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Abstract. Evidential-EM (E2M) algorithm is an effective approach for
computing maximum likelihood estimations under finite mixture models,
especially when there is uncertain information about data. In this paper
we present an extension of the E2M method in a particular case of incom-
plete data, where the loss of information is due to both mixture models
and censored observations. The prior uncertain information is expressed
by belief functions, while the pseudo-likelihood function is derived based
on imprecise observations and prior knowledge. Then E2M method is
evoked to maximize the generalized likelihood function to obtain the
optimal estimation of parameters. Numerical examples show that the
proposed method could effectively integrate the uncertain prior infor-
mation with the current imprecise knowledge conveyed by the observed
data.

Keywords: Belief function theory; Evidential-EM; Mixed-distribution;
Uncertainty; Reliability analysis

1 Introduction

In life-testing experiments, the data are often censored. A datum Ti is said to
be right-censored if the event occurs at a time after a right bound, but we
do not exactly know when. The only information we have is this right bound.
Two most common right censoring schemes are termed as Type-I and Type-II
censoring. The experiments using these test schemes have the drawback that they
do not allow removal of samples at time points other than the terminal of the
experiment. The progressively censoring scheme, which possesses this advantage,
has become very popular in the life tests in the last few years [1]. The censored
data provide some kind of imprecise information for reliability analysis.

It is interesting to evaluate the reliability performance for items with mixture
distributions. When the population is composed of several subpopulations, an
instance in the data set is expected to have a label which represents the origin,
that is, the subpopulation from which the data is observed. In real-world data,
observed labels may carry only partial information about the origins of sam-
ples. Thus there are concurrent imprecision and uncertainty for the censored
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data from mixture distributions. The Evidential-EM (E2M) method, proposed
by Denœux [4, 3], is an effective approach for computing maximum likelihood
estimates for the mixture problem, especially when there is both imprecise and
uncertain knowledge about the data. However, it has not been used for reliability
analysis and the censored life tests.

This paper considers a special kind of incomplete data in life tests, where the
loss of information is due simultaneously to the mixture problem and to censored
observations. The data set analysed in this paper is merged by samples from dif-
ferent classes. Some uncertain information about class values of these unlabeled
data is expressed by belief functions. The pseudo-likelihood function is obtained
based on the imprecise observations and uncertain prior information, and then
E2M method is invoked to maximize the generalized likelihood function. The
simulation studies show that the proposed method could take advantages of us-
ing the partial labels, and thus incorporates more information than traditional
EM algorithms.

2 Theoretical analysis

Progressively censoring scheme has attracted considerable attention in recent
years, since it has the flexibility of allowing removal of units at points other than
the terminal point of the experiment [1]. The theory of belief functions is first
described by Dempster [2] with the study of upper and lower probabilities and
extended by Shafer later [6]. This section will give a brief description of these
two concepts.

2.1 The Type-II progressively censoring scheme

The model of Type-II progressively censoring scheme (PCS) is described as fol-
lows [1]. Suppose n independent identical items are placed on a life-test with
the corresponding lifetimes X1, X2, · · · , Xn being identically distributed. We as-
sume that Xi (i = 1, 2, · · · , n) are i.i.d. with probability density function (pdf)
f(x; θ) and cumulative distribution function (cdf) F (x; θ). The integer J < n
is fixed at the beginning of the experiment. The values R1, R2, · · · , RJ are J
pre-fixed satisfying R1 + R2 + · · · + RJ + J = n. During the experiment, the
jth failure is observed and immediately after the failure, Rj functioning items
are randomly removed from the test. We denote the time of the jth failure by
Xj:J:n, where J and n describe the censored scheme used in the experiment, that
is, there are n test units and the experiment stops after J failures are observed.
Therefore, in the presence of Type-II progressively censoring schemes, we have
the observations {X1:J:n, · · · , XJ:J:n}. The likelihood function can be given by

L(θ;x1:J:n, · · · , xJ:J:n) = C

J
∏

i=1

f(xi:J:n; θ)[1 − F (xi:J:n; θ)]
Ri , (1)

where C = n(n−1−R1)(n−2−R1−R2) · · · (n−J+1−R1−R2−· · ·−RJ−1).
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2.2 Theory of belief functions

Let Θ = {θ1, θ2, . . . , θN} be the finite domain ofX , called the discernment frame.
The mass function is defined on the power set 2Θ = {A : A ⊆ Θ}. The function
m : 2Θ → [0, 1] is said to be the basic belief assignment (bba) on 2Θ, if it satisfies:

∑

A⊆Θ

m(A) = 1. (2)

Every A ∈ 2Θ such that m(A) > 0 is called a focal element. The credibility and
plausibility functions are defined in Eq. (3) and Eq. (4).

Bel(A) =
∑

∅6=B⊆A

m(B), ∀A ⊆ Θ, (3)

Pl(A) =
∑

B∩A 6=∅

m(B), ∀A ⊆ Θ. (4)

Each quantity Bel(A) denotes the degree to which the evidence supports A,
while Pl(A) can be interpreted as an upper bound on the degree of support that
could be assigned to A if more specific information became available [7]. The
function pl : Θ → [0, 1] such that pl(θ) = Pl({θ}) is called the contour function
associated to m.

If m has a single focal element A, it is said to be categorical and denoted
as mA. If all focal elements of m are singletons, then m is said to be Bayesian.
Bayesian mass functions are equivalent to probability distributions.

If there are two distinct pieces of evidences (bba) on the same frame, they
can be combined using Dempster’s rule [6] to form a new bba:

m1⊕2(C) =

∑

Ai∩Bj=C m1(Ai)m2(Bj)

1− k
∀C ⊆ Θ,C 6= ∅ (5)

If m1 is Bayesian mass function,and its corresponding contour function is p1.
Letm2 be an arbitrary mass function with contour function pl2. The combination
of m1 and m2 yields a Bayesian mass function m1 ⊕m2 with contour function
p1 ⊕ pl2 defined by

p1 ⊕ pl2 =
p1(ω)pl2(ω)

∑

ω
′∈Ω p1(ω

′)pl2(ω
′)
. (6)

The conflict between p1 and pl2 is k = 1 −
∑

ω
′∈Ω p1(ω

′

)pl2(ω
′

). It equals one
minus the expectation of pl2 with respect to p1.

3 The E2M algorithm for Type-II PCS

3.1 The generalized likelihood function and E2M algorithm

E2M algorithm, similar to the EM method, is an iterative optimization tactics
to obtain the maximum of the observed likelihood function [4, 3]. However, the
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data applied to E2M model can be imprecise and uncertain. The imprecision
may be brought by missing information or hidden variables, and this problem
can be solved by the EM approach. The uncertainty may be due to the unreliable
sensors, the errors caused by the measuring or estimation methods and so on.
In the E2M model, the uncertainty is represented by belief functions.

Let X be a discrete variable defined on ΩX and the probability density
function is pX(·; θ). If x is an observation sample of X , the likelihood function
can be expressed as:

L(θ;x) = pX(x; θ). (7)

If x is not completely observed, and what we only know is that x ∈ A,A ⊆ ΩX ,
then the likelihood function becomes:

L(θ;A) =
∑

x∈A

pX(x; θ). (8)

If there is some uncertain information about x, for example, the experts may
give their belief about x in the form of mass functions: m(Ai), i = 1, 2, · · · , r,
Ai ⊆ ΩX , then the likelihood becomes:

L(θ;m) =

r
∑

i=1

m(Ai)L(θ;Ai) =
∑

x∈Ωx

pX(x; θ)pl(x). (9)

It can be seen from Eq. (9) that the likelihood L(θ;m) only depends on m
through its associated contour function pl. Thus we could write indifferently
L(θ;m) or L(θ; pl).

Let W = (X,Z) be the complete variable set. Set X is the observable data
while Z is unobservable but with some uncertain knowledge in the form of plZ .
The log-likelihood based on the complete sample is logL(θ;W ). In E2M, the
observe-data log likelihood is logL(θ;X, plZ).

In the E-step of the E2M algorithm, the pseudo-likelihood function should
be calculated as:

Q(θ, θk) = Eθk [logL(θ;W )|X, plZ ; θ
k], (10)

where plZ is the contour function describing our uncertainty on Z, and θk is the
parameter vector obtained at the kth step. Eθk represents the expectation with
respect to the following density:

γ
′

(Z = j|X, plZ ; θ
k) , γ(Z = j|X ; θk)⊕ plZ . (11)

Function γ
′

could be regarded as a combination of conditional probability density
γ(Z = j|X ; θk) = pZ(Z = j|X ; θk) and the contour function plZ . It depicts
the current information based on the observation X and the prior uncertain
information on Z, thus this combination is similar to the Bayes rule.

According to the Dempster combination rule and Eq. (9), we can get:

γ
′

(Z = j|X, plZ ; θ
k) =

r(Z = j|X ; θk)plZ(Z = j)
∑

j r(Z = j|X ; θk)plZ(Z = j)
. (12)
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Therefore, the pseudo-likelihood is:

Q(θ, θk) =

∑

j r(Z = j|X ; θk)pl(Z = j) logL(θ;W )

L(θk;X, plZ)
. (13)

The M-step is the same as EM and requires the maximization of Q(θ, θk) with
respect to θ. The E2M algorithm alternately repeats the E- and M-steps above
until the increase of general observed-data likelihood becomes smaller than a
given threshold.

3.2 Mixed-distributed progressively censored data

Here, we present a special type of incomplete data, where the imperfection of
information is due both to the mixed-distribution and to some censored obser-
vations. Let Y denote the lifetime of test samples. The n test samples can de
divided into two parts, i.e. Y1, Y2, where Y1 is the set of observed data, while Y2

is the censored data set. Let Z be the class labels and W = (Y, Z) represent the
complete data.

Assume that Y is from mixed-distribution with p.d.f.

fY (y; θ) =

p
∑

z=1

λzf(y; ξz), (14)

where θ = (λ1, · · · , λp, ξ1, · · · , ξp). The complete data distribution of W is given
by P (Z = z) = λz and P (Y |Z = z) = f(y; ξz). Variable Z is hidden but we can
have a prior knowledge about it. This kind of prior uncertain information of Z
can be described in the form of belief functions:

plZ(Z = j) = plj , j = 1, 2, · · · , p. (15)

The likelihood of the complete data is:

Lc(θ;Y, Z) =

n
∏

j=1

f(yj, zj ; θ), (16)

and the pseudo-likelihood function is:

Q(θ, θk) = Eθk [logLc(θ;Y, Z)|Y ∗, plZ ; θ
k], (17)

where Eθk [·|Y ∗, plZ ; θ
k] denotes expectation with respect to the conditional dis-

tribution of W given the observation Y ∗ and the uncertain information plZ .

Theorem 1. For (yj,zj) are complete and censored, fY Z(yj , zj|y
∗
j ; θ

k) can be

calculated according to Eq. (18) and Eq. (19) respectively. Let y∗j be the jth

observation. If the jth sample is completely observed, yj = y∗j ; Otherwise yj ≥ y∗j .

f1
Y Z(yj , zj |y

∗
j ; θ

k) = I{yj=y∗

j
}P

k
1jz , (18)
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f2
Y Z(yj , zj |y

∗
j ; θ

k) = I{yj>y∗

j
}P

k
2jz

f(yj ; ξ
k
z )

F (y∗j ; ξ
k
z )

. (19)

where P k
1jz and P k

2jz are shown in Eq. (20).

P k
jz(zj = z|Y ∗; θ) =

{

P k
1jz(zj = z|y∗j ; θ

k) for the completely observed data

P k
2jz(zj = z|y∗j ; θ

k) for the censored data

(20)
where

P k
1jz(zj = z|y∗j ; θ

k) =
f(y∗j ; ξ

k
z )λ

k
z

∑

z f(y
∗
j ; ξ

k
z )λ

k
z

, (21)

P k
2jz(zj = z|y∗j ; θ

k) =
F (y∗j ; ξ

k
z )λ

k
z

∑

z F (y∗j ; ξ
k
z )λ

k
z

. (22)

Proof. If (yj,zj) are completely observed,

f1
yz(yj, zj |y

∗
j ; θ

k) = P k
1jzf(yj |y

∗
j = yj, Zj = z; θk),

we obtain Eq. (18).
If (yj,zj) are censored,

f2
yz(yj, zj |y

∗
j ; θ

k) = P k
2jzf(yj |y

∗
j < yj, Zj = z; θk),

From the theorem in [5],

f(yj |y
∗
j < yj , Zj = z; θk) =

f(yj ; ξ
k
z )

F (y∗j ; ξ
k
z )

I{yj>y∗

j
},

we can get Eq. (19).
This completes this proof.

From the above theorem, the pseudo-likelihood function can be written as:

Q(θ, θk) = Eθk [log f c(Y, Z)|Y ∗, plZ ; θ
k]

=

n
∑

j=1

Eθk [logλz + log f(yj|ξz)|Y
∗, plZ ; θ

k]

=
∑

yj∈Y1

∑

z

P
′k
1jz logλz +

∑

yj∈Y2

∑

z

P
′k
2jz logλz

+
∑

yj∈Y1

∑

z

P
′k
1jz log f(y

∗
j |ξz)

+
∑

yj∈Y2

∑

z

P
′k
2jz

∫ +∞

y∗

j

log f(x|ξz)
f(x|ξkz )

F (y∗j ; ξ
k
z )

dx,

(23)

where

P
′k
ijz(zj = z|y∗j , plZj

; θk) = P k
ijz(zj = z|y∗j ; θ

k)⊕ plZj
, i = 1, 2.
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It can be seen that P
′k
ijz(zj = z|y∗j , plZj

; θk) is a Dempster combination of the
prior and the observed information.

Assume that the data is from the mixed-Rayleigh distribution without loss
of generality, the p.d.f. is shown in Eq. (24):

fX(x;λ, ξ) =

p
∑

j=1

λjgX(x; ξj) =

p
∑

j=1

λjξ
2
j exp{−

1

2
ξ2jx

2}, (24)

After the kth iteration and θk = λk is got, the (k+1)th step of E2M algorithm
is shown as follows:

1. E-step: For j = 1, 2, · · · , n, z = 1, 2 · · · , p, use Eq. (23) to obtain the condi-
tional p.d.f. of logLc(θ;W ) based on the observed data, the prior uncertain
information and the current parameters.

2. M-step: Maximize Q(θ|θk) and update the parameters:

λk+1

z =
1

n





∑

yj∈Y1

P
′k
1jz +

∑

yj∈Y2

P
′k
2jz



 , (25)

(ξk+1
z )2 =

2
(

∑

yj∈Y1
P

′k
1jz +

∑

yj∈Y2
P

′k
2jz

)

∑

yj∈Y1
P

′k
1jzy

∗2

j +
∑

yj∈Y2
P

′k
2jz(y

∗2

j + 2/(ξkz )
2)
. (26)

It should be pointed out that the maximize of Q(θ, θk) is conditioned on
∑p

i=1
λi = 1. By Lagrange multipliers method we have the new objective func-

tion:

Q(θ, θk)− α(

p
∑

i=1

λi − 1).

4 Numerical results

In this section, we will use Monte-Carlo method to test the proposed method.
The simulated data set in this section is drawn from mixed Rayleigh distribution
as shown in Eq. (24) with p = 3, λ = (1/3, 1/3, 1/3) and ξ = (4, 0.5, 0.8). The
test scheme is n = 500, m = n ∗ 0.6, R = (0, 0, · · · , n −m)1×m. Let the initial
values be λ0 = (1/3, 1/3, 1/3) and ξ0 = (4, 0.5, 0.8)− 0.01. As mentioned before,
usually there is no information about the subclass labels of the data, which is the
case of unsupervised learning. But in real life, we may get some prior uncertain
knowledge from the experts or experience. These partial information is assumed
to be in the form of belief functions here.

To simulate the uncertainty on the labels of the data, the original generated
datasets are corrupted as follows. For each data j, an error probability qj is
drawn randomly from a beta distribution with mean ρ and standard deviation
0.2. The value qj expresses the doubt by experts on the class of sample j. With
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Fig. 1. Average RABias values (plus and minus one standard deviation) for 20 repeated
experiments, as a function of the error probability ρ for the simulated labels.

probability qj , the label of sample j is changed to any (three) class (denoted by
z∗j ) with equal probabilities. The plausibilities are then determined as

plZj
(zj) =

{

qj
3

if zj 6= z∗j ,
qj
3
+ 1− qj if zj = z∗j

. (27)

The results of our approach with uncertain labels are compared with the cases
of noisy labels and no information on labels. The former case with noisy labels is
like supervised learning, while the latter is the traditional EM algorithm applied
to progressively censored data. In each case, the E2M (or EM) algorithm is run
20 times. The estimations of parameters are compared to their real value using
absolute relative bias (RABias). We recall that this commonly used measure

equals 0 for the absolutely exact estimation θ̂ = θ.
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experiments, as a function of the sample numbers n.

The results are shown graphically in Figure 1. As expected, a degradation of
the estimation performance is observed when the error probability ρ increases
using noisy and uncertain labels. But our solution based on soft labels does not
suffer as much that using noisy labels, and it clearly outperforms the supervised
learning with noisy labels. The estimations for ξ1 and ξ3 by our approach (un-
certain labels) are better than the unsupervised learning with unknown labels.
Although the estimation result for ξ2 using uncertain labels seems not better
than that by traditional EM algorithm when ρ is large, it still indicates that
our approach is able to exploit additional information on data uncertainty when
such information is available as the case when ρ is small.

In the following experiment, we will test the algorithm with different sample
numbers n. In order to illustrate the different behavior of the approach with
respect to n, we consider a fixed censored scheme with (m =) 60% of sam-
ples are censored. With a given n, the test scheme is as follows: m = n ∗ 0.6,
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R = (0, 0, · · · , n − m)1×m. Let the error probability be ρ = 0.1. Also we will
compare our method using uncertain labels with those by noisy labels and with-
out using any information of labels. The RABias for the results with different
methods is shown in Figure 2. We can get similar conclusions as before that
uncertainty on class labels appears to be successfully exploited by the proposed
approach. Moreover, as n increases, the RABias decreases, which indicates the
large sample properties of the maximum-likelihood estimation.

5 Conclusion

In this paper, we investigate how to apply E2M algorithm to progressively cen-
sored data analysis. From the numerical results we can see that the proposed
method based on E2M algorithm has a better behavior in terms of the RABias
of the parameter estimations as it could take advantage of the available data
uncertainty. Thus the belief function theory is an effective tool to represent and
deal with the uncertain information in reliability evaluation. The Monte-Carlo
simulations show that the RABiases decreases with the increase of n for all cases.
The method does improve for large sample size.

The mixture distribution is widely used in reliability project. Engineers find
that there are often failures of tubes or other devices at the early stage, but
the failure rate will remain stable or continue to raise with the increase of time.
From the view of statistics, these products should be regarded to come from
mixed distributions. Besides, when the reliability evaluation of these complex
products is performed, there is often not enough priori information. Therefore,
the application of the proposed method is of practical meaning in this case.
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