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Synthesis of Microwave filters: a novel approach based on computer
algebra
F. Seyfert

INRIA, Sophia-Antipolis, France

Abstract — This paper presents an algebraic setting of the
synthesis problem concerning coupled-resonators filters. The
latter yields a rigorous understanding of the relationship be-
tween the coupling geometry and the corresponding set of re-
alizable filtering characteristics as well as an algorithm, based
on Groebner bases computations, which solves exhaustively the
coupling matrix synthesis problem. Numerical results are pre-
sented for a 10th order filter.

Index Terms — synthesis, coupling matrix, Groebner basis,
microwave filters

I. INTRODUCTION

The synthesis procedures for multiple coupled resonators fil-
ter are usually composed of two related steps. The first one
takes place in the frequency domain where a low pass charac-
teristic is designed(for example using elliptic filtering func-
tions). The latter is chosen so as to be in accordance with
the frequency domain specifications (return loss, group de-
lay) as well as with the anticipated coupling structure of the
filter. In particular this presupposes a precise description of
the set of filtering characteristics one can expect to realize
with a given coupling geometry.

The second step called the realization step consists in
the computation of a or all coupling matrices with the
proper coupling geometry that synthesize the previous filter-
ing function. A wide class of algorithms have been proposed
to solve this problem based for example on the repetitive ex-
traction of elementary sections [1] or on the application of a
series of similarity transforms to the coupling matrix [2]. To
our knowledge none of this methods is guaranteed to find all
admissible coupling sets.

The purpose of this paper is to develop a formalism which
allows a rigorous understanding of the relationship between
the coupling geometry and the corresponding set of real-
izable filtering characteristics. In particular we will intro-
duce the notion of non-redundant geometry which ensures in
some sense the well posedness of the coupling matrix syn-
thesis problem. Finally we will present an algorithm based
on computer algebra which solves the latter in an exhaustive
manner. Its use in practice have already been advocated in
[3] for the synthesis of asymmetric filtering functions.

We first present a general framework concerning parame-
terized linear dynamical systems which we will adapt to our

filter synthesis situation in section III. Due to the format of
the paper the proofs of the results are not detailed.

II. PARAMETERIZED LINEAR DYNAMICAL SYSTEMS

We introduce the following parameterized state space equa-
tions for linear dynamical systems,

ẋ(t) = A(p)x(t) +B(p)u(t)

y(t) = C(p)x(t)
(1)

where p = {p1, . . . pr} is a finite set of r parameters and
(A(p), B(p), C(p)) are matrices whose entries are polyno-
mials (on the field C) of the variables p1 . . . pr. Using stan-
dard notations (those of [4]) we have A ∈ C[p]n×n, B ∈
C[p]n×m, C ∈ C[p]k×n where k is the dimension of the in-
put, n the dimension of the state space,m is the dimension of
the output. For fixed integers r, k, n,m we call Σr,k,n,m the
class of all such systems. A typical example is given by the
relationship between voltages and currants of the low pass
equivalent circuit of a microwave filter: in this case n is the
number of resonators, k = m = 2, and the parameters are
the couplings and the i/o load impedances.

The transfer function of the system defined by (1) is given
by

H(s) = C(p)(sId−A(p))−1B(p) =

∞∑
i=1

C(p)Ai(p)B(p)

si

(2)

The latter equality is meant between formal series of the vari-
able 1/s. The matrices C(p)B(p), . . . C(p)Ai(p)B(p) . . .
are called the Markov parameters of the system. A classical
result in system theory states that H(s) is entirely charac-
terized by the first 2n Markov parameters. For each system
σ ∈ Σr,k,n,m we therefore define the following map:

πσ : Cr → (Ck×m)2n

p→
(
C(p)B(p), . . . , C(p)A2n−1(p)B(p)

) (3)

Thanks to the preceding remark the set πσ(Cr) is isomorphic
to the set of all the possible transfer functions of our param-
eterized system obtained when the parameters vary in all of
Cr. In the case of our microwave filter the later is the set
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of all admittance matrices one can realize with a given cou-
pling geometry (supposing the couplings can take complex
values!). For a system σ we define V (σ) = πσ(Cr) where
the bar in the latter means “taking” the Zariski closure (see
[4]). The reader who might not be familiar with this alge-
braic material can think of V (σ) as the set πσ(Cr) where
only a “few” elements have been added so as it becomes an
algebraic variety (a zero set of some polynomialls ls

system).
Given two systems σ1 ∈ Σr1,n,m,k and σ2 ∈ Σr2,n,m,k

we define the following parameterized sets:

p ∈ Cr1 , Eσ1
(p) = {q ∈ Cr1 , πσ1

(q) = πσ1
(p)} (4)

p ∈ Cr2 , Eσ1,σ2
(p) = {q ∈ Cr1 , πσ1

(q) = πσ2
(p)} (5)

In other words the set Eσ1
(p) contains all the parameter vec-

tors giving rise to the same transfer function as p does. In
what follows we say that a property P(p) depending on a
vector p ∈ Cr is “generic” if it is true for all p ∈ Cr unless
may be on a set included in a proper algebraic variety (for
example in C2 an algebraic curve is proper algebraic, in C3

it is the case for an algebraic surface).

Proposition 1

i) The cardinalities of Eσ1(p) and Eσ1,σ2(p) are generi-
cally constant with respect to p. We denote by Θ(σ1)
(resp. Θ(σ1, σ2)) the corresponding constant and call
it the parameterization’s order of σ1 (resp. of σ1 over
σ2). If the parameterization’s order of a system is finite
we call the latter “non-redundant”.

ii) The system σ1 is non-redundant iff the Jacobian matrix
associated to the mapping πσ1

is generically of rank r1
on Cr1 .

iii) If the system σ1 is non-redundant then the dimension of
V (σ1) (as a variety) is r1.

iv) Suppose r1 ≥ r2, V (σ1) ⊂ V (σ2) and σ1 is non-
redundant then r2 = r1 and V (σ1) = V (σ2).

v) If V (σ1) = V (σ2) then Θ(σ1) = Θ(σ1, σ2)

vi) If r1 < r2 and σ2 is non-redundant then Θ(σ1, σ2) = 0.

Remarks. The justification of (i) is purely algebraic: the
set Eσ1

(p) is characterized by a system of polynomial equa-
tions parameterized by the entries of p. More precisely we
can think of it as polynomial system on the field of fractions
C(p1, p2 . . . pr1) [4]. It is now well known that algebraic
properties like the cardinality of the zero set of a polynomial
system remains constant for all specializations (i.e when p

is given a value in Cr) of p, except may be on a zero set of
some polynomial system in the unknowns (p1 . . . pr1).

The points (ii),(iii) and (iv) follow from the application of
the implicit function theorem and the fact that the V (σ)′s
are irreducible varieties. Finally (v) and (vi) are straightfor-
ward.

III. THE LOW PASS PROTOTYPE

The input/output system relating the voltages and currants of
the classical low pass prototype of a coupled-resonators filter
[2] leads to the following linear system:


Ay = jM = jM t

Cy = Bty =

[ √
Z1 0 . . . 0
0 0 . . .

√
Z2

]
(6)

where M is the matrix of normalized couplings and
(Z1, Z2) are the corresponding normalized load impedances.
The transfer matrix Y of this system is the so-called reduced
admittance matrix (Y = (Id− S)/(Id+ S)). In order to fit
into the framework of parameterized systems of the last sec-
tion our vector of parameters will be formed of

√
Z1,
√
Z2

(or only
√
Z1 if Z1 = Z2 is imposed) and of all the indepen-

dent non-zero couplings of the corresponding filter geome-
try. We call Fr,n, the class of all parameterized systems of
the form (6) with r independent parameters and n resonators.
In the following we call “loss-less” a filter which admittance
matrix is positive real and purely imaginary on the imaginary
axes.

Proposition 2

i) Let M = [mi,j ] be the coupling matrix of a filter, then
the entry (l,m) of the matrix Mk is a sum of mono-
mials in the variables mi,j , and there is a one to one
canonical correspondence between each of this mono-
mials and all the paths from l to m of length k in the
associated coupling graph. In particular for a filter of
order n, the lowest integer k′ for which the Markov pa-
rameter jk

′
CyM

k′By has a non zero (1, 2) diagonal
entry corresponds to the length of the shortest path be-
tween 1 and n in the associated coupling graph.

ii) Let σ1 ∈ Fr1,n, σ2 ∈ Fr2,n be two parameterized
systems associated to some filter geometries. Suppose
that σ1 and σ2 are generically of MacMillan degree
n, then the integers θ(σ1), θ(σ1, σ2) are multiples of
2n. We therefore define θ∗(σ1) = θ(σ1)/2n (resp.
θ∗(σ1, σ2) = θ(σ1, σ2)/2n) and call it the reduced or-
der of the coupling geometry of the filter σ1 (resp. of σ1
over σ2).

iii) If all the parameters of a filter are given real values then
the corresponding filter is loss-less.
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Remarks. (i) is also known as the “minimum path rule”
(see. [5], [6]). Point (ii) is due to the natural symme-
try of the parameterization in the case of a filter, i.e: if
(Ay, By, Cy) is a filter realization then for any sign matrix
∆, (∆Ay∆,∆B,C∆) is a realization with the same cou-
pling geometry and same admittance matrix. Point (iii) is
not an iff equivalence: for some coupling geometries there
may exists complex valued parameter sets that leads to loss-
less filters.

An element σ ∈ Fr,n is entirely characterized by its set of
independent parametersM(σ) . We now define two types of
filters φn,k and φ̂n,k with n resonators,

M(φn,k) = {
√
Z1,
√
Z2} ∪ {mi,i, i = 1 . . . n}

∪ {mi,i+1, i = 1 . . . n− 1} ∪ {mi,n, i = k . . . n− 2}
(7)

M(φ̂n,k) = {
√
Z1,
√
Z2} ∪ {mi,i+1, i = 1 . . . n− 1}

∪

{
if n+ k odd {mi,n, i = k, k + 2 . . . , n− 3}
if n+ k even {mi,n, i = k + 1, k + 3 . . . , n− 1}

(8)

For example the coupling matrix of φ4,1 is,
m1,1 m1,2 0 m1,4

m1,2 m2,2 m1,3 m2,4

0 m1,3 m3,3 m3,4

m1,4 m2,4 m3,4 m4,4

 (9)

and the one of φ̂4,1 is (9) where all the diagonal couplings
m1,1 . . .m4,4 as well asm2,4 have been set to 0. The follow-
ing proposition shows that this “arrow form” of the coupling
matrix (visually one can see an arrow by looking at the ma-
trix!) of the filters φn,k and φ̂n,k is in some sense canonical.

Proposition 3 For all n ≥ 2 and 1 ≤ k ≤ n − 1 the
following holds,

i) θ∗(φn,k) = θ∗(φ̂n,k) = 1

ii) V (φn,k) is equal to the set of all (2 × 2) recipro-
cal (Y1,2 = Y2,1), strictly proper transfer functions of
MacMillan degree less or equal to n for which the k
first Markov parameters are diagonal (i.e their (1, 2)
and (2, 1) terms are zero)

iii) Suppose n is odd and k is even then V (φ̂n,k) is equal to
the set of all (2×2) odd (Y (−s) = −Y (s)), reciprocal,
strictly proper transfer functions of MacMillan degree
less or equal to n for which the k first Markov param-
eters are diagonal (by definition, for k odd we have in
this case that φ̂n,k = φ̂n,k+1). If n is even and k odd
then V (φ̂n,k) is equal to the set of all (2×2) symmetric,

strictly proper transfer functions of MacMillan degree
less or equal to n where Y1,1 and Y2,2 are odd func-
tions and Y1,2 = Y2,1 is an even function and the k first
Markov parameters are diagonal.

iv) For any generic transfer function in V (φn,k) or
V (φ̂n,k) the corresponding synthesis with a coupling
matrix in the “arrow form” can be computed by a sim-
ple orthonormalization algorithm. If in addition the
transfer is loss-less then all the parameters of the “ar-
row form” are real.

Remarks. (i) states that up to sign changes the “arrow” form
is generically unique. The assertion concerning the Markov
parameters in (iii) is a direct consequence of the “minimum
path rule”. We will not detail (iv) but a constructive algo-
rithm to obtain an arrow form have already been studied in
[7].

We will now tackle the problem of computing the reduced
order θ∗(σ) and the set Eσ(p) for any coupling geometry.
Given p ∈ Cr the equations characterizing Eσ(p) in (4)
form a non-linear algebraic system whose zero set can be
computed using methods of computer algebra.

IV. COMPUTING THE ZEROS OF A ZERO DIMENSIONAL
ALGEBRAIC SYSTEM

We will give a summary of the two step approach proposed
in [8]. The first step of the latter consist in computing a
Groebner basis of the system. Given a polynomial system
Γ, we say that an equation is a polynomial consequence of
Γ if it is obtained by algebraic manipulation of equations
of the latter. For example x(x − y2) − (x2 − y3 − 1) =
−xy2 + y3 + 1 = 0 is a polynomial consequence of the sys-
tem x−y2 = 0, x2−y3−1 = 0. We call I(Γ) the set of all
polynomial consequences of Γ. For short a Groebner basis of
Γ is a finite subset of I(Γ) that allows to decide by means of
a simple division algorithm involving its elements whether a
given algebraic equation is in I(Γ) or not [4]. Computing a
Groebner basis, using for example Buchberger’s algorithm,
is theoretically straight forward but can be extremely time
and memory consuming. In practice, the use of specialized
algorithms [9] and their effective software implementation
[10] is strongly recommended.

Ones a Groebner basis of a system have been computed
informations about the geometry of the zero set are easily
deduced. In particular one can decide if it consists of a finite
number of points; in the latter case the system is called zero
dimensional and its zero set can be expressed in terms of the
roots of a single univariate polynomial. This is the so called
rational univariate representation (RUR for short) which can
be computed in a direct manner from a Groebner basis [8].
Finally computing numerically the roots of the correspond-
ing univariate polynomial yields a numerical estimation of
the zero set of the latter system.
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V. EXAMPLE OF A 10th ORDER FILTER

We will study the case of a filter geometry σ0 ∈ F15,10 de-
fined by,

M(σ0) ={
√
Z1,
√
Z2} ∪ {mi,i+1 , i = 1 . . . 9}

∪ {m1,10,m1,4,m6,9,m5,10}
(10)

Using a computer algebra system like Maple and (ii) of
proposition 1 we check that σ0 is non-redundant. Now in-
voking the minimum path rule and (iv) of proposition 1 we
conclude that

V (σ0) = V (φ̂10,1). (11)

Practically this means that generically all the reciprocal
transfer functions of MacMillan degree 10 with 8 trans-
mission zeros (having the parity properties of elements of
V (φ̂10,1) described in proposition 3) can be synthesized un-
der the geometry of σ0 (when accepting complex couplings).
Now solving the algebraic system defining Eσ1

(p) in (4) for
a generic value of p leads to

θ∗(σ0) = θ∗(σ0, φ̂10,1) = 3. (12)

In other words, to every coupling set of σ0 there corresponds
2 others wich realize the same transfer function. We now fol-
low a classical synthesis method: we compute a 10th degree
elliptical filter characteristic with 8 transmission zeros and
build with its 20 first Markov parameters a system similar to
the one defined in (4). As expected from (12), solving the
latter yields 3 equivalent coupling sets (there are 3×210 sets
if we consider all possible sign changes).√

Z1 = 1.0022
√

Z2 = 1.0022

Set 1: [1, 2] = .653 [2, 3] = .890 [3, 4] = .359 [4, 5] = .530

[5, 6] = −.535 [6, 7] = .493 [7, 8] = .287 [8, 9] = .516 [9, 10] = −.822

[1, 4] = −.501 [6, 9] = .236 [5, 10] = .065 [1, 10] = .024

Set 2: [1, 2] = −.800 + .027j [2, 3] = .437− .067j

[3, 4] = −.552 + .011j [4, 5] = .548 + .007j [5, 6] = .518 + .010j

[6, 7] = .453− .015j [7, 8] = −.751− .043j [8, 9] = .540− .022j

[9, 10] = −.818− .008j [1, 4] = .219 + .097j [6, 9] = .159 + .083j

[5, 10] = −.119 + .055j [1, 10] = .024

Set 3: [1, 2] = −.800− .027j [2, 3] = .437 + .067j

[3, 4] = −.552− .011j [4, 5] = .548− .007j [5, 6] = .518− .010j

[6, 7] = .453 + .015j [7, 8] = −.751 + .043j [8, 9] = .540 + .022j

[9, 10] = −.818 + .008j [1, 4] = .219− .097j [6, 9] = .159− .083j

[5, 10] = −.119− .055j [1, 10] = .024

In this example, only the first set is real and the two others
are complex conjugated. It can be proven that this conjuga-
tion property of complex solutions is true whenever starting
from a loss-less prototype and yields, thanks to the odd parity
of the reduced order, the generic existence of a real solution
to the synthesis problem associated to σ0 (this for loss-less
characteristics in V (φ̂10,1)).

Equating the Markov parameters is not the only way of de-
termining equivalent coupling sets: as in classical synthesis
methods [2] one can use a formulation based on orthogonal
similarity transforms. In a recent work which we will detail
in a future publication we developed an algebraic version of
this ideas which allows to break the natural sign symmetry of
the synthesis problem. The latter in turn simplifies tremen-
dously the computation of the corresponding Groebner basis
and allows the computation of both the reduced order and
equivalent coupling sets for all usual coupling geometries.
With this formulation the latter numerical results were ob-
tained in less than 10 seconds on a 1 Ghz PC.
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