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Spectral expression for the Frequency-Limited H 2 -norm of LTI Dynamical Systems with High Order Poles

, is extended to the case of LTI dynamical systems which are not diagonalizable. This extension is achieved by considering partial fraction decomposition of the transfer function associated to a system which is in a Jordan form. Besides, examples are presented to illustrate the behaviour of the frequency-limited H2-norm and to compare it with the commonly used frequencyweighted H2-norm.

I. INTRODUCTION

A. Context & contributions

Norms associated to Multiple Inputs Multiple Outputs (MIMO) LTI dynamical systems, such as the H 2 or H ∞ norms, are of great interest in system theory. They are often used as cost functions in controller and observer design [START_REF] Poussot-Vassal | Business jet large-scale model approximation and vibration control[END_REF], [START_REF] Alazard | Improving flight control laws for load alleviation[END_REF], [5], [START_REF] Doyle | Mixed H 2 and H∞ Performance Objectives: Optimal Control[END_REF] or in large-scale model approximation [START_REF] Gallivan | Model reduction of MIMO systems via tangential interpolation[END_REF], [START_REF] Gugercin | H 2 model reduction for Large-Scale linear dynamical systems[END_REF], [START_REF] Beattie | A trust region method for optimal H 2 model reduction[END_REF]. This paper is concerned with the restriction of the H 2 -norm over a bounded frequency range, namely the frequency-limited H 2 -norm, denoted here H 2,Ω -norm, and more specifically to its computation though spectral information. This measure has been introduced in [START_REF] Gawronski | Model reduction in limited time and frequency intervals[END_REF] together with the frequency-limited gramians. In practice, the H 2,Ωnorm is of interest when the whole frequency behaviour of a system is not accurately known or not needed. Indeed (i) the accuracy of the model representing a physical system is dependent of the sensors bandwidth which is not always well known over high frequencies and (ii) due to the limited actuators bandwidth, controllers can only act in a limited frequency range.

Throughout this paper, a stable and strictly proper MIMO LTI dynamical system H is considered. It is defined as

H := ẋ(t) = Ax(t) + Bu(t) y(t) = Cx(t) (1) 
where A ∈ R N ×N , B ∈ R N ×nu and C ∈ R ny×N . The associated transfer function H(s) of H is given by,

H(s) = C(sI N -A) -1 B ∈ C ny×nu . (2) 
The H 2,Ω -norm of H, denoted H H2,Ω is given in Definition 1.
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Definition 1 (H 2,Ω -norm): The H 2,Ω -norm of a LTI dynamical system H, is defined as the restriction of the H 2norm over Ω = [0, ω], ω ∈ R * + , i.e.

H H2,Ω = 1 2π ω -ω
tr (H(jν)H(-jν) T ) dν.

Note that a much more complex frequency interval Ω can easily be considered in Definition 1, for instance

Ω = K k=1 ω (k) 1 ω (k) 2
, ω

(k) 1 < ω (k) 2 < ω (k+1) 1
where ω (K) 2 can be infinite if the system is strictly proper. As a matter of fact that, if

Ω = [ω 1 , ω 2 ], H 2 H2,Ω = H 2 H2,Ω 2 -H 2 H2,Ω 1 , (4) 
where

Ω 1 = [0, ω 1 ] and Ω 2 = [0, ω 2 ].
Here, for sake of simplicity in the sequel, Ω = [0, ω] will be considered only.

Similarly to the H 2 -norm, the H 2,Ω -norm can be expressed with the system's frequency-limited gramians [START_REF] Gawronski | Model reduction in limited time and frequency intervals[END_REF]. Indeed, let consider the frequency-limited controllability and observability gramians P Ω and Q Ω , respectively, of the LTI dynamical system H. They are defined as the restriction of the infinite gramians over Ω, i.e.

P Ω = 1 2π ω -ω T (ν)BB T T * (ν)dν Q Ω = 1 2π ω -ω T * (ν)C T CT (ν)dν (5) 
where T (ν) = (jνI n -A) -1 . Then the frequency-limited H 2 -norm of H is straightforwardly given by

H 2 H2,Ω = tr CP Ω C T = tr B T Q Ω B . (6) 
Under some additional assumptions, the H 2,Ω -norm can also be expressed with the transfer function's poles and residues (see more from the authors in [START_REF] Vuillemin | A spectral expression for the frequency-limited H 2 -norm[END_REF]). In this paper, the latter formulation is considered for systems which have Jordan blocks larger than one which extends the result presented in [START_REF] Vuillemin | A spectral expression for the frequency-limited H 2 -norm[END_REF] by alleviating some assumptions.

B. Motivating examples

The frequency-limited H 2 -norm has mainly been used in analysis and large-scale model approximation,e.g. :

• In [START_REF] Anderson | Measures of merit for multivariable flight control[END_REF], this metric is suggested to get information on the frequency response of nominally unstable systems. More recently, it has been used in [START_REF] Masi | Robust finitefrequency H 2 analysis[END_REF] to perform comfort analysis of an industrial aircraft aeroelastic model. • In [START_REF] Gawronski | Model reduction in limited time and frequency intervals[END_REF], the frequency-limited gramians are used to perform a frequency-limited balanced truncation and in [START_REF] Petersson | Model reduction using a frequencylimited H 2 -cost[END_REF], the gramian formulation of the H 2,Ω -norm is used to perform optimal model approximation. Note that in the large-scale model reduction framework, the usual approach for the reduced-order model to accurately reproduce the behaviour of the initial model over a bounded frequency range consists in applying weighting filters, leading to the so called frequency-weighted model reduction problem (see for instance [START_REF] Gugercin | A survey of model reduction by balanced truncation and some new results[END_REF] and references therein). Recently, this yields to first-order optimality conditions with respect to the weighted H 2 -norm [START_REF] Ani | Interpolatory weighted-H 2 model reduction[END_REF]. Yet the H 2,Ω -norm has two main advantage over the frequency-weighted H 2 -norm :

• The H 2,Ω -norm is equivalent to the frequency-weighted H 2 -norm computed with perfect filters. Hence the H 2,Ω -norm is more accurate and does not require to design filters. This difference can be observed in [START_REF] Gugercin | A survey of model reduction by balanced truncation and some new results[END_REF] where the frequency-balanced truncation is proven to be equivalent to the frequency-weighted balanced truncation done with perfect filters. • The H 2,Ω -norm can be computed for systems with a direct feedthrough D which is not the case of the frequency-weighted H 2 -norm [START_REF] Vuillemin | A spectral expression for the frequency-limited H 2 -norm[END_REF]. Moreover, the interest of the poles/residues formulation of the norm also comes from model approximation. Indeed, in the H 2 model approximation problem, the poles/residues expression of the H 2 -norm [4, chap.5] has enabled to express first-order optimality conditions as convenient interpolation conditions between transfer functions and has led to efficient iterative algorithms [START_REF] Gugercin | H 2 model reduction for Large-Scale linear dynamical systems[END_REF], [START_REF] Van Dooren | H 2 -optimal model reduction of MIMO systems[END_REF].

C. Notations & Paper structure

The notations used throughout this paper are the following : tr (A) represents the trace of the matrix A, A T is the transpose of A, A B is the Hadamard product between A and B, the bold j denotes the complex variable, ln(x) is the natural logarithm of x ∈ R * + , log(z) denotes the principal value of the complex logarithm of z = ±0, atan(z) is the complex inverse tangent function of z = ±j, λ i and φ i denotes the eigenvalues and associated residues of a system H, respectively and ω > 0 is a pulsation in rad/sec. This paper is divided as follows : in Section II, preliminary results concerning the H 2,Ω -norm of systems with simple poles are recalled and an illustration of the H 2,Ω -norm as well as a comparison with the frequency-weighted H 2norm are presented. Then, in Section III, the poles/residues formulation of the H 2,Ω -norm is extended to systems which have Jordan blocks larger than one. Finally, Section IV concludes this article and draw potential perspectives.

II. PRELIMINARY RESULTS

A. Spectral expression of the H 2,Ω -norm : the diagonalizable case

It is well known that if the matrix A of (1) is diagonalizable, then the partial fraction decomposition of the transfer function H(s) is

H(s) = N i=1 φ i s -λ i , (7) 
where

λ i ∈ C, φ i ∈ C ny×nu (i = 1, . . . , N
) are the poles and associated residues of H(s). The residues φ i ∈ C ny×nu of H(s) are defined, for i = 1, . . . , N , as

φ i = lim s→λi (s -λ i ) H(s), (8) 
and can be obtained by computing the right eigenvectors

X = x 1 • • • x N ∈ C N ×N of A. Indeed, by denoting c i T ∈ C ny×1 the i-th column of CX and b i ∈ C 1×nu the i-th line of X -1 B, it turns out that, for i = 1, . . . , N , φ i = c i T b i . (9) 
The decomposition [START_REF] Doyle | Mixed H 2 and H∞ Performance Objectives: Optimal Control[END_REF] is the basis of the result presented in [START_REF] Vuillemin | A spectral expression for the frequency-limited H 2 -norm[END_REF] which simplest form is recalled in Theorem 1.

Theorem 1: Given a N -th order stable and strictly proper MIMO LTI dynamical system H := (A, B, C) which transfer function is H(s) and an interval

Ω = [0, ω] with ω > 0. If A is diagonalizable, then the frequency-limited H 2 -norm of H, denoted H H2,Ω , is given by H 2 H2,Ω = N i=1 tr (φ i H(-λ i )) - 2 π atan ω λ i , (10) 
where λ i , φ i , i = 1, . . . , N are the poles and associated residues of H(s), respectively. Remark 1 (The complex arctangent): The complex arctangent function appearing in [START_REF] Gugercin | A survey of model reduction by balanced truncation and some new results[END_REF] is defined, for z = ±j, as

atan (z) = 1 2j (log (1 + jz) -log (1 -jz)) , (11) 
where log(z) is the natural logarithm of z defined, for z = 0, as, log (z) = ln(|z|) + j arg(z) [START_REF] Haber | The complex inverse trigonometric and hyperbolic functions[END_REF] with -π < arg(z) ≤ π and ln(x) the natural logarithm of x ∈ R * + . There exists another definition of the complex arctangent, but since the system is assumed to be stable, both definitions are equivalent (see [START_REF] Haber | The complex inverse trigonometric and hyperbolic functions[END_REF] for further information).

Since H(-λ i ) in equation ( 10) can be replaced by

H(-λ i ) = N k=1 φ k -λ i -λ k , (13) 
the H 2,Ω -norm of H can be rewritten as

H 2 H2,Ω = N i=1 N k=1 tr φ i φ T k λ i + λ k atan ω λ i . ( 14 
)
By denoting X ∈ C N ×N the matrix which columns are the right eigenvectors of A, Y = X -1 and e i ∈ R N ×1 the canonical basis vector, it turns out that

tr φ i φ T k = e T k (CX) T CXe i e T i Y B (Y B) T e k . ( 15 
)
Due to the symmetry arising in equation ( 15), the H 2,Ωnorm of H can be efficiently computed through the following expression :

H 2 H2,Ω = 1 T (M 1 M 2 L)      -2 π atan ω λ1 . . . -2 π atan ω λ N      , (16) where 
M 1 = (CX) T CX and M 2 = Y B(Y B) T , (17) 
and for i, k = 1, . . . , N ,

[L] i,k = 1 λ i + λ k . (18) 

B. Relation with the H 2 -norm

For stable and strictly proper systems, the H 2,Ω -norm is related to the H 2 -norm as presented in Property 1.

Property 1: Let consider a stable and strictly proper MIMO LTI dynamical system H and an interval Ω = [0, ω], ω > 0, then the H 2,Ω -norm of H tends towards its H 2 norm as ω tends towards infinity, i.e. (19) For a stable and strictly proper system, by considering the limit of the complex inverse tangent function [START_REF] Haber | The complex inverse trigonometric and hyperbolic functions[END_REF] in the poles-residues expression of the H 2,Ω -norm [START_REF] Gugercin | A survey of model reduction by balanced truncation and some new results[END_REF] as ω tends towards infinity, i.e.

lim ω→∞ atan ω λ = - π 2 ⇔ Re (λ) < 0, (20) 
the poles-residues expression of the H 2 -norm presented in [4, chap. 5],

H 2 H2 = N i=1 tr φH(-λ i ) T , (21) 
is recovered. The complex inverse tangent functions arising in [START_REF] Gugercin | A survey of model reduction by balanced truncation and some new results[END_REF] thus play the role of optimal filters on each pole contribution.

C. Illustration of the H 2,Ω -norm and comparison with the frequency-weighted H 2 -norm

To illustrate the behaviour of the frequency-limited H 2 norm, the Los-Angeles Hospital (LAH) model available in [START_REF] Leibfritz | Description of the benchmark examples in COMPleib 1.0[END_REF] is used. It is a 48-th order stable and strictly proper SISO dynamical system with simple poles only.

The H 2,Ω -norm of the LAH model is computed for Ω = [0, ω] with ω ∈ [1, 100] and plotted in Figure 1 together with the gain of the frequency response.

The following remarks can be made :

• As expected, the H 2,Ω -norm tends towards the H 2 -norm as ω increases.

• Each time ω crosses a peak in the frequency response, the H 2,Ω -norm steps-up. The larger the magnitude of the peak is, the larger the step is. Hence the evolution of the H 2,Ω -norm gives insight about the frequency behaviour of the system. • Note that the steps of the H 2,Ω -norm are not sharp, but rather smooth. This is caused by the logarithmic behaviour of the arctangent function which filters each pole contribution.

In the following example, the frequency-limited H 2 -norm of the LAH model is computed over the frequency interval Ω = [START_REF] Gugercin | A survey of model reduction by balanced truncation and some new results[END_REF]20] and compared to the H 2 -norm computed on the weighted system obtained by applying an input bandpass filter to the system. The filter is constructed with two butterworth filters which orders are increased from 0 to 10. The top frame of Figure 2 shows the H 2,Ω -norm and frequency-weighted H 2 -norm for varying order of the bandpass filter and the bottom frame represents the relative error of the frequency-weighted H 2 -norm compared to the H 2,Ω -norm.

The frequency-weighted H 2 -norm tends towards the H 2,Ωnorm as the order of the filter increases. With a 8-th order bandpass filter, the relative error falls below 5%. The frequency-weighted H 2 -norm is not necessarily inferior or superior to the H 2,Ω -norm, both cases can be observed, depending on the system. Note that the required order of the filter strongly depends on the considered system and the frequency interval Ω. Besides, multiple frequency intervals might be difficult to handle with filters whereas they are indifferently handled with the H 2,Ω -norm.

III. EXTENSION TO HIGHER ORDER POLES

Theorem 1 relies on the formulation (7) of the transfer function which exists only for systems with a diagonalizable matrix A. If A is not diagonalizable, then another formulation must be used, as presented in this section. 

A. Decomposition of the transfer function

Let us now consider the more general case of a system H with n b stable poles λ i of multiplicity n i such that n b i=1 n i = N . In this case, the partial fraction decomposition of H(s) is given by

H(s) = n b i=1 H λi (s) = n b i=1 ni j=1 φ ij (s -λ i ) j , (22) 
where the φ ij ∈ C ny×nu , j = 1, . . . , n i are the residues associated with the pole λ i , i.e.

φ ij = lim s→λi 1 (n i -j)! d ni-j ds ni-j (s -λ i ) ni H(s). (23) 
Again, these residues are linked to the state-space representation of H. Indeed, let consider the transformation T ∈ C N ×N which transforms the matrix A in a Jordan canonical form, i.e.

T -1 AT = J =    J 1 . . . J n b    , (24) 
where for i = 1, . . . , n b ,

J i =       λ i 1 λ i . . . . . . 1 λ i       ∈ C ni×ni , (25) 
is the i-th Jordan block of size n i associated with the eigenvalue λ i . Then the associated transfer functions H λi (s)

are given, for i = 1, . . . , n b , by

H λi (s) = CT (sI ni -J i ) -1 T -1 B. ( 26 
)
The structure of the matrices J i enables to write the inverse in (26) as a sum of rational functions of s,

(sI ni -J i ) -1 = (s -λ i ) -1 F 1 + (s -λ i ) -2 F 2 + . . . . . . + (s -λ i ) -ni F ni (27 
) where F j ∈ R ni×ni is the matrix with 1 on the (j -1)-th superior diagonal and 0 elsewhere, i.e.

F1 = In i , F2 =        0 1 0 . . . . . . 1 0        , . . . , Fn i =        0 0 1 0 . . . . . . 0 0        (28)
or more briefly, by denoting e k ∈ R ni×1 the k-th canonical basis vector,

F j = ni-j+1 k=1 e k e k+j-1 T . ( 29 
)
Applying ( 27) and ( 29) in ( 26), it comes that for i = 1, . . . , n b ,

H λi (s) = ni j=1 1 (s -λ i ) j d(i)+ni-j+1 k=d(i)+1 c k T b k+j-1 φij , (30) 
where

c k T ∈ C ny×1 is the k-th column of CT , b k ∈ C 1×nu the k-th line of T -1 B
and d(i) an index shift defined as

d(i) = 0 if i = 1 i-1 l=1 n i otherwise. (31) 
The index shift d(i) is necessary to select the right vectors c k and b k . For instance, for i = 1, k varies between 1 and n 1 which correspond to the first Jordan bock, whereas for i = 2, the first n 1 vectors must not be used and k must vary between n 1 + 1 and n 1 + n 2 . Finally, when i = n b , the residues corresponding to the last Jordan block are considered, thus k varies between

n 1 + n 2 + . . . + n n b -1 + 1 and n 1 + n 2 + . . . + n n b B. Spectral expression of the H 2,Ω -norm : the general case
Based on the formulation (26) of the system's transfer function, Theorem 1 is generalized to higher order poles in Theorem 2.

Theorem 2: Given a N -th order stable and strictly proper MIMO LTI dynamical system H := (A, B, C) which transfer function is H(s) and an interval Ω = [0, ω] with ω > 0. Let H have n b eigenvalues λ i of multiplicity n i , then the frequency-limited H 2 -norm of H is given by

H 2 H2,Ω = j 2π n b i,j=1 ni k=1 nj l=1 tr φ ik φ T jl I ijkl (ω) (32) 
with

I ijkl (ω) = k m=1 r ij (l, k -m)W m-1 (jω, λ i ) . . . + l n=1 r ij (k, l -n)W n-1 (jω, λ j ) , (33) where 
W p (z, λ) = 1 p! ∂ p ∂y p (log (-x -y) -log (x -y)) x = z y = λ , (34) and 
r ij (p, q) = (-1) (p+q) p + q -1 q 1 (λ i + λ j ) p+q . (35) 
Proof: Let consider a stable and strictly proper MIMO LTI dynamical system H with n b eigenvalues λ i of multiplicity n i described by its transfer function H(s). The H 2,Ωnorm of H is defined as,

H 2 H2,Ω = 1 2jπ jω -jω tr H(s)H(-s) T ds. (36) 
By replacing H(s) by its partial fraction expansion (22), it comes that

tr H(s)H(-s) T = n b i,j=1 ni k=1 nj l=1 tr φ ik φ T jl (s -λ i ) k (-s -λ j ) l .
(37) The integral term of (36) comes down to the following integral for each i, j, k and l, .

(38) By noticing that the functions f ijkl (s) has 2 poles, λ i and -λ j , of order k and l, respectively, their partial fraction decomposition are given by

f ijkl (s) = k m=1 a m (s -λ i ) m + l n=1 b n (-s -λ j ) n , (39) 
where

a m = 1 (k -m)! d k-m ds k-m (s -λ i ) k f ijkl (s) s=λi (40) 
for m = 1, . . . , k and

b n = (-1) l-n 1 (l -n)! d l-n ds l-n (-s -λ j ) l f ijkl (s) s=-λj , (41) 
for l = 1, . . . , n. Note that the sign (-1) l-n is introduced due to the specific form of the partial fraction decomposition (39) which uses 1 (-s-λj ) n instead of (-1) l 1 (s+λj ) n . The residues a m and b n can be written in similar forms. Indeed a m = r ij (l, k -m) and b n = r ij (k, l -n) where r ij (p, q) is given in (35).

Since the system H is stable, each integral composing I ijkl (ω) can be directly calculated. Indeed, jω -jω

a 1 s -λ i = a 1 [log (s -λ i )] jω -jω , jω -jω a 2 (s -λ i ) 2 = a 2 -1 s-λi jω -jω , (42) 
and so on for each value of m = 1, . . . , k and n = 1, . . . , l.

The resulting functions of ω can be written in a more convenient way as W m-1 (jω, λ i ) and W n-1 (jω, λ j ) where W p (z, λ) is defined in (34).

C. Property

Given a stable and strictly proper system H with one simple Jordan block of size n associated to the eigenvalue λ which corresponding residues are φ l , l = 1, . . . , n, the expression presented in [4, chap. 5],

H 2 H2 = tr n i=1 φ i (i -1)! d i-1 ds i-1 H(-s) T s=λ , (43) 
is retrieved when ω tends towards infinity from equation (32). Indeed, it is straightforward to notice that, for p > 0,

lim ω→∞ |W p (jω, λ)| = 0, (44) 
hence, by noting that

lim ω→∞ W 0 (jω, λ) = -jπ, (45) 
it comes that

lim ω→∞ I ijkl (ω) = -2jπr ij (l, k -1). (46) 
When one single eigenvalue of order n is considered, n b = 1 and n i = n j = n, thus

lim ω→∞ H 2 H2,Ω = n k=1 n l=1 tr φ k φ T l r(l, k -1), (47) 
where r(l, k -1) = (-1)

l+k-1 l + k -2 k -1 1 (2λ) l+k-1 . Obviously, n l=1 φ T l r(l, k -1) = 1 (k -1)! d k-1 ds k-1 H(-s) T s=λ , (48) 
which leads to the expression (43). This short property illustrates the fact that the proposed approach extends the previous formulation.

D. Illustrative example

In this example, a Jordan form is constructed by choosing 4 arbitrary eigenvalues λ 1 = -2, λ 2 = -0.3 -j, λ 3 = -0.3 -5j and λ 4 = -0.4 -10j of order 3 (2 Jordan blocks of size 1 and 2), 2 (1 block of size 2), 5 (2 blocks of size 3 and 2) and 6 (3 blocks of size 2), respectively. The resulting model is thus a 30-th order one. The B and C matrices are chosen as vectors full of ones (the MIMO case is handled indifferently). The generalized eigenvectors forming the matrix T (24) are chosen randomly but they must be closed under conjugation so that the resulting state-space representation remains real valued. The frequency-limited H 2 -norm of this system is computed for Ω = [0, ω] with ω going from 0 to 20 rad/s with both the standard gramian formulation (see Section I) and the poles/residues formulation of Theorem 2. The values of the norms are plotted in Figure 3 with respect to ω together with the H 2 -norm of the system.

Both formulations of the H 2,Ω -norm leads to very close results as illustrated in Figure 3. The maximum mismatch error between the two results is in general very small. Large mismatch error might appear as some eigenvalues get closer to the imaginary axis since in one hand the Lyapunov equation becomes more ill-conditioned and in the other hand the fraction 1 λ+ λ , that arises in the poles/residues formulation, tends towards infinity as Re (λ) decreases. However, in this specific case, both results are not reliable.

IV. CONCLUSION

In this paper, some results concerning the frequencylimited H 2 -norm have been recalled, in particular the poles/residues expression of the H 2,Ω -norm for systems with a diagonalizable matrix A (see Theorem 1). The latter is based on the partial fraction decomposition of the system's transfer function, which is simple in this case. This paper extends this result to the general case of systems with Jordan block of size superior to one and alleviates the assumptions required for the poles/residues formulation of the norm. In the general case, the partial fraction expansion of the transfer function implies more terms thus leading to a more complex, yet more complete, formulation for the H 2,Ω -nom (see Theorem 2). Since the Jordan form of a matrix is a very complex task in term of computation, this formulation may be considered mainly as a theoretical tool which offer an alternative expression for the H 2,Ω -norm of system with non-diagonalizable matrix A. Nevertheless, this formulation may be useful in large-scale model approximation when the reduced-order model is parametrized with its poles and residues (see for instance [START_REF] Beattie | A trust region method for optimal H 2 model reduction[END_REF]) and can thus represent an alternative to standard gramian based approaches.
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 1 Fig. 1: Gain of the frequency response of the LAH model (top) and H 2,Ω -norm of the model for Ω = [0, ω] with ω ∈ [1, 100] (bottom).
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 2 Fig. 2: Comparison of the frequency-weighted H 2 -norm and the frequency limited H 2 -norm of the LAH model over Ω = [ω 1 , ω 2 ].

  φ ik φ T jl (s -λ i ) k (-s -λ j ) l ds = tr φ ik φ T jl jω -jω f ijkl (s)ds I ijkl (ω)
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 3 Fig.3: Frequency-limited H 2 -norm of a system with a non-diagonalizable matrix A for Ω = [0, ω] with ω going from 0 rad/sec to 8 rad/sec.