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Abstract—Pairing based cryptography (PBC) is touted as
an efficient approach to address usability and privacy issues
in the cyberspace. Like most cryptographic algorithms,
PBC must be robust not only against theoretical crypt-
analysis but also against practical physical attacks such
as fault injections. The computation of the Tate pairing
can be divided into two parts, the Miller Algorithm and
the Final Exponentiation. In this paper, we describe prac-
tical implementations of fault attacks against the Miller
Algorithm validating common fault models used against
pairings. In the light of the implemented fault attacks, we
show that some blinding techniques proposed to protect the
algorithm against Side-Channels Analyses cannot be used
as countermeasures against the implemented fault attacks.

Index Terms—Pairing, Miller algorithm, fault attacks,
blinding countermeasures, EM fault injection

I. INTRODUCTION

Pairing based cryptography (PBC) is touted as an
efficient approach to address usability and privacy issues
in the cyberspace. As most cryptographic algorithms,
PBC must be robust not only against theoretical crypt-
analysis but also against practical physical attacks like
fault injections. PBC uses bilinear mappings (or pairings)
to construct cryptographic schemes for applications such
as Identity-Based Encryption (IBE) [1], anonymous IBE,
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one round tripartite Diffie-Hellman key exchange or
searchable encryption [2]. A pairing calculation con-
sists of two major steps namely the Miller Algorithm
(MA) followed by the Final Exponentiation (FE). An
exhaustive literature is available on the choice of curves
and associated parameters for secure and efficient PBC
implementation [3]. Recent advances in solving the
Discrete Logarithm Problem (DLP) in small character-
istics [4] have reinforced the importance of focusing
mainly on fields with a big prime characteristic. Issues
linked to the resistance of PBC implementations against
side channels and fault attacks have also been covered
in the literature [5], [6]. Most of the proposed fault
attack schemes against PBC are theoretical and focus on
the Miller algorithm [7], [8], [9] for which associated
countermeasures have been proposed.

In this paper we explain how fault attacks have been
implemented in practice against the Miller Algorithm
independently from the final exponentiation. In the light
of the implemented attacks, we analyse the counter-
measures proposed in the literature to show that using
blinding methods to add randomness to the intermediate
calculations are not always efficient to thwart our attack.

The paper is organized as follows. We first provide
a quick background on pairings and an overview of
the current state-of-art of fault attacks on the Miller
algorithm. We describe the principle behind and the prac-
tical settings for the fault attacks that we implemented.
We then show that some blinding countermeasures are



inefficient against our fault model and consequently look
at how to properly secure the Miller algorithm.

II. BACKGROUND ON PAIRINGS

A. The Tate and Ate pairings

A pairing e is a bilinear and non degenerate map such
that e : G1×G2 → G3, with G1, G2 and G3 three cyclic
groups of the same prime order r. Let p be a prime
number, E be an elliptic curve over Fp and r a prime
divisor of card(E(Fp)). Efficient algorithms for pairings
are realized with G1, G2 subgroups of an elliptic curve
E(Fpk) with point at infinity P∞ and G3 is the subgroup
of the rth roots of unity in Fpk , where k is the smallest
integer such that r divides (pk − 1). The integer k is
called the embedding degree of E with respect to r.

The first pairings used in cryptography were the Weil
and the Tate pairings [10], [11] and they have become
a very active field of research with uses in innovative
protocols like IBE [12]. The latest and more efficient
implementations are the Ate [13], twisted pairings [13],
improved with the notion of optimal pairings [14] and
pairing lattices [15]. These pairings (that we call “Tate-
like” pairings) are based on the model of the reduced
Tate pairing defined by

{
eT : E(Fp)[r]× E(Fpk)/rE(Fpk) → µr ⊂ F∗pk

(P,Q) → fr,P (Q)
pk−1

r ,

where fr,P (Q) represents the Miller function computed
using the Miller algorithm and defined by the divisor
r(P )− ([r]P )− (r − 1)(P∞) evaluated at the point Q.

The Ate pairing has been developed in order to
accelerate the computation time of a pairing, this “Tate-
like” pairing is the one implemented and used in our
experiments. Let πp be the Frobenius endomorphism on
a point given by πp(X,Y ) = (Xp, Y p). Let t be the
trace of Frobenius (#E(Fp) = p + 1 − t). The Ate
pairing is defined by P ∈ E(Fp)[r] ∩ ker(πp − [1]),
Q ∈ E(Fpk)[r] ∩ ker(πp − [p]), K = t − 1 and

ate(Q,P ) = fK,Q(P )
pk−1

r .
Since the Miller algorithm is the central step for the

most popular pairings, several optimizations have been
proposed [16]. Algorithm 1 shows the Miller algorithm
using the denominator elimination optimization. In PBC,
if a secret is used, then it is one of the inputs of the
pairing, either the point P or the point Q.
From Algorithm 1, f1 shall be called the Miller variable,
the Doubling step shall consist of the operations at lines
4 and 5 while the Addition step is represented by lines
8 and 9.

Algorithm 1: Miller algorithm for the Ate pairing
Data: K = (Kn . . .K0)2, P ∈ G1 and Q ∈ G2;
Result: fK,Q(P ) ∈ G3;

1 T ← Q ;
2 f1 ← 1 ;
3 for i = n− 1 to 0 do
4 T ← [2]T ;
5 f1 ←− f12 × h1(P ) ;
6 h1(x) is the equation of the tangent at the point T ;
7 if Ki = 1 then
8 T ← T +Q ;
9 f1 ←− f1 × h2(P );

10 h2(x) is the equation of the line (QT );
11 end
12 end
13 return f1

B. Barreto-Naehrig curves

Given the diversity of pairing implementations, it
is not possible to study fault attacks on all of them.
The 128-bit security level was chosen as usually rec-
ommended. The best current implementations with this
security use Barreto-Naehrig (BN) curves [17]. Further-
more, the fault attack we describe here is independent
from the elliptic curve parameters and from the coor-
dinates used. As an example, we used the parameters
specified in [18] to construct our curve and our fields.

A BN curve is defined by the parametrized values
t(x), r(x) and p(x) such that x fully defines the
curve, with r(x) and p(x) prime integers. In our case
x = 0x3FC0100000000000 and Fp12 is constructed
through the following tower extension:

Fp2 = Fp[u]/(u2 − β),

Fp6 = Fp2 [v]/(v3 − u),

Fp12 = Fp6 [w]/(w2 − v),

with β = −5 is a quadratic non-residue in Fp, u is
a cubic non-residue in Fp2 , and v is a quadratic non-
residue in Fp6 .

The base for Fp12 as a vector space over Fp2 is then
(1, w, w2, w3, w4, w5) and the base for Fp12 over Fp
is (1, w, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11), and
for R ∈ Fp12 , we denote :

R = R0 +R1w +R2w
2 +R3w

3 +R4w
4 +R5w

5

+R6w
6 +R7w

7 +R8w
8 +R9w

9 +R10w
10 +R11w

11,

with w2 = v, w6 = u and w12 = β.
The BN curve E that we use as an example is defined

by the equation Y 2 = X3 + 5 and the twisted curve E′



is given by Y 2 = X3 − 5/u = X3 − u.

III. FAULT ATTACKS AGAINST PBC

An overview of fault attacks against PBC is given
in [19]. We briefly present here those attacks using the
notations specified in Algorithm 1.

One of the first fault attacks on PBC was described
by Page and Vercauteren [7] against the Duursma-Lee
algorithm (efficient for supersingular elliptic curves over
a finite field of characteristic 3 [20]). Page and Ver-
cauteren use a random fault that occurs into the loop
counter i of the Miller loop. The consequence is an
observable difference in the number of iterations during
the Miller algorithm. They recover the secret (point P or
Q) by computing the quotient of two pairing results (one
correct and one faulty). The quotient cancels out terms
not influenced by the fault. Using the quotient and the
equations of the Duursma-Lee algorithm, they solve a
system thanks to the special form of the results of the
Miller algorithm.

Whelan and Scott adopt a similar approach but with a
different fault model [8]. They propose to inject a fault
in the Miller variable f1 itself. They add a random value
to the function line evaluated during the last iteration of
the Miller algorithm. The attack consists in analysing the
quotient between a valid and a faulty result.

The attack of Page and Vercauteren was extended
by El Mrabet to the more general case of the Miller
algorithm for any elliptic curve [9]: the injected fault
modifies the number of iterations of the Miller loop.
Two faulty results corresponding to the Miller loop
stopped at two consecutive iterations are needed. The
author describes the recovery of the secret point using
the quotient of those two intermediate results and the
equations of the Miller algorithm.

More recently in [21], the authors proposed a fault
model where the addition step is skipped with a fault
attack. The instruction skip allows to recover h2 which
leads to an attack very similar to the previous ones
mathematically.

To sum up, two approaches have been proposed to
recover the value h1: either by corrupting the data flow
(data modification) or by modifying the control flow
(loop skip, test skip). Once we have h1, the Miller
algorithm can be reversed to find the secret point.

Only one of the two input points is considered secret
and the other one is public. This setting is notably rep-
resentative of the level of knowledge which an attacker
would have in an IBE scheme [1].

IV. IMPLEMENTED FAULT ATTACKS & RESULTS

Implementing a fault attack against the Miller algo-
rithm consists of two steps: first finding h1 which is in
turn used to calculate the secret point. In this section, we
illustrate how h1 was found using faults before detailing
how the secret point in the Miller algorithm can be
recovered mathematically knowing h1 (from [9]).

A. Experimental set-up

The attacker wants to find h1(P ) at a known iteration.
We use Electromagnetic (EM) pulses to generate faults
in a microcontroller computing an Ate pairing. The
platform used is similar to the one detailed in [22], [23].

The target of our experiment is a Cortex-M3 32 −bit
microcontroller running at 56 MHz on which we run
our own implementation of an Ate pairing following the
algorithms in [18] and coded in C language. The chip
has not been designed as a secure chip but it bears some
basic sensors for monitoring power and clock glitches
which trigger hardware interrupts. These sensors are
active during the experiments and are able to detect
the EM pulses if they are too powerful. The board
is underpowered at 2.8 V instead of 3.3 V in order to
increase the sensitivity of the chip to the EM pulses.

The EM pulse injection platform used is composed of
a pulse generator, a handmade coil antenna of diameter
1 mm (seen on Fig. 1), an XYZ motorized stage allowing
to precisely (±1 µm) position the targeted chip with
respect to the antenna, all this within a Faraday cage
and with a computer controlling all those devices.

Fig. 1. EM bench: the chip and the probe.

At a precise moment determined by the attacker, the
generator sends a voltage pulse, between −210 V and
210 V, to the coil antenna with rising and falling times
of 2 ns and a duration of 10 ns. The coil is precisely



placed just above the targeted position on the circuit.
The EM pulse reaches the Power Ground Network of
the chip and alters the computation performed by the
device.

In order to find the right parameters of the fault
injection set-up, we control and communicate with the
chip through Keil µvision [24] and its UVSOCK library.
This allows us to access various internal registers giving
us insights of what is going on after a fault injection
even if an interrupt has been raised (i.e. the glitch has
been detected). Experiments consist in finding the right
parameters: position of the coil with respect to the chip,
pulse amplitude, and the instant of the pulse emission
with respect to a trigger raised by the targeted chip when
reaching the operations of interest.

First we have to determine the locations where faults
can be injected without interrupting the execution flow of
the code. To do so, we vary the XY position of the EM
probe over the chip’s surface and observe how the chip
behaves under an EM pulse stress. Three characteristic
behaviours have been observed, depending on the spatial
XY location, as illustrated in Fig. 2: either no faults have
been detected (the white strips in the figure); or interrupts
are generated (the red/dark spots on the figure); or
undetected faults have been inserted (the blue/light spots
on the figure).

Fig. 2. XY map: red (dark) corresponds to interrupts and blue (light) to
undetected faults (the white stripes and dots are visual artefacts where
no faults have been injected).

With this approach we managed to find 2 set-ups for
fault models corresponding to the modification of the

control flow and that of the data flow (for recovering
h1):

• Controlled add model: a controlled value is added
to h1 through a fault injection. “Controlled” means
that the value should be manageable: not totally
random but with only a limited uncertainty allowing
to individually test all possibilities. This fault model
typically allowed us to implement the fault attack
described in [6].

• Loop skip model: the last iteration of the Miller
algorithm is skipped. This fault model suits the
needs for the fault attacks described in [7] and [9].

Both these models have been theoretically proposed
for fault attacks on pairings and allow to get h1. Since
our implementation is an Ate pairing, the last iteration
of the Miller algorithm has only a doubling step and no
addition step.

B. First fault attack model: controlled add

In this attack, the secret point is Q and P is known to
the attacker. In this experiment, we inject a fault during
an addition in Fp. The latter operation requires a multi-
word addition algorithm on the 32-bit chip.

We target one word of the addition and vary the instant
of the injection of the pulse.

During a campaign (with carefully chosen parameters,
seen on Fig. 3) of 1014 pulses emitted by the EM bench,
373 (37%) pulses induced an interrupt and 172 (17%)
undetected faults were created on the least significant
word. No fault was created on the other words, apart
from the carry propagation due to the faulted least
significant word.

The values obtained are:

• Correct value: 0x6EBCDA28
• 0x6EBCDA29
• 0xB75E6E10 ≈ 0x6EBCDA28/2
• 0xF75F792B
• 0xFFFFFFFF

It is difficult to exactly explain what the exact effect of
the electromagnetic pulses is since we do not have inside
knowledge of the inner workings of the chip. We guess
that in this case, the pulse affects the bus when data are
retrieved from the RAM. The synchronisation may be
altered which leads to ‘shifts’ within a word, or to the
use of the bus pre-charge value of 0xFFFFFFFF .

It is possible to use a fault on the modular addition
to recover h1(P ) if the attacker knows the point P .
In this case, he can target the evaluation of one of
the coordinates (R0, R3 or R4) of h1(P ) during the
last iteration of the Miller algorithm. For example the



Fig. 3. Delay (horizontal) and stress (vertical) variations: red (dark)
corresponds to interrupts and blue (light) to undetected faults.

value R0 is computed with an algorithm ending with
this pseudo-C code (t0 ∈ Fp2 ):

t0 = t0 + t0; //fast modular doubling
R0 = t0 * YP; //P = (XP : YP)

The attacker can now recover h1(P ) by injecting a
known fault e on the modular addition giving t∗0 = t0+e.
This fault is propagated onto R0:

R∗0 = t∗0 ·Y P = (t0+e)·Y P = R0+e·Y P = R0+∆R0 .
(1)

Since e and Y P are known to the attacker, ∆R0
is

known as well.
At the last iteration of the Miller algorithm, we have:

fK,Q(P ) = f21 × h1(P ) (2)

If the attacker is able to inject a known fault ∆R0 in
h1(P ), he recovers

fK,Q(P )∗ = f21 × (h1(P ) + ∆R0). (3)

As he knows fK,Q(P )∗, fK,Q(P ) and ∆R0 , he can find
h1(P ):

h1(P ) =
fK,Q(P )×∆R0

fK,Q(P )∗ − fK,Q(P )
(4)

If P is the secret and Q is known it is possible to
obtain the same result with a fault on the last operation
computing R3 which is a modular subtraction.

C. Second fault attack model: loop skip
The goal of this experiment is to skip one, or several,

iterations of the Miller algorithm. The operations of
interest are the ones which update the loop counter and
decide whether to quit the loop or not.

Fig. 4. Assembly code for the loop test

SUBS r4,r4,#1 //index decrement
CMP r4,#0x00 //loop test: is r4 == 0
BGE 0x080008C2 //>= branch to start

NOP instructions have been added into the code when
the trigger is raised in order to have an easier synchro-
nisation between our code and the EM pulse (there is
an incompressible delay of 80 ns or about 5 instructions).
Additionally, the NOP instructions also clear the pipeline
which lead to a better reproducibility of the faults. Our
tests without the NOP instructions made the synchroni-
sation work a lot harder and when a fault is injected,
the probability of repeating it (with all parameters fixed)
is lower. In order to have a clear presentation, the NOP
instructions have been kept through the experiments in
this paper. Yet, it is possible to remove them at the cost
of harder experiments (and/or better equipment).

When injecting EM pulses during the execution of
operations on the loop counter, several behaviours have
been observed:
• Hardware crash: the chip is not responding and

often needs to be reprogrammed.
• Software crash: the chip is in an incoherent state

(e.g. after a branch to a random location).
• Interrupt: a problem has been detected by the chip

which stops the normal course of the program.
• Computation error: the program has performed a

mistake but the chip is unaware of it.
• Normal execution: the program has been normally

executed.
We fine-tuned our settings to perform loop skips in

a “computation error” scenario: to do so, we first used
a complete Miller algorithm in which we have included
several counters which act as “snow-steps”, the value of
the counter easily telling us whether that instruction has
been executed or not. We used these counters to identify
the correct time of injection while maintaining the pulse
amplitude at −210 V thus creating the highest stress.
At the right time of injection, we could only observe
interrupts at first. Finally by varying slightly the time of
injection and the stress similarly to what can be seen on
Fig. 3, we were able to inject a fault which induces the
“skipping” of the branch instruction.



In the Ate pairing, the last iteration is a tangent
evaluation only:

fK,Q(P ) = f21 × h1(P ). (5)

Thus if we skip the last iteration, we obtain

fK,Q(P )∗ = f1. (6)

Finally, h1 is simply

h1(P ) =
fK,Q(P )

(fK,Q(P )∗)
2 . (7)

By simply changing the targeted iteration, we are in
fact able to leave the loop at whatever iteration we
choose by skipping the corresponding branch instruction.
We confirmed this by skipping the last two iterations
simply by raising the trigger exactly one iteration earlier.
If it is possible to exit the loop at whatever iteration the
attacker desires, the best choice would be to execute only
the first iteration of the Miller algorithm. In this case

fK,Q(P )∗ = h1(P ), (8)

it becomes unnecessary to compute a correct result of
the Miller algorithm. This trick may be useful since
accessing to the correct value of the Miller algorithm
is in practice a feat, due to the final exponentiation.

D. Recovering the secret point from h1

Now that we have seen how the value of h1(P ) was
recovered in practice, we are going to illustrate how the
secret point was derived from the latter value. We know
that Q ∈ E(Fpk) and P ∈ E(Fp). In practice however
we use the degree 6 twisted curve for the representation
of Q: we simplify the notation by denoting Q as the
point (xq : yq) ∈ E′(Fp2) instead of (xq · w2 : yq ·
w3) ∈ E(Fpk). Additionally, the point Q (and therefore
T ) is represented in jacobian coordinates (XQ : YQ :
ZQ) which map to the affine representation (XQ/Z

2
Q :

YQ/Z
3
Q). The attacker can recover h1(P ) for the Ate

pairing with

h1(P ) = (3X3
T − 2Y 2

T ) · w6 + 2YTZ
3
T yp · w3

−3X2
TZ

2
Txp · w4, (9)

h1(P ) = R0 +R3 · w3 +R4 · w4. (10)

with R0, R3, R4 ∈ Fp2 (since w6 = u ∈ Fp2 ) recovered
through identification and T = [i]Q for some i known
to the attacker.
For the Ate pairing R0, R3, R4 provide a system in Fp2 :

R0 = (3X3
T − 2Y 2

T ) · u, R3 = 2YTZ
3
T yp,

R4 = −3X2
TZ

2
Txp.

First, if P (for the Ate pairing) is the secret and Q
is known, P can trivially be obtained with this system
since T = [i]Q is known to the attacker and the system
is linear in P coordinates. That is why from now on
we focus on the case where the secret point is Q while
P is known. The solution is barely more complex. The
system now yields the univariate polynomial

R2
0

β
· Z12

T +

(
4
R0

u
λ22 − 9λ33

)
· Z6

T + 4λ42 = 0 (11)

with λ2 = R3

2yp
and λ3 = − R4

3xp
. This polynomial can be

solved on Fp2 providing the value of ZT .
Once we know ZT , we use it into the initial system to

obtain XT and YT . The points which do not lie on the
curve are eliminated. Finally, the possibilities for Q =
[i−1]T are computed.

If it is possible to control the loop at which the Miller
algorithm returns its result, one would prefer the result
after the first iteration. In this case no correct execution
is needed to extract h1 since f0,Q(P ) = 1. This case
was practically achieved just by moving the trigger to
the first iteration.

E. The Final Exponentiation

The attacker must be able to access the faulty Miller
results in our fault attack, which can be difficult in prac-
tice because of the presence of the final exponentiation
for BN curves.

Several strategies have been proposed to deal with
this final exponentiation. A scan chain attack has been
proposed in [9] to directly access the result of the
Miller Algorithm. More recently [25], a scheme has
been proposed whereby fault attacks can be used to
reverse the final exponentiation. By showing that the
Miller algorithm is vulnerable in practice, we open the
way to a practical fault attack on the whole pairing with
double faults. Yet how to properly override the Final
Exponentiation in conjunction with a fault attack on the
Miller Algorithm remains an open problem which has
to be further studied, but this is not within the scope of
this paper.

V. ANALYSIS OF THE COUNTERMEASURES

Once we have tested and demonstrated the practical
feasibility of fault attacks on the MA, we hereby analyse
some blinding countermeasures proposed in the literature
and find out the loop skip fault model forbids to use the
blinding countermeasures proposed against side-channel
analyses as countermeasures against fault attacks.



A. Coordinates randomization

As proposed in [26] against side-channels analyses,
instead of executing the Miller Loop with Q = (XQ :
YQ : ZQ) ∈ E(Fp2) (represented in jacobian coordi-
nates), we execute it with

Q = (λ2XQ : λ3YQ : λZQ),

where λ ∈ Fp2 is a random blinding value. We note
h
(λ)
1 , h

(λ)
2 , f

(λ)
K,P the line evaluations and the output of

the Miller algorithm when performed with this blinding.
When we include the λ in the tangent equation, we find
that it is possible to factor it. For the doubling step the
equation becomes h(λ)1 = λ24ih1, and for the addition
step it becomes h(λ)2 = λ9i+12h2, where i is an integer
related to the number of iterations. The value of i can
be found, but since this value has no influence on the
result of the attack we remove it. Thus the result of the
Miller loop is f (λ)K,Q = λa · fK,Q for some integer a.

In order to perform the fault attack, we need two
different executions of the Miller algorithm. Thus we use
two different blinding values, one for each execution. But
actually, this adds only one unknown into the system:

h1(P )(λ) =
f
(λ1)(τ+1)
K,Q (P )

f
(λ2)(τ)
K,Q (P )2

=
λa1 · f

(τ+1)
K,Q (P )

λb2 · f
(τ)
K,Q(P )2

=
λa1
λb2
· h1(P ). (12)

We name L =
λa
1

λb
2

the new unknown and hence have:

h1(P )(λ) = L · ((3X3
T − 2Y 2

T ) · w6 + 2YTZ
3
T yp · w3

−3X2
TZ

2
Txp · w4), (13)

h1(P )(λ) = R
(λ)
0 +R

(λ)
3 w3 +R

(λ)
4 w4. (14)

By identification of the decomposition in Fp2 , we
obtain the system

R
(λ)
0 = L ·R0, R

(λ)
3 = L ·R3, R

(λ)
4 = L ·R4. (15)

To this system, we add the equation derived from the
fact that T lies on the curve E:

Y 2
T = X3

T + 5Z6
T . (16)

The system (15) and the equation (16) can be solved
for the Ate pairing. To be solved, the resulting system
requires the computation of the Gröbner basis which
provides an equation of degree 12 in ZT only.

B. Miller’s variable blinding

In this countermeasure again side-channels analyses,
the line evaluation value is multiplied by a random
element L of Fp2 for all iterations as suggested by Scott
in [27]. Thus, we have:

h
(λ)
1 = L · h1. (17)

As can be seen immediately, this countermeasure can
be bypassed in the exact same way as the previous one
with the system (15) and equation (16).

C. Protecting the Miller algorithm

In order to protect efficiently the Miller algorithm,
countermeasures should take into account the fault mod-
els. We have shown that the loop skip model allows
to bypass the coordinates randomization and Miller’s
variable blinding countermeasures even if the attacker
is not able to replay a mask already used. Two other
blinding techniques have been proposed in the literature,
namely the additive blinding and the multiplicative blind-
ing which are effective if the mask values are properly
changed at each execution.

In the additive blinding technique [7], a mask is added
on one of the input points and a second pairing is
computed to remove the mask:

e(Q,P ) = e(Q,P +M)e(Q,M)−1

if Q is the secret point.
Another technique, called the multiplicative blind-

ing [7], moves the security concern away from the
pairing computation. Let a be a random value modulo
r and b such that a · b = 1 mod r. Then e(Q,P ) =
e([a]Q,P )b. It appears that even if the attacker is able
to recover [a]Q, he cannot find the secret point Q thanks
to the ECDLP. Now the security of the system relies on
the secrecy of a and b.

The protection of the Miller algorithm against the loop
skip fault attack can also be realized with the protection
of the loop itself. It can be enough to securely ensure that
the correct number of iterations have been computed, i.e.
by verifying the counter or with timing monitoring for
examples. Moreover adding ‘classical’ countermeasures
causing de-synchronisations (random executions within
the Miller Algorithm) would complicate the experimen-
tal set-up of the attacks proposed in this paper.

VI. CONCLUSION

In this paper we describe how two (theoretical) fault
attack models proposed in the literature against the
Miller algorithm of a pairing calculation have been
validated in practice against an Ate pairing implemented



on a 32-bit general purpose processor. To our best
knowledge, this is the first paper that validates in practice
the fault attacks described against the MA. Such attacks
do not put at risk the entire pairing calculation so long
as the final exponentiation is considered “fault-proof”
but it nevertheless proves that most of the theoretical
attack schemes described in the literature against the MA
can be implemented. In the light of the results obtained,
we review the blinding countermeasures proposed in the
literature and show that some of them are inefficient.
This work shows that those blinding countermeasures
should not be used on their own to protect the Miller
Loop against fault attacks. Future work shall consist in
testing other attack routes described against the Miller
algorithm and other countermeasures. A complete fault
attack on a pairing taking into account the final expo-
nentiation would be of interest both theoretically and
experimentally.
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