
interactions (Wooley and Yuzhen, 2009).

In this context the analysis of viral communities presents par-
ticular interest but also computational challenges. The ability to
thoroughly analyze the viral composition of an environmental
sample is of paramount importance, in particular because viruses
have turned out to play a major role in the functioning of micro-
bial communities by processes such as viral infection and selective
killing of certain taxa or as vectors for horizontal gene transfer
(Suttle, 2007). Consequently, the viral part of the microbiome has
been shown in a number of situations to have a major impact on
the dynamics and on the evolutionary processes of their host pop-
ulations. The discovery and classification of novel viral species,
but also of higher order taxa, is therefore of particular interest in
this context (Rosario and Breitbart, 2011).

One of the main goals of metagenomic projects is to char-
acterize the microbial communities in terms of the identity and
diversity of species present (species richness) in a given environ-
ment. When it comes to species identification, the task is called
taxonomic assignment. Current NGS technologies have provided
an opportunity for doing this analysis routinely (Petrosino et al.,
2009). Software tools for automated taxonomic assignment for
organisms such as bacteria and fungi have since become a mature
technology and are now routinely used in many studies.

If bacterial or fungal applications have recently seen
major advances, the problem of taxonomic assignment for
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viruses—such as it arises in environmental studies—remains
largely unsolved from the computational point of view, as
exemplified by the difficulty of distinguishing viral genomes
from eukaryotes and bacteria observed in some studies (Bazinet
and Cummings, 2012). Indeed, ab-initio identification of a
sequence as belonging to a cellular organism or to a virus
remains a complicated task outside of the popular sequence-
homology based approaches that rely on direct comparisons
with already known viral sequences present in international
databases.

We distinguish the task of deciding to which first-level
domain (eukaryotes, bacteria, archaea, virus) a given sequence
belongs—that we call first-level assignment—from a more fine-
grained taxonomic assignment at, e.g., family, genus or species
level. In virome studies the latter task is greatly facilitated
when targeted sequencing of purified viral particles is per-
formed (Hall et al., 2014), but the former is particularly dif-
ficult for complex samples containing both eukaryotic and
viral sequences and when, as is very frequently the case,
unknown viral species are present. In this paper we examine
reasons behind this difficulty and suggest possible avenues to
overcome them.

FIRST-LEVEL CLASSIFICATION OF COMPLEX
ENVIRONMENTAL SAMPLES
The first-level assignment of sequence data coming from a non-
targeted sequencing of a metagenomic sample is a particularly
challenging computational problem. The most blatant difficulty
is in the recognition of novel viral sequences, for which no close
homologs have been previously characterized. This question is
however of paramount importance for the biologists. From the
biodiversity point of view, the identification of unknown viruses
representing novel higher order taxa (genera, families. . . ) is of
clear interest as evidenced, for example, by the discovery of the
Mimiviruses with genomes exceeding in size those of many bac-
terial genomes (Claverie et al., 2009). But this question can also
have important practical implications as when trying to identify
novel viruses responsible for particular syndromes or diseases in
humans, plants or husbandry animals (Roossinck, 2012; Lecuit
and Eloit, 2014).

A number of bioinformatics methods efficiently per-
form the first-level assignment of sequences from a sample
mainly containing known species. Computational solu-
tions can be broadly organized in two main categories: (1)
sequence similarity methods and (2) sequence composition
methods.

Methods that rely on sequence similarity can be themselves
subdivided in alignment-based techniques (mostly attempting
to improve BLAST accuracy) and index-based. Alignment-based
methods suffer from two limitations: speed and lack of sensitivity
(e.g., Bazinet and Cummings, 2012; Wood and Salzberg, 2014).
Recently, novel solutions have been suggested to overcome these
limitations. These methods are based on long k-mers (words of
size k) and conceptually rely on the fact that when k is sufficiently
large, k-mers become very specific. Consequently, the idea is to
index the databases by long k-mers. This is indeed the founda-
tion of MegaBlast (a general-purpose sequence aligner using long

seeds), but also of a number of methods specific for taxonomic
assignment such as LMAT (Ames et al., 2013) and Kraken (Wood
and Salzberg, 2014). The downside of these approaches is over-
specificity, which makes classification of unknown sequences
problematic. This limitation can be particularly acute given the
known very high intraspecific variability existing in some viral
species or higher order taxa. For example, current criteria of the
International Committee for the taxonomy of viruses tolerate up
to 28% of nucleotide sequence divergence for the polymerase
or capsid protein genes for isolates of a same species in the
Betaflexiviridae family and a similar level of divergence at the
whole genome level in the Potyviridae family (King et al., 2012).

A complementary approach is based on sequence composition
analysis. Such methods rely on the decomposition of sequences
into frequencies of short k-mers and make use of machine learn-
ing techniques (e.g., SVM, kNN, Naive Bayes, etc.) to train a clas-
sifier on a reference database. The taxonomic assignment of novel
sequences is then predicted by applying the pre-trained model.
These methods theoretically are better suited to the task of novel
species classification as short k-mers distributions are less prone
to over-fitting. However, even these techniques fail to classify
about 50% of species absent from the training set (Nalbantoglu
et al., 2011). This is especially salient for viral sequences, as the
vast majority of them fail to be uniquely assigned to any domain
of life (Rosen et al., 2010).

Recent results show that contig-level assembly improves the
strength of the taxonomic signal contained in individual short
reads, even in the case of increased chimericity (Mende et al.,
2012; Teeling and Glockner, 2012). This is why in our experi-
mental evaluation (see Section Why is the First-level Assignment
Problem Hard?) we work exclusively with sequence lengths that
are comparable to contigs obtained by a standard metagenomic
assembly step when the data originate from complex biological
communities.

In summary, even the simple goal to provide a first-level
description of a sample composition and be able to reveal if
viral sequences are present, has been eluding a satisfactory solu-
tion. Indeed, for viral (and also eukaryotic) sequences, none of
the existing methods produces a taxonomic distribution that is
even remotely close to the expected one (Bazinet and Cummings,
2012).

FINE-GRAINED CLASSIFICATION FOR BACTERIAL AND
VIRAL COMMUNITIES
On the other side of the spectrum, the problem of fine-grained
characterization of datasets produced by targeted sequencing
has seen great progress in recent years. Contrary to the anal-
ysis of non-selected and therefore more complex metagenomic
samples, efficient methods have been developed for cases where
certain components of microbial communities are experimentally
targeted (bacterial or viral). This has been an effective way to cir-
cumvent the difficulty of the first-level assignment, albeit without
solving it.

For bacterial communities the most efficient solution is to per-
form a tag survey, where only partial genomic information is
used and the sequencing is performed for marker genes, such as
16S rRNA for prokaryotes and 18S rRNA for eukaryotes (fungi).
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This simplifies the analysis for two reasons. First, the amount
of data remains reasonable (for a high-throughput analysis) and
second, known marker genes’ taxonomic classification is avail-
able through reference taxonomies such as RDP (Cole et al.,
2009) or Greengenes (McDonald et al., 2012). Sequence similar-
ity techniques combined with reference taxonomies recapitulate
the known distribution of bacterial phyla extremely well (Bazinet
and Cummings, 2012). However, this type of analysis has one
major pitfall: it does not provide a reliable method to quantify
the identified species (Roux et al., 2011).

While this approach is feasible for bacterial populations, it
is not applicable for the analysis of viral communities due to
the absence of such marker genes (e.g., Edwards and Rohwer,
2005). Virome studies concentrate on the viral part of the envi-
ronmental sample and isolate viral genomes encapsidated in
viral particles that are purified by a combination of filtration
and (utlra)centrifugation. This now popular approach drastically
reduces the complexity of the community, which makes it pos-
sible to assemble longer contigs routinely (10 kb and more), and
even complete genomes from low-complexity samples (Coetzee
et al., 2010; Minot et al., 2012). However, it does not really
solve the problem of first-level assignment but merely sidesteps
it: given the purification step, all generated sequences are gener-
ally considered “by definition” as viral, unless proven otherwise
by homology-based approaches. In addition, this strategy is not
without some caveats (see for more details Fancello et al., 2012).
For example, the purified particles may contain cellular genome
fragments rather than viral genomes, because of the presence of
GTA (Lang and Beatty, 2007) or as a consequence of general-
ized transduction (for a review see Frost et al., 2005). Also, while
0.22 µ filtering avoids contamination by bacterial, archaeal or
eukaryotic cells, other DNA-containing elements, such as bac-
terial vesicles (Biller et al., 2014) may co-purifiy with virions.
Such filtering-based purification also excludes the largest viruses
and therefore results in an incomplete picture of viral diversity.
Moreover, both LA (see Duhaime et al., 2012) and MDA ampli-
fications have their downfalls. For the former, adapter ligation is
only possible for dsDNA viruses and hence ssDNA viral genomes
are mostly absent in the sample. For the latter, the amplification
is preferentially performed for circular ssDNA viruses rather than
dsDNA. The effect of the presence of cellular genes on the bioin-
formatics analysis of viral metagenomic data has been described
and some approaches to detect their presence have been proposed
(Roux et al., 2014).

Notwithstanding, virome studies have seen large success. In
contrast with bacterial communities, alignment-based methods
do not seem to be best suited for viral classification. Indeed,
as mentioned by Suttle (2007) even for relatively long viral
reads the homolog frequency between these reads and protein
sequences within the Genbank database is only about 30%.
The idea is to avoid the strong sequential constraint imposed
by alignment methods on nucleotides’ similarity and to cap-
ture a global similarity signal based on sequence composition
(k-mers). Composition-based techniques seem to provide satis-
factory results for fine-grained taxonomic classification of filtered
viral samples (e.g., Yang et al., 2005; Trifonov and Rabadan,
2010).

WHY IS THE FIRST-LEVEL ASSIGNMENT PROBLEM HARD?
As we observed in the previous sections, methods for first-level
and fine-grained assignment of metagenomic samples co-exist,
but exhibit drastically different performances. This naturally
raises the question of reasons underlying this performance gap.
Since the characterization of metagenomic samples can be for-
mulated as a supervised machine-learning task, we propose here
to employ data complexity and hardness measures to compare
the intrinsic difficulty of classifying metagenomic samples at the
first-level with that of fine-grained assignment.

We consider here three classification tasks whose goals are to
assign a class label to each instance of a set of sequences. The three
tasks we describe vary by the composition of the set of sequences
and by the scope of the class labels to assign.

(1) Given a sample of bacterial sequences, to assign each of
them to a phylum (e.g., Proteobacteria) or to a class (e.g.,
Gammaproteobacteria);

(2) Given a sample of viral sequences, to assign each of them to a
group (e.g., dsDNA) or to a family (e.g., Plasmaviridae); and

(3) Given a sample of sequences, to assign each of them to a first-
level domain (e.g., bacteria, archaea, eukaryota, or virus).

The classification tasks (1) and (2) are fine-grained assignment
problems and mimic characterization of targeted metagenomic
studies; while task (3) represents a first-level assignment and
mimics the analysis of complex, untargeted environmental sam-
ples. Since we are interested in the identification of novel species
in large metagenomic samples, we adopted the representation of
sequences as k-mer frequency vectors.

We analyzed these three classification tasks using an instance-
level analysis of data complexity. In supervised machine learning,
the performance of a classifier is dependent both on the learning
algorithm (e.g., SVM or Naïve Bayes) and on the training data.
While global metrics recapitulate overall performances of a clas-
sifier, they fail to indicate whether moderate performances are a
consequence of wrong parameter adjustments, biased resampling
for training data or of the intrinsic difficulty of the classifica-
tion task. However, recent literature on instance misclassifications
demonstrates that for a given classification task, some instances
are intrinsically hard to classify and that their presence is indica-
tive of the global difficulty (see Smith et al. (2014) for a review).
Most studies agree on the hardness of outlier instances or on
instances belonging to a minority class, but Smith demonstrated
that simple metrics can actually quantify the intrinsic hardness of
an instance. One of these metrics is the k-Disagreeing Neighbors
(kDN), which measures for a given instance the number of k
nearest neighbors that do not share its class label. Smith demon-
strated that the kDN measure is strongly positively correlated with
the misclassification of an instance over a wide range of learning
algorithms and of training data resampling.

To compare the classification hardness of the three tasks, we
generated from a representative subset of sequenced organisms
from Genbank (September 2014 download, 25,624 bioprojects,
100% of viruses, archaea and bacteria, 24 eukaryotes with 18
plants) 100 sets of 10,000 randomly chosen contiguous genomic
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FIGURE 1 | Distribution of kDN by classes for each of three

classification tasks. (A) Corresponds to Task 3—assignment of 500 nt
contigs to first-level domains; (B1,B2) to Task 2—assignment of 500 nt
viral contigs to a group or to a family, respectively; (C1,C2) to Task
1—assignment of 500 nt bacterial contigs to a phylum or to a class,
respectively. Each of the 300,000 randomly selected contigs sampled
from different first-level domains were represented as vectors of 3-mer
frequencies. Histograms indicate how many contigs (y-axis) per class
(colors) have a certain number of neighbors (x-axis) not sharing their own

class label, within the closest 73 neighbors. Neighbors are determined
w.r.t. euclidean distance in the space of 3-mer frequencies (cf. Section
Why is the First-level Assignment Problem Hard? of main text). For
example, there are more than 6000 different archaeal contigs (red bar)
not having a single non-archeal contigs in their closest 73 neighbors (red
bar corresponding to 0 kDN). The dashed line represents the boundary
between contigs easy to classify correctly with a majority vote (to the
left of the line) and hard to classify (to the right). Only the top 4 most
abundant classes are shown for (B1,C1); and 6 for (B2,C2).

fragments of 500 nt average length (corresponding to the aver-
age size of metagenomic contigs to simulate an assembly step).
For task (1), only bacterial genomes were considered, for task (2)
only viral genomes were considered, while for task (3) a balanced

composition of viruses, archaea, bacteria and eukaryotes were
considered. Each sequence was represented as a 3-mer frequency
vector (i.e., the number of time each possible 3-nt sub-sequence
appears in the contig) and we defined the distance between two
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FIGURE 2 | 2D projection of 3-mer frequencies for cellular and viral

contigs. (A) Top two dimensions from the PCA reduction of 28,134 contigs
(points) of average length 500 nt represented as frequency vectors of
3-mers; sampled equally from genomes originating from 3 top levels cellular
domains (top row) and from 3 viral types known to infect them (bottom row).
Dimension 1 (x-axis) accounts for 30% of the variance, dimension 2 (y-axis)

for 8% of the variance. For each sub-panel, 2 d kernel density estimation is
represented using red contour lines and local density maxima are numbered
within large white shapes. (B) Close up of (A) with all local density maxima.
The principal components were computed once for the whole set of contigs
of all genomes. Position, coordinates and axes from all sub-panels are
comparable.
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contig as the Euclidean distance between their respective 64 (43)
dimensional vectors. For each contig, its kDN value is the num-
ber of other contigs that do not share its class label among its
closest 73 neighbors. The corresponding class hardness is then
measured as the median kDN of all the contigs in a given class. We
also determined whether an observed median kDN is significantly
extreme (low value indicating easy classification, high value cor-
responding to difficult classes), by estimating the distribution of
the median kDN under the null hypothesis of no relation between
class labels by random permutations.

We summarize in Figure 1 the distribution of kDN by class
for each of three tasks. The upper panel shows that for the first-
level classification task, archaeal and bacterial contigs can be easily
assigned to their respective domain, and that this classification is
hard for eukaryotic contigs and even harder for viral ones. When
the classification task is restricted to bacteria only (panels C1 and
C2), fine-grained classification is not hard at both phylum and
class levels. For viruses (panels B1 and B2), fine-grained classi-
fication to groups (ssDNA, dsRNA etc.) is hard, while assigning
a viral sequence to a family level is easier, though less easy than
for bacteria. Using a permutation scheme, we established that the
observed kDN value is significantly different from the null kDN
values for all but the virus fine-grained classification to groups
(data not shown).

Consistent with previous work (Mende et al., 2012; Teeling
and Glockner, 2012), we have verified that for contigs shorter
than 500 nt, distributions are shifted to the right—which cor-
responds to a harder classification problem (data not shown);
conversely, for contigs longer than 500 nt, distributions are shifted
to the left, corresponding to an easier classification problem (see
Supplementary Figure 1).

It has been previously observed that viral 3-mer signatures are
close to that of their hosts (Pride et al., 2006). However, evidence
contradicting this observation has also been proposed, for exam-
ple for large viruses (Mraìzek and Karlin, 2007) and for viruses
of monocots and dicots (Adams and Antoniw, 2004). We inves-
tigated whether the classification difficulty could be explained by
overlapping k-mer distributions between different types of hosts
and viruses that infect them. To this end we sampled 4689 con-
tigs from each first level cellular groups (archaeal, bacterial, plant
and fungal genomes); and of viruses known to infect them. Using
principal component analysis (PCA), we projected the 3-mers fre-
quencies vectors of these contigs on 2 dimensions. Figure 2 shows
that viral and cellular contigs are spread uniformly in these 2
dimensions, with the exception of plants viruses that are more
compact. Using local density analysis, we observed that contigs
of bacterial viruses indeed are close to their hosts (points 12 and
6, 13, and 7), but that they are also as close to archaeal contigs
(points 13 and 3). On the other hand, archaeal viruses are not
close to their hosts; while plant viruses are closer to bacteria and
archaea than to their hosts.

DISCUSSION
Distinguishing viral and cellular sequences in non-targeted envi-
ronmental studies is a yet unresolved classification problem,
especially for unknown viral species. We have shown that the rea-
son why this problem has been eluding a satisfactory solution

lies in its intrinsic computational difficulty. The reason for this
difficulty lies in the fact that viral sequences k-mer distributions
overlap with cellular one’s almost indiscriminately. This is to be
contrasted with the relative ease of the corresponding classifi-
cation task for archaea and bacteria that certainly underlies the
success of bacterial taxonomic assignment studies. The difficulty
for viral sequence classification will be alleviated as the public
sequence databases become further populated with acquired viral
data but this will not provide a sufficient solution to the problem
of novel species discovery.

We strongly believe that appropriate choice of computational
methodology and further research efforts in this direction are
key for the advancement of this field. In the current state of
knowledge, we recommend adopting the strategy of contig-level
assembly of reads combined with k-mer frequency-based analysis
for the identification of viral sequences in metagenomic samples.
As for the development of new methods, the promising avenue for
the discovery of novel viral sequences seems to be the relaxation
of the stringency of long k-mer indexing.
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