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La pénétration des chlorures dans le béton est l'une des principales causes conduisant à la dégradation des structures en béton armé. Sa modélisation est une tâche importante pour planifier et quantifier les opérations de maintenance des structures. Des paramètres matériau et environnementaux pertinents pour la modélisation pourraient être déterminés à partir de données d'inspection qui sont très limitées en raison des coûts prohibitifs. L'objectif principal de cette étude est de développer une méthode basée sur la mise à jour des réseaux bayésiens pour l'amélioration de l'identification des paramètres des modèles de chloration. Les résultats indiquent que l'approche bayésienne pourrait être un outil utile pour les identifier, même à partir d'un faible nombre de données d'inspection.

ABSTRACT. Chloride ingress into concrete is one of the major causes leading to the degradation of reinforced concrete structures. Its modelling is an important task to plan and quantify maintenance operations of structures. Relevant material and environmental parameters for modelling could be determined from inspection data which is very limited due to expensive costs. The main objective of this paper is to develop a method based on Bayesian network updating for improving the identification of model parameters. The results indicate that Bayesian approach could be a useful tool to identify model parameters even from insufficient inspection data.
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Introduction

La pénétration des chlorures dans le béton est l'un des principaux facteurs générant la corrosion des armatures qui réduit la durée de vie des structures [START_REF] Rosquoët | Chloride propagation in concrete harbor[END_REF][START_REF] Bonnet | Effect of error measurements of chloride profiles on reliability assessment[END_REF]. Par conséquent, les inspections visant à déterminer la concentration des chlorures, sont importantes pour (i) minimiser les risques et les conséquences de l'initiation de la corrosion et (ii) garantir des niveaux optimaux de capacité de service et sécurité (Bastidas-Arteaga et al, 2012a). Sous conditions d'exposition réelles, la pénétration des chlorures est liée à un nombre important de incertitudes [START_REF] Saassouh | Probabilistic modeling of chloride-induced corrosion in concrete structures using first-and second-order reliability methods[END_REF]. Ainsi, la estimation des risques de corrosion devient tâche complexe et nécessite, par conséquent, un nombre de mesures important. Dans la pratique, les inspections ont lieu à l'aide des techniques destructives visant à déterminer des profils en ions chlorure. Ces inspections nécessitent du temps, sont couteuses et parfois la mise en oeuvre s'avère compliquée. Par conséquent, en pratique, l'inspection est réalisée avec un nombre limité de profils. Par conséquent, il est nécessaire d'exploiter au mieux les informations disponibles pour la quantification des incertitudes en utilisant des méthodes statistiques et/ou probabilistes. La méthode bayésienne a été retenue dans cette étude pour traiter ce problème.

Le réseau bayésien (RB) est un outil efficace pour l'identification des paramètres. Bastidas-Arteaga et al (2012b) et [START_REF] Richard | A Bayesian approach to estimate material properties from global statistical data[END_REF] ont proposé une approche basée sur l'utilisation de RB permettant l'identification des paramètres à partir de données réelles et démontrant un accord entre les prévisions numériques et mesures expérimentales. Dans cette étude, le RB est principalement utilisé pour l'identification des paramètres des modèles de pénétration des chlorures en insistant sur l'influence de différentes configurations de RB dans l'erreur de l'identification et les conséquences dans l'estimation des risques de probabilité d'initiation de la corrosion.

Identification bayésienne appliquée à la chloration

Introduction aux réseaux bayésiens

Un RB est généralement représenté comme un graphe acyclique dirigé (GAD). Les noeuds du GAD sont des représentations graphiques d'objets et d'événements qui existent dans le monde réel, et sont appelés des variables ou des états. Les relations causales entre les noeuds sont représentées en dessinant un arc (flèche) entre eux. S'il y a un lien de causalité entre les variables (noeuds), il y aura une flèche de la variable de cause à la variable d'effet. Chaque variable dans le GAD est liée à une densité de probabilité (DP) qui dépend des relations de causalité avec les autres variables. Pour un ensemble de variables aléatoires X, le RB représente la probabilité jointe de l'ensemble. Le RB permet une modélisation probabiliste où la probabilité jointe considère la probabilité conditionnelle de chaque variable.

Application à la pénétration des ions chlorure

2.1.1. Modélisation de la pénétration des ions chlorure Dans le béton saturé, l'équation de diffusion de Fick est généralement utilisée pour estimer la diffusion unidirectionnelle des chlorures [START_REF] Tuutti | Corrosion of steel in concrete[END_REF] : ( ) 
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où f(x) est la fonction de densité de probabilité jointe du vecteur de variables aléatoires X. L'équation d'état limite en lien avec l'initiation de la corrosion est :

g X,t ( ) = C th X ( ) -C tc X,t ( ) (4) 
où C tc (X, t) est la concentration de chlorures au niveau de l'enrobage à temps t. La probabilité d'initiation de la corrosion, p ini , est obtenue en intégrant la fonction de probabilité jointe sur le domaine de défaillance (équation ( 5)).

Modélisation bayésienne de la pénétration des chlorures

La pénétration de chlorures peut être modélisée par le RB présenté dans la figure 1 où C s et D sont les noeuds parents (variables aléatoires à identifier). Il y a n noeuds enfants C(x i , t) (avec i ∈ [1, n]), représentant la concentration de chlorures à la profondeur x i et temps t. Pour un temps donné, le nombre de noeuds enfant correspond au nombre de points en profondeur pour l'inspection. En supposant que C s et D sont deux variables aléatoires indépendantes, les valeurs de C(x i , t) peuvent se calculer facilement à partir de l'équation (3). Dans le RB, la probabilité de la concentration en chlorure p(C(x,t)) peut être calculée comme suit [START_REF] Nguyen | Algorithmes probabilistes appliqués à la mécanique des ouvrages de génie civil[END_REF] :

p C x,t ( ) ( ) = p C x,t ( ) | D,C s ( ) D,C s ∑ p D,C s ( ) avec p D,C s ( ) = p D ( ) p C s ( ) (5) 

Figure 1. Modélisation bayésienne de la pénétration des chlorures au temps t

Afin de calculer p(C(x,t)) avec l'équation (6), la probabilité conditionnelle p(C(x,t)|D,C s ) doit être connue. Cette probabilité conditionnelle tient compte de la dépendance entre la teneur en chlorure C(x,t) et les deux paramètres du modèle (D et C s ) et elle est calculée en utilisant le tableau de probabilités conditionnelles (TPC) du RB. Le RB est actualisé avec des évidences/observations. Dans ce cas, les évidences correspondent à des mesures de la concentration de chlorures dans des points et à un des instants donnés. Ainsi, le terme p(C(x,t)|o) représente la
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distribution de probabilité de C(x,t) en considérant l'évidence o. On peut donc identifier des lois a posteriori pour les variables aléatoires en appliquant le théorème de Bayes:
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La détermination de toutes les probabilités conditionnelles ainsi que l'identification sont effectuées en utilisant la boîte à outils de RB de Matlab®.

Identification des variables aléatoires avec des RB

La boîte à outils pour les réseaux bayésiens (BRB) est un package open-source développé en Matlab®. Sous l'environnement du Matlab®, les utilisateurs peuvent ajouter, modifier ou faire des compléments de fonctions afin de s'adapter aux différents applications. La BRB supporte un nombre de noeuds très large, de nombreux algorithmes d'inférence (exacts et approximatifs), des RB statiques et dynamiques ainsi que plusieurs algorithmes d'actualisation (Murphy, 2001). Cependant, la BRB est un environnement d'interface non graphique et, par conséquent, la construction d'un RB doit suivre les étapes indiquées sur la figure 2. Traitement Sorties toutes les valeurs probables de chaque paramètre à identifier. En pratique, les intervalles sont fixés en s'appuyant sur des données issues de la littérature ou sur l'avis d'experts. On cherche généralement à identifier des variables continues pour la modélisation probabiliste. Toutefois, afin d'éviter d'utiliser d'algorithmes approximatifs d'inférence pour des variables continues, les variables continues sont remplacées par des variables aléatoires discrètes [START_REF] Straub | Stochastic Modeling of Deterioration Processes through Dynamic Bayesian Networks[END_REF]. La discrétisation de chaque paramètre est décrite dans le tableau 1. 

Paramètres

où y représente la moyenne ou l'écart type du paramètre à identifier. 48000 simulations on été utilisées pour déterminer le TPC dans tous les cas étudiés.

Identification à partir de mesures prises dans d'un point en profondeur

Dans cette partie, on s'intéresse à l'identification des moyennes et des écart-types de C s et D à partir des évidences obtenues à un point en profondeur et un instant du temps. La figure 3a présente le profil de chlorure calculé à partir de l'équation (3) en utilisant les valeurs du tableau 2 et à l'instant t = 10 ans. On considèrera dans la suite uniquement l'identification basée sur des mesures prises à l'instant t = 10 ans. Le RB se compose désormais de trois noeuds : deux noeuds parents (C s et D) et un noeud enfant représentant la concentration en chlorure à la profondeur x.

Comme nous avons évoqué précédemment, les variables continues ont été discrétisées en intervalles de la même largeur. Le nombre d'intervalles peut s'ajuster pour augmenter la précision des résultats et la rapidité du calcul. Quand un résultat précis est souhaité, un nombre élevé d'intervalles est donc choisi. La figure 3b décrit l'erreur dans l'estimation de la moyenne de C s avec des discrétisations différentes. Pour toutes les configurations, l'erreur est très faible lorsque les mesures sont proches de la surface. On observe aussi des fluctuations à des profondeurs où les teneurs en chlorures sont faibles et le nombre d'intervalles moins important. Il n'y a pas de fluctuation lorsque le noeud est divisé en 200 intervalles. Cela signifie qu'un grand nombre d'intervalles pourrait conduire à une convergence dans les résultats de l'inférence. On retiendra 200 intervalles pour la suite des études. profondeur. Ce comportement peut s'expliquer avec le profil du chlorure présenté dans la figure 3a où la teneur en chlorure diminue avec la profondeur. Cela signifie que, les données de profils de chlorure proches de la surface fourniront de plus amples informations pour la mise à jour de C s , tandis que la faible information dans les parties les plus profondes augmente les erreurs d'identification. Lorsque la teneur en chlorure est proche à zéro, les erreurs sont proches à 40 %. Au contraire, avec des évidences proches de la surface (x ≈ 0cm), nous pouvons obtenir la meilleure identification pour la moyenne et l'écart type de C s avec des erreurs de 1% et 3%, respectivement. D'après l'équation (3), lorsque x ≈ 0cm, C(x, t) ≈ C s . Par conséquent, lorsque x ≈ 0cm, le RB mettra plus de poids sur l'identification de C s .

Figure 4. Erreur dans l'identification avec un point en profondeur

On observe également dans la figure 4 que l'erreur dans l'identification de D diminue lorsque x < 11cm et puis augmente. Ce comportement correspond au fait que la teneur en chlorure au niveau des parties les plus profondes est plus utile dans l'identification du coefficient de diffusion. Cependant, l'erreur augmente pour les points très profonds où les teneurs en chlorure deviennent presque nulles. Les erreurs de l'identification de l'écart-type ont une tendance similaire mais leurs valeurs sont très éloignées des valeurs théoriques (plus de 150 %). Par conséquent, on peut conclure qu'il n'est pas possible effectuer une bonne identification de D en utilisant des évidences obtenues uniquement pour un point en profondeur.

Identification avec des données sur toute la profondeur

Dans cette section, l'identification bayésienne utilisera des données sur toute la profondeur. La profondeur totale est fixée à 15 cm car selon la figure 3a et la figure 4, à des points plus profonds, les informations ne sont pas utiles dans l'actualisation. Le nombre de noeuds enfants dans les RB est maintenant égal au nombre de mesures en profondeur (tableau 3).

La figure 5 présente les erreurs dans l'identification de la moyenne et l'écarttype en fonction de la séparation entre les points du profil en ions chlorure, Δx. Il n'y a pas de changements importants dans l'identification de la moyenne de C s lorsque Δx varie (figure 5a). Les erreurs dans ce cas sont d'environ 5%. Au contraire, l'écart 

Influence des données identifiées sur la probabilité d'initiation de la corrosion

Cette section étudie l'influence des données identifiées sur l'évaluation de la probabilité d'initiation corrosion calculée avec les données obtenues à partir des RB. Pour l'estimation de cette probabilité, nous avons considéré que la concentration seuil pour l'initiation de la corrosion suit une loi normale -C th ~ N(µ=2kg/m 3 , σ=0.4kg/m 3 ) et que l'enrobage est 6 cm. Nous avons utilisé les histogrammes issus de l'identification bayésienne directement dans les simulations de Monte-Carlo utilisés pour estimer la probabilité d'initiation de la corrosion pour éviter les hypothèses sur des lois distributions analytiques. La figure 6a montre que la prédiction de la probabilité d'initiation de la corrosion à partir des données identifiées suit la même tendance que celle obtenue à partir des valeurs théoriques. Elle montre également que, lorsque Δx est petit, les résultats de l'identification sont proches des valeurs théoriques. En revanche, à partir de la figure 6b, il est clair que les données identifiées à partir d'un point en profondeur ne fournissent pas des prédictions suffisamment acceptables par rapport aux valeurs théoriques. 

Conclusions

La pénétration des chlorures génère des risques de corrosion importants dans des structures en béton armé. L'identification de paramètres pour modéliser les mécanismes de chloration est donc cruciale pour prédire le niveau de chlorures au niveau des armatures qui permettra d'optimiser la maintenance structures exposés à des environnements avec des taux de chlorures importants. Les données d'inspection utilisées pour l'identification (profils en chlorures) sont très limitées en raison des coûts élevés. Par conséquent, il est nécessaire d'utiliser au mieux les données disponibles. Les RB pourraient s'utiliser dans le but d'identifier les incertitudes liées à ce type de problématique. Dans cette étude, des résultats fondés sur des évidences numériques ont révélé qu'il existe une stratégie optimale pour l'identification des variables aléatoires C s et D. Pour C s , la concentration en chlorure mesurée dans un point proche à la surface peut fournir une bonne identification. Ces résultats peuvent se combiner avec des mesures exhaustives pour améliorer l'identification de D lorsque le nombre de profils reste limité.
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 2 Figure 2. Algorithme pour la construction du RB
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 3 Figure 3. (a) Profils en ions chlorure à t = 10 ans -(b) Convergence du RB avec le nombre d'intervalles La figure 4 montre les erreurs dans l'identification de la moyenne et l'écart-type de C s et D. Pour C s , les erreurs dans la moyenne et l'écart-type augmentent avec la
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 5 Figure 5. Erreurs dans l'identification pour (a) la moyenne -(b) l'écart-type
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 67 Figure 6. Probabilité d'initiation de la corrosion initiation avec données identifiées : (a) à partir de toute la profondeur -(b) à partir d'un point

amorçage de la corrosion, t ini , est défini comme le temps nécessaire pour atteindre un niveau seuil de chlorures, C th , au niveau des armatures. Cette valeur seuil représente la concentration en chlorure nécessaire pour détruire la

  couche de rouille protectrice et donc pour démarrer l'étape de propagation de la corrosion. Tenant compte des difficultés pour déterminer une valeur unique pour C th (Bastidas-Arteaga et al, 2012a), on va modéliser C th comme une variable aléatoire. t ini se calcule par l'évaluation de l'évolution dans le temps de la concentration en chlorure au niveau des armatures à partir de l'équation (3). La fonction de répartition du temps d'amorçage de la corrosion,

	où erf(.) est la fonction d'erreur. L'équation (3) est uniquement valable quand la
	structure est dans un milieu saturé et elle est soumise à une concentration de
	chlorures en surface constante. Dans la plupart de structures réelles, ces conditions
	sont rarement représentées. Le béton est un matériau hétérogène et C s varie avec le
	temps. En outre, cette solution ne tient pas compte de la capacité de fixation des
	chlorures, le vieillissement du béton et d'autres facteurs environnementaux tels que
	la température et de l'humidité (Bastidas-Arteaga et al, 2011). Bien que cette
	solution néglige certains phénomènes importants, ce modèle sera utilisé ici pour
	illustrer l'identification de variables aléatoires à l'aide des RB.
	2.1.2. Probabilité d'initiation de la corrosion
	Le temps d'( )

ini t F t , est défini comme:

  Discrétisation des variables aléatoiresLes données d'inspection sont utilisées comme des évidences pour actualiser le RB. Ces données sont généralement obtenues à partir de mesures expérimentales ou des connaissances d'experts. Dans cette étude, nous utilisons des évidences numériques obtenues par simulations de Monte-Carlo à partir des variables aléatoires d'entrée connues (tableau 2). La probabilité que C(x,t) appartienne à un intervalle donné pour une profondeur x est calculée pour l'identification des probabilités conditionnelles p(C(x,t) | o). Ces probabilités sont ensuite ajoutées au RB pour l'actualisation à l'aide des équations (7) et (8).

	Error( y) =	y identifié -y théorique y théorique	100%
		Nombre d'intervalles Distribution a priori	Intervalle
	C s (kg/m 3 )	16	Uniforme	(1; 17)
	D (m/s²)		20	Uniforme	(2e-12 ; 8e-12)
	C(x,t) (kg/m 3 )	15	-	(0 ; 12)
		Tableau 1. Paramètres	Distribution	Moyenne	CV
		C s		Log-normale	5.5 (kg/m²)	21.8%
		D		Log-normale	4 10 -12 (m/s)	13%
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	3. Influence de la configuration du RB et application
	Dans cette section, différentes configurations du RB correspondant à des
	schémas d'inspection différents seront étudiées. Chaque configuration sera évaluée
	en fonction de l'erreur par rapport aux valeurs théoriques :