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Poles Residues Descent Algorithm for Optimal Frequency-Limited H 2 Model Approximation

Model approximation of multiple-inputs/multipleoutputs (MIMO) linear dynamical systems over a bounded frequency range can be expressed as an optimization problem in terms of the frequency-limited H2-norm. In this paper, a new formulation of the frequency-limited H2 model approximation error is presented and its gradient derived. It is then used in a descent algorithm which does not require to solve any Lyapunov equation but one initial eigenvalue problem. The efficiency of the method is illustrated through numerical benchmarks.

I. INTRODUCTION A. Context and problem statement

The H 2 optimal model approximation problem has been extensively addressed and several effective algorithms have been developed [START_REF] Van Dooren | H 2 -optimal model reduction of MIMO systems[END_REF], [START_REF] Gugercin | H 2 model reduction for Large-Scale linear dynamical systems[END_REF], [START_REF] Gugercin | An iterative SVD-Krylov based method for model reduction of large-scale dynamical systems[END_REF], [START_REF] Poussot-Vassal | An Iterative SVD-Tangential Interpolation Method for Medium-Scale MIMO Systems Approximation with Application on Flexible Aircraft[END_REF] and successfully applied to industrial use case (see for instance [START_REF] Poussot-Vassal | Business jet large-scale model approximation and vibration control[END_REF]). The underlying framework for these approaches is the interpolation of complex functions by means of particular Krylov subspaces construction and Petrov-Galerkin conditions enforcement.

Whenever the entire frequency response of the model is not needed or not accurately known, approximating the initial system such that the reduced-order one accurately reproduces its behaviour over a bounded frequency range only can be more adequate [START_REF] Vuillemin | A frequency-limited H 2 model approximation method with application to a medium-scale flexible aircraft[END_REF]. Here, an optimization procedure based on the poles/residues representation of the system is developed to achieve this objective. The idea is similar to what have been done in [START_REF] Beattie | A trust region method for optimal H 2 model reduction[END_REF] for the H 2 case.

Problem 1: Let consider a n u inputs, n y outputs MIMO LTI continuous dynamical systems of order n described by H : C → C ny×nu , a H ny×nu p matrix complex-valued function 1 , represented by

H(s) = C(sI n -A) -1 B + D ∈ C ny×nu , (1) 
where A ∈ R n×n , B ∈ R n×nu , C ∈ R ny×n and D ∈ R ny×nu . The goal is to find a reduced order model of order r n, described by

Ĥ(s) = Ĉ(sI r -Â) -1 B + D ∈ C ny×nu , (2) 
where  ∈ R r×r , B ∈ R r×nu , Ĉ ∈ R ny×r and D ∈ R ny×nu such that Ĥ(s) minimizes the frequency-limited H 2norm, denoted H 2,ω -norm (see Definition 1), of the error system, i.e.

Problem 1 has recently been addressed in [START_REF] Petersson | Model reduction using a frequencylimited H 2 -cost[END_REF] through the gramian formulation of the H 2,ω -norm. Grounded on this formulation, the authors have derived a gradient which can be used in an optimization scheme. In this paper, the newly proposed spectral formulation of the H 2,ω -norm [START_REF] Vuillemin | A spectral expression for the frequency-limited H 2 -norm[END_REF] is used to express the approximation error and to derive a gradient. Both are then used in a descent algorithm. Instead of Lyapunov equations and Fréchet derivatives, this formulation only requires to solve one single initial eigenvalue problem.

B. Notations and paper structure

The paper is divided as follows : Section II recalls preliminary results related to the H 2,ω -norm. Then, in Section III, new expressions for the H 2,ω approximation error and its gradient are presented, as well as a complex optimization algorithm scheme for optimal H 2,ω model approximation. In Section IV, the proposed approach is applied on standard benchmark models to illustrate its efficiency. Section V finally concludes this paper.

The notations used throughout this paper are the following : elements with . are relative to the error model, elements with . refer to the reduced order model, λ i and φ i are i-th pole and residue of the system, respectively. j denotes the complex variable, i.e. j 2 = -1, Re(z) denotes the real part of z and atan (z) is the complex arctangent of z (see [START_REF] Haber | The complex inverse trigonometric and hyperbolic functions[END_REF], [START_REF] Vuillemin | A spectral expression for the frequency-limited H 2 -norm[END_REF] for further details). A T is the transpose of A, A H its conjugate transpose and A * its conjugate. tr (A) and diag(A) denote the trace and diagonal of A respectively, the Hadamard product of matrices is denoted , the element of A located at the i-th row and the j-th column is denoted [A] ij .

II. PRELIMINARY RESULTS ON THE H 2,ω -NORM

A. Generalities

The H 2,ω -norm has been suggested in [START_REF] Anderson | Measures of merit for multivariable flight control[END_REF] as the restriction of the H 2 -norm over a bounded frequency range (see Definition 1). It has recently been used in robust analysis [START_REF] Masi | Robust finitefrequency H 2 analysis[END_REF] and in model reduction [START_REF] Petersson | Model reduction using a frequencylimited H 2 -cost[END_REF] and is of great interest in many applicative problem such as aircraft model approximation and control.

Definition 1 (H 2,ω -norm): Given a continuous MIMO LTI dynamical system H(s) described as in (1), the frequency-limited H 2 -norm of H(s), denoted H H2,ω , is the restriction of its H 2 -norm over a bounded frequency range [0 ω], ω ∈ R + , and is given as

H 2 H2,ω := 1 2π ω -ω tr H(jν)H(-jν) T dν. (4) 
J H2,ω = n i=1 n k=1 tr φ i φ T k λ i + λ k a ω,i + r i=1 r k=1 tr φi φT k λi + λk âω,i - n i=1 r k=1 tr φ i φT k λ i + λk (a ω,i + âω,k ) . . . + r i=1 tr φi DT âω,i - n i=1 tr φ i DT a ω,i + ω π tr D DT (18) 
The H 2,ω -norm is usually computed by mean of the frequency-limited gramians [START_REF] Gawronski | Model reduction in limited time and frequency intervals[END_REF], but a new formulation based on the eigenvalues and residues of the system has been recently proposed by the authors in [START_REF] Vuillemin | A spectral expression for the frequency-limited H 2 -norm[END_REF], allowing faster computation and applicability to large-scale models. For stable systems with simple poles only, H2 H2,ω can indeed be written as

H 2 H2,ω = tr n i=1 n k=1 φ i φ T k λ i + λ k a ω,i + ω π DD T . . . - n i=1 φ i D T a ω,i (5) 
where a ω,i = 2 π atan ω λ i and φ i = lim s→λi (s-λ i )H(s).

Remark 1: (Strictly proper case) If H(s) ∈ C ny×nu is strictly proper, then (5) becomes

H 2 H2,ω = tr n i=1 -a ω,i φ i H T (-λ i ) , (6) 
which is very similar to the H 2 expression [2, chap. 5],

H(s) 2 H2 = tr n i=1 φ i H T (-λ i ) , (7) 
excepted from the weighting coefficients a ω,i , i = 1, . . . , n, specific to the H 2,ω -norm. Remark 2 (Frequency interval): The H 2 -norm can also be restricted to the interval

Ω = [ω 1 ω 2 ]. Indeed H 2 H2,Ω = H 2 H 2,[ω 1 ,ω 2 ] = H 2 H2,ω 2 -H 2 H2,ω 1 . (8)
As a consequence, all the results presented in this paper are directly extensible to more complex frequency intervals.

Note that if H(s) is stable and strictly proper then,

lim ω→∞ H H2,ω = H H2 . (9) 
Thus model approximation in the H 2,ω -norm generalises the H 2 -norm case [START_REF] Vuillemin | A spectral expression for the frequency-limited H 2 -norm[END_REF].

B. About the H 2,ω -norm computation

To efficiently compute the H 2,ω -norm (5), the residues φ i should not be explicitly computed. Indeed, by noting X ∈ C n×n and Y = X -1 the right and left eigenvectors of A, respectively, and e i the canonical basis column vector, it turns out that

tr φ i φ T k = tr CXe i e T i Y B(CXe k e T k Y B) T = e T k (CX) T CX M1 e i e T i Y B(Y B) T M2 e k . (10) 
Since M 1 and M 2 are symmetric,

tr φ i φ T k = [M 1 ] k,i [M 2 ] i,k = [M 1 ] i,k [M 2 ] i,k . (11) 
Consequently, by denoting L the matrix defined by

[L] i,k = 1 λ i + λ k , (12) 
it comes that

n i=1 n k=1 tr φ i φ T k λ i + λ k a ω,i = 1 T (M 1 M 2 L)    a ω,1 . . . a ω,n    , (13) 
where 1 denotes the column vector filled with ones and the Hadamard product. Similarly,

n i=1 tr φiD T aω,i = diag Y BD T CX    aω,1 . . . aω,n    . ( 14 
)
III. MAIN RESULTS In order to derive an efficient optimization scheme, the H 2,ω mismatch error and its associated gradient are firstly derived, then used to construct a descent procedure. From now on, Problem 1 is restricted to stable models 2 with simple poles only. Under the latter assumption, H(s) and Ĥ(s) can be written as,

H(s) = n i=1 φi s -λi + D (15) 
where Re(λ i ) < 0, i = 1, . . . , n, and

Ĥ(s) = r i=1 φi s -λi + D, (16) 
where Re( λi ) < 0, i = 1, . . . , r. Formulation (5) of the H 2,ω -norm can then be used to express the H 2,ω mismatch error.

A. Expression of the H 2,ω mismatch error, J H2,ω

The following Theorem expresses the H 2,ω mismatch error between the full-order and reduced order models.

Theorem 1: Given a n-th order model H(s) and a r-th order model Ĥ(s), described by ( 15) and ( 16), respectively, the H 2,ω -norm of the approximation error

J H2,ω = H -Ĥ 2 H2,ω , (17) 
is given by relation [START_REF] Van Dooren | H 2 -optimal model reduction of MIMO systems[END_REF], where

D = D -D, a ω,i = 2 π atan ω λ i and âω,i = 2 π atan ω λi . for m = 1, . . . , r, ∂J H2,ω ∂ λ * m = - r i=1 ĉ * m ĉT i bi bH m âω,i + â * ω,m ( λi + λ * m ) 2 + 2 π ω ( λ * 2 m + ω 2 )( λi + λ * m )
. . .

+ n i=1 ĉ * m c T i b i bH m a ω,i + â * ω,m (λ i + λ * m ) 2 + 2 π ω ( λ * 2 m + ω 2 )(λ i + λ * m ) + 2 π b * m DT ĉH m ω λ * 2 m + ω 2 (19) ∂J H2,ω ∂ b * m = r i=1 bT i ĉi ĉH m λi + λ * m âω,i + â * ω,m - n i=1 b T i c i ĉH m λ i + λ * m a ω,i + â * ω,m + DT ĉH m â * ω,m (20) 
∂J H2,ω ∂ĉ * m = r i=1 ĉT i bi bH m λi + λ * m âω,i + â * ω,m - n i=1 c T i b i bH m λ i + λ * m a ω,i + â * ω,m + Db H m â * ω,m (21) 
∂J H2,ω ∂ D = - r i=1 ĉT i bi âω,i + n i=1 c T i b i a ω,i - 2 π ω D. (22) 
Proof: See Appendix. With reference to relation [START_REF] Van Dooren | H 2 -optimal model reduction of MIMO systems[END_REF], one can notice that, as for the H 2 case, the approximation error is composed of the H 2,ωnorm of the initial system (first term), the H 2,ω -norm of the reduced-order model (second term) and some additional cross terms.

It is important to note that formulation (16) of Ĥ(s) implicitly imposes that the residues φi , i = 1, . . . , r, are of rank one. It does not have any impact on the expression of the error, but for the optimization procedure, in order to force them to be of rank one, residues must be written as φi = ĉT i bi where ĉi ∈ C 1×ny and bi ∈ C 1×nu . Problem 1 is thus restricted to the determination of ĉi , bi , λi , i = 1, . . . , r and D which minimize J H2,ω . For notation consistency, the residues φ i of the initial system H(s) will also be written as the product φ i = c T i b i where c i ∈ C 1×ny and b i ∈ C 1×nu , i = 1, . . . , n.

J H2,ω and Ĥ are thus functions of r(n y + n u + 1) + n u n y parameters in the general case and r(n y + n u + 1) in the strictly proper case. In the H 2 framework described in [START_REF] Beattie | A trust region method for optimal H 2 model reduction[END_REF], additional constraints were added to the norms of ĉi and bi thus reducing the number of decision variables to r(n y +n u ). Yet, to fit in the complex optimization framework stated in [START_REF] Sorber | Unconstrained optimization of real functions in complex variables[END_REF], here, no constraint is added.

B. Expression of the conjugate gradient,

∂J H 2,ω ∂z *
J H2,ω is a real function of complex variables z = λi , ĉi , bi , their complex conjugates z * and D. As recalled in [START_REF] Sorber | Unconstrained optimization of real functions in complex variables[END_REF], such a function is non analytic in z. The common way of dealing with such kind of functions consists in writing them as functions of the real and imaginary parts of z. Yet it is more convenient to keep J H2,ω as a function of complex variables, that is why the complex optimization framework, presented in [START_REF] Sorber | Unconstrained optimization of real functions in complex variables[END_REF], has been preferred. In this framework, J H2,ω can be minimized indifferently in the complex or real spaces by constructing optimization schemes based on the scaled conjugate cogradient 2

∂J H 2,ω
∂z * . That is why, in what follows, J H2,ω [START_REF] Van Dooren | H 2 -optimal model reduction of MIMO systems[END_REF] is derived with respect to λ * i , ĉ * i , b * i , and D without differentiating the real or complex parts. The following Theorem holds.

Theorem 2: Given a n-th order model H(s) and a r-th order model Ĥ(s) described by ( 15) and ( 16), respectively, the complex derivatives of the approximation error J H2,ω [START_REF] Van Dooren | H 2 -optimal model reduction of MIMO systems[END_REF] with respect to λ * m , b * m , ĉ * m , and D are given by the equations ( 19), ( 20), ( 21) and ( 22), respectively.

Proof: The gradient is obtained through straight derivation of the error expression [START_REF] Van Dooren | H 2 -optimal model reduction of MIMO systems[END_REF].

As for the H 2,ω -norm, the conjugate gradient of J H2,ω can be computed efficiently through matrix/vectors products (see Section II-B).

C. Descent Algorithm for Residues and Poles Optimization (DARPO)

The error J H2,ω and the gradient

∂J H 2,ω ∂z *
presented in Theorems 1 and 2 are now used in a complex gradient descent algorithm, called DARPO. The basic optimization scheme is described in Algorithm 1. The following remarks can be made :

• Step 2 : the initialization is done by selecting a perturbated subset of the initial system parameters which corresponds to the highest residues in the considered frequency bands. The initialization can also be done with another model approximation algorithm, DARPO would then be a refining part. ∂z * | z=z k , the derivative of J H2,ω (z k +α k p k ) with respect to α k when α k = 0, falls below a tolerance > 0.

• Step 6 : the descent direction is symbolically chosen here as the opposite of the conjugate gradient, but in practice, a quasi-newton procedure, like BFGS, is implemented. • Step 11 : by constructing arbitrary eigenvectors X r associated to the eigenvalues of the reduced-order model, its state-space representation can be obtained as,

 = X r diag( λ(k) 1 , . . . , λ(k) r )X -1 r B = X r b(k)T 1 . . . b(k)T r T Ĉ = ĉ(k)T 1 . . . ĉ(k)T r X -1 r . (23) 
• The approximation is done either over a simple frequency band Ω = [0 ω] or over an union of K frequency bands

Ω = K k=1 ω (k) 1 ω (k) 2 , ω (k) 1 < ω (k) 2 < ω (k+1) 1
where ω (K) 2 can be infinite if and only if the system is strictly proper.

Algorithm 1 Optimization scheme of DARPO

Require: A ∈ R n×n , B ∈ R n×nu , C ∈ R ny×n , D ∈ R ny×nu , [0 ω]
with ω > 0 and r ∈ N * . 1: Compute the eigenvalues of A and their associated right and left eigenvectors X and Y , respectively. 2: Choose an initial point z 0 composed of

λ(0) i , ĉ(0) i , b (0) 
i , i = 1, . . . , r, and D(0) . 3: k ← 0. 4: while not converged do 5:

Compute J H2,ω (z k ) and

∂J H 2,ω ∂z * | z=z k . 6: Set p k = -2 ∂J H 2,ω ∂z * | z=z k . 7:
Choose α k such that J H2,ω (z k + α k p k ) satisfies the complex strong Wolfe conditions [START_REF] Sorber | Unconstrained optimization of real functions in complex variables[END_REF].

8:

Set

z k+1 = z k + α k p k . 9: k ← k+1. 10: end while 11: Use λ(k) i , ĉ(k) i , b(k) i , i = 1, . . . , r to construct Â, B, Ĉ .
Note that, grounded on the optimization scheme described in Algorithm 1, DARPO can be used in two main ways :

• given an order r, it will find a r-th order model Ĥ(s) which minimizes J H2,ω , • given a relative H 2,ω error E H2,ω , it will find a reducedorder model Ĥ(s) which satisfies

100 J H2,ω H H2,ω = 100 H -Ĥ H2,ω H H2,ω ≤ E H2,ω ,
by iteratively increasing the order r of Ĥ(s) and performing an optimization for each r. The DARPO is made available in the MORE Toolbox 3 [START_REF] Poussot-Vassal | Introduction to MORE: a MOdel REduction Toolbox[END_REF] with the following Matlab sequence [Hr,out] = moreLTI(H,r,'DARPO',opt), where H is the full-order model and opt is the list of options (see the web site for further information).

Remark 3: Once the eigenvalues and associated eigenvectors of the initial model are computed (step 1), steps 4 to 10 in Algorithm 1 are cheap since they involve matrix/vector and Hadamard products only.

IV. NUMERICAL APPLICATIONS

In this section, the efficiency of DARPO, is illustrated through several examples. The method is compared (i) to the Frequency-Limited Balanced Truncation (FL-BT [START_REF] Gawronski | Model reduction in limited time and frequency intervals[END_REF]) and to the Frequency-Limited Iterative SVD-Tangential Interpolation Algorithm (FL-ISTIA [START_REF] Vuillemin | A frequency-limited H 2 model approximation method with application to a medium-scale flexible aircraft[END_REF]), in the H 2,ω case 3 http://w3.onera.fr/more/ Interval and (ii) to the Iterative Tangential Interpolation Algorithm (ITIA or MIMO IRKA [START_REF] Van Dooren | H 2 -optimal model reduction of MIMO systems[END_REF], [START_REF] Gugercin | H 2 model reduction for Large-Scale linear dynamical systems[END_REF]), to the Iterative SVD-Tangential Interpolation Algorithm (ISTIA [START_REF] Gugercin | An iterative SVD-Krylov based method for model reduction of large-scale dynamical systems[END_REF], [START_REF] Poussot-Vassal | An Iterative SVD-Tangential Interpolation Method for Medium-Scale MIMO Systems Approximation with Application on Flexible Aircraft[END_REF]) and to the Balanced Truncation (BT), in the H 2 case.

A. Fixed approximation order r

For the first application, the International Space Station (ISS) model [START_REF] Leibfritz | Description of the benchmark examples in COMPleib 1.0[END_REF] is considered. This 270-th order MIMO (3 inputs and 3 outputs) model is reduced to a 16-th order model over the frequency intervals (i)

Ω 1 = [0 3] , (ii) Ω 2 = [0 12], (iii) Ω 3 = [12 ∞] and (iv) Ω 4 = [0 ∞].
The relative errors are reported in Table I.

On this example, the proposed approach leads to slightly better results than other algorithms excepted when the approximation is done over Ω 2 where DARPO directly falls into a local minimum. The initialization is a key step in non convex optimization problems and even if the current selection method is often satisfactory, further studies are required to improve it. In particular, the current initialization method does not enable to create poles in the case where there is not enough poles from the full-order model in the desired frequency band.

Figure 1 shows the decrease of the approximation error J H2,ω for DARPO when Ω 4 is considered, highlighting the efficiency of the descent scheme. Indeed the algorithm starts with an error of 21% and ends with 10% only. Moreover it stops with a relative error better than the ITIA.

To illustrate what can be achieved when multiple frequency-bands are considered, one transfer of the ISS model is reduced to an order 16 over Ω = [6 12] [35 70]. The frequency responses of the full-order model and the reduced-order one are plotted in Figure 2. This feature can be useful from an engineering point of view (e.g. for control) since it enables to capture precisely some modes which are not necessarily in the same frequency band.

B. Fixed H 2,ω error

In this section, three models are reduced by DARPO such that a relative error smaller than E H2,ω = 1 % (over a particular frequency band) is reached. The models are also reduced with other approaches for the resulting order r. The models used here are the ISS model, the Clamped Beam Model (CBM, 270 states, SISO) and the Los Angeles Hospital Model (LAH, 48 states, SISO) [START_REF] Leibfritz | Description of the benchmark examples in COMPleib 1.0[END_REF].

The results are reported in Table II. Moreover the decrease of the approximation error for the ISS model when Ω = [0 12] is plotted in Figure 3 where each black dashed vertical line corresponds to an increase of 2 in the order r.

Table II shows that all the methods lead to similar results for each case. Yet, only DARPO enables to really watch the approximation error directly and stop the increase of the approximation order when the relative error requirement is fulfilled while other techniques require a time consuming trial and error approach. As expected, Figure 3 shows that there is an important decrease of the H 2,ω approximation error each time the order r increases.

C. Very large-scale settings

The main cost of the proposed approach lies in the computation of the initial system eigenvalues and eigenvectors (step 1 in Algorithm 1). Indeed, to fully compute the H 2,ω -norm of the error and its gradient, all of them are required (due to the 4 Here the result was unstable so the modified version of the frequencylimited balanced truncation, described in [START_REF] Gugercin | A survey of model reduction by balanced truncation and some new results[END_REF], has been used. cross terms). Despite very effective iterative algorithms exist for large-scale eigenvalues problems [START_REF] Saad | Iterative Methods for Sparse Linear Systems[END_REF], it can becomes very time and memory consuming. In this Section, some hints are given to bypass this difficulty. The H 2 -norm of a large-scale system can be quite well estimated by only considering the highest contribution among the poles/residues couples. These poles/residues couples can be determined efficiently by using the Dominant Poles Algorithm [START_REF] Rommes | Efficient computation of multivariable transfer function dominant poles using subspace acceleration[END_REF]. Yet it still requires a lot of computation. However, in the H 2,ω case, when the frequency band is bounded, there is potentially less poles/residues couples that have a major impact on the H 2,ω -norm (this is especially true for very flexible structures where only poorly damped modes matter).

As an illustration, let reduce the ISS model with DARPO using (i) all the eigenvalues and their corresponding eigenvectors and (ii) only the eigenvalues which have a magnitude below ω. When only some eigenvalues are used, the algorithm is denoted sDARPO for sparse DARPO. As the error given by sDARPO is not exact, it is recomputed afterwards. The resulting relative errors obtained with DARPO and sDARPO are reported in Table III, where the number of used eigenvalues is indicated in brackets.

Since the system is very flexible, this procedure works well, indeed there is only few difference between the approximation given by DARPO and sDARPO. Yet, it might fails for models with a lot of real or highly damped modes (like heat flow model).

V. CONCLUSION

In this paper a new expression for the frequency-limited H 2 model approximation error has been presented, grounded on its poles/residues representation. Its gradient has been derived and a new complex descent algorithm (DARPO) has been presented. This formulation leads to a fast computation of the error and its gradient once the eigenvalues and eigenvectors of the initial system have been computed. This newly proposed approximation algorithm yields to very satisfactory results. Moreover it provides the very appealing feature of selecting a model with an user defined mismatch error instead of the classical reduced order. Several examples have been presented to illustrate the efficiency of the method.

APPENDIX

Proof of Theorem 1

The proof comes from writing the H 2,ω -norm of the error in terms of the residues φi and poles λi , i = 1, . . . , n + r of the error system H(s), (30)

Fig. 1 .

 1 Fig. 1. Evolution of J H 2,ω against the iteration using DARPO (ISS model, r = 16, Ω 4 = [0 ∞]).

Fig. 2 .

 2 Fig. 2. Frequency responses of the full-order model and the reduced-order one (ISS model,r = 16, Ω = [6 12] [35 70], DARPO).

Fig. 3 .

 3 Fig. 3. Decrease of J H 2,ω with respect to the iteration when the order is not fixed (ISS model, Ω = [0 12], DARPO).

1 π

 1 ωtr D DT . (25)The poles/residues of H(s) are composed of the poles/residues of H(s) and -Ĥ(s), indeed, by supposing they are ordered asλi = λ i if i = 1, . . . , n λi if i = n + 1, . . . , n + r,(26) φi= φ i if i = 1, . . . , n φi if i = n + 1, . . . , n + r,(27)the sums in (25) can then be divided as follow, âω,i + r i=1 tr φi DT âω,i.

TABLE I Relative

 I H 2,ω errors (in %) obtained after reduction of the ISS model to a 16-th order model over different frequency-bands.

		Ω DARPO FL-BT or BT FL-ISTIA	ITIA
	[0 3]	0.3847	0.7378	0.3871	-
	[0 12]	1.4526	1.2529	1.4714	-
	[12 ∞]	8.8753	17.7489	13.9143	-
	[0 ∞]	10.0857	10.0935	11.9822	15.7460

TABLE II Relative

 II H 2,ω errors (in %) after reduction of the different models to the order r reached by DARPO when its relative error falls below 1%.

TABLE III Relative

 III 

H 2,ω errors (in %) obtained with DARPO and sDARPO after reduction of the ISS model to an order 10 for several Ω.

The integral (4) exists for unstable systems, but the expression (5) is then more complex (see[START_REF] Vuillemin | A spectral expression for the frequency-limited H 2 -norm[END_REF]).