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Abstract
Today’s Web services – such as Google, Amazon, and
Facebook – leverage user data for varied purposes,
including personalizing recommendations, targeting
advertisements, and adjusting prices. At present, users
have little insight into how their data is being used.
Hence, they cannot make informed choices about the
services they choose.

To increase transparency, we developed XRay, the
first fine-grained, robust, and scalable personal data
tracking system for the Web. XRay predicts which
data in an arbitrary Web account (such as emails,
searches, or viewed products) is being used to target
which outputs (such as ads, recommended products, or
prices). XRay’s core functions are service agnostic and
easy to instantiate for new services, and they can track
data within and across services. To make predictions
independent of the audited service, XRay relies on the
following insight: by comparing outputs from different
accounts with similar, but not identical, subsets of data,
one can pinpoint targeting through correlation. We
show both theoretically, and through experiments on
Gmail, Amazon, and YouTube, that XRay achieves
high precision and recall by correlating data from a
surprisingly small number of extra accounts.

1 Introduction
We live in a “big data” world. Staggering amounts
of personal data – our as locations, search histories,
emails, posts, and photos – are constantly collected and
analyzed by Google, Amazon, Facebook, and a myriad
of other Web services. This presents rich opportunities
for marshaling big data to improve daily life and social
well-being. For example, personal data improves the
usability of applications by letting them predict and
seamlessly adapt to future user needs and preferences.
It improves business revenues by enabling effective
product placement and targeted advertisements. Twitter
data has been successfully applied to public health
problems [38], crime prevention [43], and emergency
response [22]. These beneficial uses have generated a
big data frenzy, with Web services aggressively pursuing
new ways to acquire and commercialize it.

Despite its innovative potential, the personal data
frenzy has transformed the Web into an opaque and
privacy-insensitive environment. Web services accumu-
late data, exploit it for varied and undisclosed purposes,
retain it for extended periods of time, and possibly share
it with others – all without the data owner’s knowledge
or consent. Who has what data, and for what purposes is
it used? Are the uses in the data owners’ best interests?
Does the service adhere to its own privacy policy? How
long is data used after its owner deletes it? Who shares
data with whom?

At present, users lack answers to these questions,
and investigators (such as FTC agents, journalists, or
researchers) lack robust tools to track data in the ever-
changing Web to provide the answers. Left unchecked,
the exciting potential of big data threatens to become a
breeding ground for data abuses, privacy vulnerabilities,
and unfair or deceptive business practices. Examples of
such practices have begun to surface. In a recent inci-
dent, Google was found to have used institutional emails
from ad-free Google Apps for Education to target ads in
users’ personal accounts [23, 32]. MySpace was found
to have violated its privacy policy by leaking personally
identifiable information to advertisers [28]. Several
consumer sites, such as Orbitz and Staples, were found
to have adjusted their product pricing based on user
location [24, 25]. And Facebook’s 2010 ad targeting was
shown to be vulnerable to micro-targeted ads specially
crafted to reveal a user’s private profile data [26].

To increase transparency and provide checks and
balances on data abuse, we argue that new, robust, and
versatile tools are needed to effectively track the use of
personal data on the Web. Tracking data in a controlled
environment, such as a modified operating system, lan-
guage, or runtime, is an old problem with a well-known
solution: taint tracking systems [12, 16, 7, 47]. However,
is it possible to track data in an uncontrolled environ-
ment, such as the Web? Can robust, generic mechanisms
assist in doing so? What kinds of data uses are trackable
and what are not? How would the mechanisms scale
with the amount of data being tracked?

As a first step toward answering these questions, we
built XRay, a personal data tracking system for the Web.
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XRay correlates designated data inputs (be they emails,
searches, or visited products) with data outputs results
(such as ads, recommended products, or prices). Its
correlation mechanism is service agnostic and easy to
instantiate, and it can track data use within and across
services. For example, it lets a data owners track how
their emails, Google+, and YouTube activities are used
to target ads in Gmail.

At its core, XRay relies on a differential correlation
mechanism that pinpoints targeting by comparing out-
puts in different accounts with similar, but not identical,
subsets of data inputs. To do so, it associates with every
personal account a number of shadow accounts, each of
which contains different data subsets. The correlation
mechanism uses a simple Bayesian model to compute
and rank scores for every data input that may have
triggered a specific output. Intuitively, if an ad were
seen in many accounts that share a certain email, and
never in accounts that lack that email, then the email is
likely to be responsible for a characteristic that triggers
the ad. The email’s score for that ad would therefore be
high. Conversely, if the ad were seen rarely in accounts
with or lacking that email, that email’s score for this ad
would be low.

Constructing a practical auditing system around dif-
ferential correlation raises significant challenges. Chief
among them is scalability with the number of data items.
Theoretically, XRay requires a shadow account for
each combination of data inputs to accurately pinpoint
correlation. That would suggest an exponential number
of accounts! Upon closer examination, however, we find
that a few realistic assumptions and novel mechanisms
let XRay reach high precision and recall with only
a logarithmic number of accounts in number of data
inputs. We deem this a major new result for the science
of tracking data-targeting on the Web.

We built an XRay prototype and used it to correlate
Gmail ads, Amazon product recommendations, and
YouTube video suggestions to user emails, wish lists,
and previously watched videos, respectively. While
Amazon and YouTube provide detailed explanations of
their targeting, Gmail does not, so we manually vali-
dated associations. For all cases, XRay achieved 80-90%
precision and recall. Moreover, we integrated our Gmail
and YouTube prototypes so we could track cross-service
ad targeting. Although several prior measurement
studies [10, 46, 21, 20, 33] used methodologies akin
to differential correlation, we believe we are the first to
build a generic, service agnostic, and scalable tool based
on it. Overall, we make the following contributions:
1. The first general, versatile, and open system to track

arbitrary personal Web data use by uncontrolled
services. The code is available from our Web page
https://xray.cs.columbia.edu/.

2. The first in-depth exploration into the scalability
challenges of tracking personal data on the Web.

3. The design and implementation of robust mechanisms
to address scaling, including data matching.

4. System instantiation to track data on three services
(Gmail, Amazon, YouTube) and across services
(YouTube to Gmail).

5. An evaluation of our system’s precision and recall on
Gmail, Amazon, and YouTube. We show that XRay
is accurate and scalable. Further, it reveals intriguing
practices now in use by Web services and advertisers.

2 Motivation
This paper lays the algorithmic foundations for a new
generation of scalable, robust, and versatile tools to
lift the curtain on how personal data is being targeted.
We underscore the need for such tools by describing
potential usage scenarios inspired by real-life examples
(§2.1). We do this not to point fingers at specific service
providers; rather, we aim to show the many situations
where transparency tools would be valuable for end-
users and auditors alike. We conclude this section by
briefly analyzing how current approaches fail to address
these usage scenarios (§2.2).

2.1 Usage Scenarios
Scenario 1: Why This Ad? Ann often uses her Gmail
ads to discover new retail offerings. Recently, she
discussed her ad-clicking practices with her friend Tom,
a computer security expert. Tom warned her about
potential privacy implications of clicking on ads without
knowing what data they target. For example, if she
clicks on an ad targeting the keyword “gay” and then
authenticates to purchase something from that vendor,
she is unwittingly volunteering potentially sensitive
information to the vendor. Tom tells Ann about two
options to protect her privacy. She can either disable
the ads altogether (using a system like AdBlock [1]),
or install the XRay Gmail plugin to uncover targeting
against her data. Unwilling to give up the convenience
of ads, Ann chooses the latter. XRay clearly annotates
the ads in the Gmail UI with their target email or
combination, if any. Ann now inspects this targeting
before clicking on an ad and avoids clicking if highly
sensitive emails are being targeted.
Scenario 2: They’re Targeting What? Bob, an FTC
investigator, uses the XRay Gmail plugin for a differ-
ent purpose: to study sensitive-data targeting practices
by advertisers. He suspects a potentially unfair practice
whereby companies use Google’s ad network to collect
sensitive information about their customers. Therefore,
Bob creates a number of emails containing keywords
such as “cancer,” “AIDS,” “bankruptcy,” and “unemploy-
ment.” He refreshes the Gmail page many times, each
time recording the targeted ads and XRay’s explanations
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for them. The experiment reveals an interesting result:
an online insurance company, TrustInUs.com, has tar-
geted multiple ads against his illness-related emails. Bob
hypothesizes that the company might use the data to set
higher premiums for users reaching their site through a
disease-targeted ad. He uses XRay results as initial evi-
dence to open an investigation of TrustInUs.com.
Scenario 3: What’s With The New Policy?1 Carla, an
investigative journalist, has set up a watcher on privacy
policies for major Web services. When a change occurs,
the watcher notifies her of the difference. Recently, an
important sentence in Google’s privacy policy has been
scrapped:

If you are using Google Apps (free edition),
email is scanned so we can display concep-
tually relevant advertising in some circum-
stances. Note that there is no ad-related
scanning or processing in Google Apps for
Education or Business with ads disabled.

To investigate scientifically whether this omission repre-
sents a shift in implemented policy, she obtains institu-
tional accounts, connects them to personal accounts, and
uses XRay to detect the correlation between emails in
institutional accounts and ads in corresponding personal
accounts. Finding a strong correlation, Carla writes an
article to expose the policy change and its implications.
Scenario 4: Does Delete Mean Delete? Dan, a
CS researcher, has seen the latest news that Snapchat,
an ephemeral-image sharing Website, does not destroy
users’ images after the requested timeout but instead just
unlinks them [19]. He wonders whether the reasons for
this are purely technical as the company has declared
(e.g., flash wearing levels, undelete support, spam filter-
ing) [40, 39] or whether these photos, or metadata drawn
from them, are mined to target ads or other products
on the Website. The answer will influence his decision
about whether to continue using the service. Dan instan-
tiates XRay to track the correlation between his expired
Snapchat photos and ads.

2.2 Alternative Approaches
The preceding scenarios illustrate the importance of
transparency in protecting privacy across a range of
use cases. We need robust, generic auditing tools to
track the use of personal data at fine granularity (e.g.,
individual emails, photos) within and across arbitrary
Web services. At present, no such tools exist, and the
science of tracking the use of personal Web data at a fine
grain is largely non-existent.

1In Feb. 2014, it was revealed based on court documents that
Google could have used institutional emails to target ads in personal
accounts [23]. In May 2014, Google committed to disable that
feature [?]. Scenario 3 presents an XRay-based approach to investigate
the original allegation.

Existing approaches can be broadly classified in
two categories: protection tools, which prevent Web
services’ acquisition or use of personal data, and (2)
auditing tools, which uncover Web services’ acquisition
or use of personal data. We discuss these approaches
next; further related work is in §9.
Protection Tools. A variety of protection tools ex-
ist [11, 37, 1, 48]. For example, Ann could disable ads
using an ad blocker [1]. Alternatively, she could en-
crypt her emails, particularly the sensitive ones, to pre-
vent Google from using them to target ads. Dan could
use a self-destructing data system, such as Vanish [14],
to ensure the ephemerality of his Snapchat photos.

While we encourage the use of protection tools, they
impose difficult tradeoffs that make them inapplicable in
many cases. If Ann blocks all her ads, she cannot benefit
from those she might find useful; if she encrypts all of her
emails, she cannot search them; if she encrypts only her
sensitive emails, she cannot protect any sensitive emails
she neglected to encrypt in advance. Similarly, if Dan
encrypts his Snapchat photos, sharing them becomes
more difficult. While more sophisticated protection
systems address certain limitations (e.g., searchable [5],
homomorphic [15, 35], and attribute-based encryp-
tion [18], or privacy-preserving advertising [42, 13]),
they are generally heavyweight [15], difficult to use [44],
or require major service-side changes [15, 42, 13].
Auditing Tools. Given the limitations of protection
tools, transparency is gaining increased attention [46, 12,
21]. If protecting data proves too cumbersome, limiting,
or unsupportive of business needs, then users should at
least be able to know: (1) who is handling their data?,
and (2) what is it being used for?

Several tools developed in recent years partially ad-
dress the first question by revealing where personal data
flows from a local device [36, 12, 8]. TaintDroid [12]
uses taint tracking to detect leakage of personal data
from a mobile application to a service or third-party
backend. ShareMeNot [36] and Mozilla’s Lightbeam
Firefox add-on [30] identify third parties that are ob-
serving user activities across the Web. These systems
track personal data – such as location, sensor data, Web
searches, or visited sites – until it leaves the user’s
device. Once the data is uploaded to Web services, it
can be used or sold without a trace. In contrast, XRay’s
tracking just begins: we aim to tell users how services
use their data once they have it.

Several new tools and personalization measurement
studies partially address the second question: what
data is being used for [10, 46, 21, 20, 33]. In general,
all existing tools are highly specialized, focusing on
specific input types, outputs, or services. No general,
principled foundation for data use auditing exists, that
can be applied effectively to many services, a primary

3



motivation for this our work. For example, Bobble [46]
reveals search result personalization based on user
location (e.g., IP) and search history. Moreover, existing
tools aim to discover only whether certain types of user
inputs – such as search history, browsing history, IP,
etc. – influence the output. None pinpoints at fine grain
which specific input – which search query, which visited
site, or which viewed product – or combination of inputs
explain which output. XRay, whose goals we describe
next, aims to do just that.

3 Goals and Models
Our overarching goal is to develop the core abstractions
and mechanisms for tracking data within and across
arbitrary Web sites. After describing specific goals
(§3.1), we narrow our scope with a set of simplifying as-
sumptions regarding the data uses that XRay is designed
to audit (§3.2) and the threats it addresses (§3.3).

3.1 Goals
Three specific goals have guided XRay’s design:

Goal 1: Fine-Grained and Accurate Data Tracking.
Detect which specific data inputs (e.g., emails) have
likely triggered a particular output (e.g., an ad). While
coarse-grained data use information (such as Gmail’s
typical statement, “This ad is based on emails from your
mailbox.”) may suffice at times, knowing the specifics
can be revelatory, particularly when the input is highly
sensitive and aggressively targeted.

Goal 2: Scalability. Make it practical to track signif-
icant amounts of data (e.g., past month’s emails). We
aim to support the tracking of hundreds of inputs with
reasonable costs in terms of shadow accounts. These ac-
counts are generally scarce resource since their creation
is being constrained by Web services. While we assume
that users and auditors can obtain some accounts on the
Web services they audit (e.g., a couple dozen), we strive
to minimize the number required for accurate and fine-
grained data tracking.

Goal 3: Extensibility, Generality, and Self-Tuning.
Make XRay generic and easy to instantiate for many
services and input/output types. Instantiating XRay to
track data on new Web sites should be simple, although
it may require some service-specific implementation of
input/output monitoring. However, XRay’s correlation
machinery – the conceptually challenging part of a scal-
able auditing tool – should be turn key and require no
manual tuning.

3.2 Web Service Model
These goals may appear unsurmountable. An extremely
heterogeneous environment, the Web has perhaps as
many data uses as services. Moreover, data mining
algorithms can be complex and proprietary. How can
we abstract away this diversity and complexity to design
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Figure 1: XRay Conceptual View. XRay views Web services
as black boxes, monitors user inputs and outputs to/from them,
and detects data use through correlation. It returns to the user
or auditor associations of specific inputs and outputs.

robust and generic building blocks for scalable data
tracking? Fortunately, we find that certain popular
classes of Web data uses lend themselves to principled
abstractions that facilitate scalable tracking.

Figure 1 shows XRay’s simplified view of Web ser-
vices. Services, and networks of services that exchange
user data, are black boxes that receive personal data
inputs from users – such as emails, pictures, search
queries, locations, or purchases – and use them for varied
purposes. Some uses materialize into outputs visible to
users, such as ads, product or video recommendations,
or prices. Others invisible to the users. XRay correlates
some visible data inputs with some visible outputs by
monitoring them, correlating them, and reporting strong
associations to users. An example association is which
email(s) contributed to the selection of a particular ad.

XRay relates only strongly correlated inputs with
outputs. If an output is strongly correlated to an input
(i.e., the input’s presence or absence changes the output),
then XRay will likely be able to detect its use. If not (i.e.,
the monitored input plays but a small role in the output),
then it may go undetected. XRay also relates small
combinations of inputs with strongly correlated outputs.

Although simple, this model efficiently addresses
several types of personal data functions, including
product recommendations, price discriminations, and
various personalization functions (e.g., search, news).
We refer to such functions generically as targeting
functions and focus XRay’s design on them.

Three popular forms of targeting are:
1. Profile Targeting, which leverages static or slowly

evolving explicit information – such as age, gender,
race, or location – that the user often supplies by fill-
ing a form. This type of targeting has been studied
profusely [10, 46, 21, 20, 33]; we thus ignore it here.

2. Contextual Targeting, which leverages the content
currently being displayed. In Gmail, this is the cur-
rently open email next to which the ad is shown. In
Amazon or Youtube, the target is the product or video
next to which the recommendation is shown.

3. Behavioral Targeting, which leverages a user’s past
actions. An email sent or received today can trig-
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ger an ad tomorrow; a video watched now can trig-
ger a recommendation later. Use of histories makes it
harder for users to track which data is being used, a
key motivation for our development of XRay.

Theoretically, our differential correlation algorithms
could be applied to all three forms of targeting. From
a systems perspective, XRay’s design is geared towards
contextual targeting and a specific form of behavioral
targeting. The latter requires further attention. We
observe that this broad targeting class subsumes multiple
types of targeting that operate at different granularities.
For example, a service could use as inputs a user’s
most recent few emails to decide targeting. This would
be similar to an extended context. Alternatively, a
service could use historical input to learn a user’s coarse
interests or characteristics and base its targeting on that.

XRay currently aims to disclose any targeting applied
at the level of individual user data, or small combinations
thereof. Our differential correlation algorithms could
be applied to detect targeting that operates on a coarser
granularity. However, the XRay system itself would
require significant changes. Unless otherwise noted, we
use behavioral targeting to denote the restricted form of
behavioral targeting that XRay is designed to address.
We formalize these restrictions in §4.2.

3.3 Threat Model
To further narrow our problem’s scope, even further,
we introduce threat assumptions. We assume that data
owners (users and auditors) are trusted and do not
attempt to leverage XRay to harm Web services or the
Web ecosystem. While they trust Web services with
their data, they wish to better understand how that data
is being used. Data owners are thus assumed to upload
the data in cleartext to the Web services.

The threat models relevant for Web services depend
on the use case. For example, Scenarios 1 and 2 in
§2.1 assume Google is trusted, but its users wish to
understand more about how advertisers target them
through its ad platform. In contrast, in Scenarios 3 and
4, investigators may have reason to believe that Web
services might intentionally frustrate auditing.

This paper assumes an honest-but-curious model for
Web services: they try to use private data for financial
or functional gains, but they do not try to frustrate our
auditing mechanism, e.g., by identifying and disabling
shadow accounts. The service might attempt to defend
itself against more general types of attacks, such as
spammers or DDoS attacks. For example, many Web
services constrain the creation of accounts so as to limit
spamming and false clicks. Similarly, Web services may
rate limit or block the IPs of aggressive data collectors.
XRay must be robust to such inherent defenses. We

discuss challenges and potential approaches for stronger
adversarial models in §7.

4 The XRay Architecture
XRay’s design addresses the preceding goals and
assumptions. For concreteness, we draw examples
from our three XRay instantiations: tracking email-
to-ad targeting association within Gmail, attributing
recommended videos to those already seen on YouTube,
and identifying products in a wish list that generate a
recommendation on Amazon.

4.1 Architectural Overview
XRay’s high-level architecture (Figure 2) consists
of three components: (1) a Browser Plugin, which
intercepts tracked inputs and outputs to/from an audited
Web service and gives users visual feedback about
any input/output associations, (2) a Shadow Account
Manager, which populates shadow accounts with inputs
from the plugin and collects outputs (e.g., ads) for each
shadow account, and (3) the Correlation Engine, XRay’s
core, which infers associations and provides them to
the plugin for visualization. While the Browser Plugin
and Shadow Account Manager are service specific, the
Correlation Engine, which encapsulates the science
of Web-data tracking, is service agnostic. After we
describe each component, we focus on the design of the
Correlation Engine.
Browser Plugin. The Browser Plugin intercepts desig-
nated inputs and outputs (i.e., tracked inputs/outputs) by
recognizing specific DOM elements in an audited ser-
vice’s Web pages. Other inputs and outputs may not be
tracked by XRay (i.e., untracked inputs/outputs). The
decision of what to track belongs to an investigator or
developer who instantiates XRay to work on a specific
service. For example, we configure the XRay Gmail Plu-
gin to monitor a user’s emails as inputs and ads as out-
puts. When the Plugin gets a new tracked input (e.g., a
new email), it forwards it both to the service and to the
Shadow Account Manager. When the Plugin gets a new
tracked output (e.g., an ad), it queries the Correlation En-
gine for associations with the user’s tracked inputs (mes-
sage get assoc).
Shadow Account Manager. This component: (1) pop-
ulates the shadow accounts with subsets of a user ac-
count’s tracked inputs (denoted Di), and (2) periodically
retrieves outputs (denoted Ok) from the audited service
for each shadow account. Both functions are service spe-
cific. For Gmail, they send emails with SMTP and call
the ad API. For YouTube, they stream a video and scrape
recommendations, and for Amazon, they place products
in wish lists and scrape recommendations. The complex-
ity of these tasks depends on the availability of APIs or
the stability of a service’s page formats. Outputs col-
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Figure 2: The XRay Architecture.

lected from the Web service are placed into a Correlation
Database (DB), which maps shadow accounts to their in-
put sets and output observations. Figure 2 shows a par-
ticular assignment of tracked inputs across three shadow
accounts. For example, Shadow 1 has inputs D1 and
D2. The figure also shows the outputs collected for each
shadow account. Output O1 appears in Shadows 1 and 2
but not in 3; output O2 appears in Shadow 3 only.

Differential Correlation Engine. This engine, XRay’s
service-agnostic “brain,” leverages the data collected in
the Correlation DB to infer input/output associations.
When new outputs from shadow accounts are added into
the Correlation DB, the engine attempts to diagnose them
using a Correlation Algorithm. We developed several
such algorithms and describe them in §4.3. This process,
potentially time-consuming process, is done as a back-
ground job, asynchronously from any user request. In
Figure 2, differential correlation might conclude that D2
triggers O1 because O1 appears consistently in accounts
with that D2. It might also conclude that O2 is untargeted
given inconsistent observations. The engine saves these
associations in the Correlation DB.

When the plugin makes a get assoc request, the
Correlation Engine looks up the specified output in its
DB and returns any pre-computed association. If no out-
put is found, then the engine replies unknown (e.g., if an
ad never appeared in any shadow account or there is in-
sufficient information). Periodic data collection, coupled
with an online update of correlation model parameters,
minimizes the number of unknown associations. Our
experience shows that collecting shadow account outputs
in Gmail every ten hours or so yielded few unknown ads.

While the preceding example is simple, XRay can
handle complex challenges occurring in practice. First,
outputs are never consistently seen across all shadow
accounts containing the input they target. We call
this the limited-coverage problem; XRay handles it

by placing each data input in more shadow accounts.
Second, an output may have been triggered by one of
several targeted inputs (e.g., multiple emails on the same
topic may cause related ads to appear), a problem we
refer to as overlapping-inputs. This exacerbates the
number of accounts needed, since it diminishes the
differential signal we receive from them. XRay uses
robust, service-agnostic mechanisms and algorithms
to match overlapping inputs, place them in the same
accounts, and detects their use as a group.

Organization. The remainder of this section describes
the Differential Correlation Engine. After constructing it
for Gmail, we applied it as-is for Amazon and YouTube,
where it achieved equally high accuracy and scalability
despite observable differences in how targeting works on
these three services. After establishing notations and for-
malizing our assumptions (§4.2), we describe multiple
correlation algorithms, which build up to our self-tuning
correlation algorithm that made this adaptation conve-
nient (§4.3). §4.4 describes our input matching.

4.2 Notation and Assumptions
We use f to denote the black-box function that repre-
sents the service (e.g., Gmail) associating inputs Dis
(e.g., the emails received and sent) to targeted outputs
Oks (e.g., ads). Other inputs are either ignored by XRay,
known only to the targeting system, or under no known
control. We assume they are independent or fixed,
captured in the randomness of f .

We assume that f decides targeting using: (1) a
single input (e.g., show Ok if D4 is in the account),
(2) a conjunctive combination of inputs (e.g., show Ok
if D5 and D8 are in the account), or (3) a disjunctive
combination of the previous (e.g., show Ok if (D5 and
D8) are in the account or if D4 is in the account). We
refer to conjunctive and disjunctive combinations as
AND and OR combinations, respectively, and assume
that their is bounded by a maximum input size, r. This
corresponds to the preceding definition of behavioral
targeting from §3.2. Contextual targeting will always be
a single-input (size-one) combination.

Our goal is to decide whether f produced each output
Ok as a reaction to a bounded-size combination of the
Dis. We define as untargeted any ad that is not targeted
against any combination of Dis, though in reality the ad
could be targeted against untracked inputs. We denote
untargeting as D /0, meaning that the ad is targeted against
the “void” email. Our algorithms compute the most
likely combination from the N inputs that explains a
particular set of observations,~x, obtained by XRay.

We define three probabilities upon which our algo-
rithms and analyses depend. First, the coverage, pin, is
the probability that an account j containing the input Di
targeted by a particular ad, will see that ad at least once.
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Second, an account j′ lacking input Di will see the ad
with a smaller probability, pout. Third, if the ad is not
behaviorally targeted, it will appear in each account with
the same probability, p /0. We assume that pin, p /0, pout are
constant across all emails, ads, and time, and that pout is
strictly smaller than pin (bounded noise hypothesis).

Finally, we consider all outputs to be independent of
each other across time. §8 discusses the implications.

4.3 Correlation Algorithms
A core contribution of this paper is our service-agnostic,
self-tuning differential correlation algorithm, which
requires only a logarithmic number of shadow accounts
to achieve high accuracy. We wished not only to validate
this result experimentally, but also to prove it theoreti-
cally in the context of our assumptions. This section con-
structs the algorithm in steps, starting with a naı̈ve poly-
nomial algorithm that illustrates the scaling challenges.
We then define a base algorithm using set intersections
and prove that it has the desired logarithmic scaling prop-
erties; it has parameters which, if not carefully chosen,
can lead to poor results. We therefore extend this base
algorithm into a self-tuning Bayesian model that auto-
matically adjusts its parameters to maximize correctness.

4.3.1 Naı̈ve Non-Logarithmic Algorithm
An intuitive approach to differential correlation is to
create accounts for every combination of inputs, gather-
ing maximum information about their behaviors. With
a sufficient number of observations, one could expect
to detect which accounts, and hence which subsets of
inputs, target a particular ad. Unfortunately, this method
requires a number of accounts that grows exponentially
as the number of items N to track grows. When restrict-
ing the size of combinations to r, as we do in XRay, the
number of accounts needed is polynomial (in O(Nr)),
or linear if we study unique inputs only. Even a linear
number of accounts in the number N of inputs remains
impractical to scale to large input sizes (e.g., a mailbox).

4.3.2 Threshold Set Intersection
We now show that it is possible to infer behavioral
targeting using no more than a logarithmic number
of accounts as a function of the number of inputs.
Specifically, we prove the following theorem:

Theorem 1 Under §4.2 assumptions, for any ε > 0 there
exists an algorithm that requires C × ln(N) accounts
to correctly identify the inputs of a targeted ad with
probability (1− ε). The constant C depends on ε and
the maximum size of combinations r (O(r2r log( 1

ε
))).

To demonstrate the theorem, we define the Set Inter-
section Algorithm and prove that it has the correctness
and scaling properties specified in the theorem. Given

� �
// Set Intersection Algo:
// Runs with each collected ad.
In: Output Ok (e.g. an ad).
Params: MIN ACTIVE ACCTS, THRESHOLD.
Out: Targeted input combination.
// Step 1: Compute active accounts.
Ak = the accounts that see ad Ok.
if |Ak| < MIN ACTIVE ACCTS

return /0
end
// Step 2: Create input combination hypothesis.
targeted set = /0
foreach input Di do

if number o f Ak containing Di
|Ak | >THRESHOLD

targeted set += Di
end

end
// Step 3: Verify it is a real combination.
if number o f Ak containing entire targeted set

|Ak | <THRESHOLD
return /0

end
// targeted set triggered the output.
return targeted set� �

Figure 3: The Set Intersection Algorithm. Can be proven
to predict targeting correctly under certain assumptions with a
logarithmic number of accounts.

that outputs will appear more often in accounts con-
taining the targeting inputs, the core of the algorithm is
to determine the set of inputs appearing in the highest
number of accounts that also see a given ad. This paper
describes a basic version of the algorithm that makes
some simplifying assumptions and provides a brief proof
sketch. The detailed proof and complete algorithm are
described in Appendix.

Algorithm. The algorithm relies on a randomized place-
ment of inputs into shadow accounts, with some redun-
dancy to cope with imperfect coverage. We thus pick a
probability, 0 < α < 1, create C ln(N) shadow accounts,
and place each input Di randomly into each account with
probability α . Figure 3 shows the Set Intersection algo-
rithm for a set of observations, ~x. Given an output Ok
collected from the user account, we compute the set of
active accounts, Ak, as those shadow accounts that have
seen the output (Step 1). We then compute the set of in-
puts that appear in at least a threshold fraction of active
accounts; this set is our candidate for the combination
being targeted by the ad (Step 2). Finally, we check that
the entire combination is in a threshold fraction of the ac-
tive accounts (Step 3). Theoretically, we prove that there
exists a threshold for which the algorithm is arbitrarily
correct with the available C ln(N) accounts. Practically,
this threshold must be tuned experimentally to achieve
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� �
// Bayesian Prediction Alg:
// Runs with each collected ad.
In: Output Ok (e.g. an ad).
Out: Targeted input.
// Compute probabilities.
foreach input Di do
P [Di|~x ] = bayes(P [~x| Di ])

end
// Compute untargeted prob.
P [D /0|~x ] = bayes(P [~x| D /0 ])
// Return event with max prob.
return Di with max P [Di|~x ]� �

� �
// Parameter Learning Alg:
// Runs periodically.
// Initialize params (arbitrary).
pin = .7,pout = .01,p /0 = .1
do

foreach output Ok do
Run Bayesian Prediction.

end
Update pin, pout , p /0

from predictions.
until pin, pout , p /0 converge
end� �

Figure 4: Bayesian Correlation. Left: Bayesian prediction
algorithm for behavioral targeting. Right: typical iterative
inference process to learn parameters.

good accuracy on every service – a key reason for our
Bayesian enhancement in §4.3.3.

Correctness Proof Sketch. The proof shows that if there
were targeting, every non-targeting input would have a
vanishingly small probability to be in a significant frac-
tion of the active accounts. Let us call S the set of inputs
contained in a significant fraction of the active accounts.
Without targeting, these inputs would be present in the
accounts by mere chance. Since inputs are independently
distributed into the accounts, we show that the probabil-
ity of S not being empty decreases exponentially with the
number of active accounts (through Chernoff bounds).
With targeting, we show that with high probability no
other input than the explaining combination is in S, be-
cause of the bounded noise hypothesis. Appendix A.2
provides further proof details.

The proofs and algorithm included in this paper work
only for conjunctive combinations (e.g., D1 and D2,
see §4.2). The theory, however, can be extended to
disjunctive combinations (e.g., (D1 and D2) or D5), but
the algorithm for detecting such combinations is more
complex and relies on a recursive argument: if we find
one combination from the disjunction, then the active
accounts that include this combination define a context
where the combination appears non-targeting because
it is everywhere. If we recursively apply our algorithm
in this context, we can detect the second combination in
the disjunction, then the third, etc (see Appendix).

4.3.3 Self-Tuning Bayesian Algorithm
The Set Intersection algorithm provides a good the-
oretical foundation; however, it requires parameters
be tuned and applies only to behavioral targeting, not
contextual targeting. Thus, we include in XRay a more
robust, self-tuning version that leverages a Bayesian
algorithm to adjust parameters automatically through
iterated inference. Our algorithm relies on three models:

one that predicts behavioral targeting, one that predicts
contextual targeting, and one that combines the two.
Behavioral Targeting. The Bayesian behavioral tar-
geting model uses the same random assignment as the
Set Intersection algorithm, and it leverages the same in-
formation from the shadow account observations, ~x. It
counts the observations x j of ad Ok in an account j as
a binary signal: if the ad has appeared at least once in
account j, we count it once; otherwise we do not count
it. Briefly, the Bayesian model is a simple generative
model that simulates the audited service given some tar-
geting associations (e.g., Di triggers Ok). It computes the
probability for this model to generate the outputs we do
observe for every targeting association. The most likely
association will be the one XRay returns.

In more detail if the ad were targeted towards Di, then
an account j containing Di would see this ad at least
once with a coverage probability pin; otherwise, it would
miss it with probability (1− pin). An account j′ without
input Di would see the ad with a smaller probability,
pout, missing it with probability (1− pout). If the ad
were not behaviorally targeted, it would appear in each
account with the same probability, p /0. If we define Ak as
the set of active accounts that have seen the ad, and Ai as
the set of accounts that contain email Di, then we have
the following definitions for the probabilities:

P [~x| Di ] = (pin)
|Ai∩Ak| (1− pin)

|Ai∩Āk|

×(pout)
|Āi∩Ak| (1− pout)

|Āi∩Āk| ,

P [~x| D /0 ] = (p /0)
|Ak| (1− p /0)

|Āk| ,

where D /0 designates the untargeted prediction.
The preceding formula has an interesting interpreta-

tion that is visible if placed in the equivalent form:

P [~x| Di ] = (pin)
|Ak| (1− pout)

|Āk|

×
(

1− pin

1− pout

)|Ai∩Āk|( pout

pin

)|Āi∩Ak|

From the point of view of the event Di, an account found
in Ai∩ Āk is a false positive (an ad was expected but was
not shown). This should lower the probability, especially
when the coverage pin is close to 1. Inversely, an account
found in Āi∩Ak acts as a false negative (we observed an
ad where we did not expect it), which should decrease
the probability, especially when pout is close to 0.

These formulas let us infer the likelihood of event
Di according to Bayes’ rule: P [A| B ] = P [B|A ]×P [A ]

P [B ] .
Figure 4 shows two algorithms. First, the prediction al-
gorithm (left) predicts the targeting of Ok by computing
the probabilities defined above, applying Bayes’ rule,
and returning the input with the maximum probability.
Second, the parameter learning algorithm (right) com-
putes the variables that those probabilities depend upon
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(pin, pout, and p /0) using an iterative process. It repeat-
edly runs the prediction algorithm for all outputs and
re-computes pin, pout, and p /0 based on the predictions.
It stops when the variables converge (i.e., their variation
from one iteration to another is small).

Contextual Targeting. Contextual targeting is more
straightforward since it uses content shown next to the
ad. XRay also uses Bayesian inference and defines the
observations as how many times ad Ok is seen next to
email Di. Our causal model assumes imperfect coverage:
if this ad were contextually targeted towards Di, it would
occur next to that email with probability pin < 1 and next
to any other email with probability pout. Alternatively,
if the ad were untargeted, our model predicts it would
be shown next to any email with probability p /0. Hence,
P [~x|Di ] = (pin)

xi (pout)
∑i′ 6=i x′i ,P [~x|D /0 ] = (p /0)

∑i xi . For
this model, parameters are also automatically computed
by iterated inference.

Composite Model (XRay). The contextual and behav-
ioral mechanisms were designed to detect different types
of targeting. To detect both types, XRay must combine
the two scores. We experimented with multiple combi-
nation functions, including a decision tree and the arith-
metic average, and concluded that the arithmetic aver-
age yields sufficiently good results. XRay thus defines
the composite model that averages scores from individ-
ual models, and we demonstrate in §6.3 that doing so
yields higher recall for no loss in precision.

4.4 Input Matching and Placement

Our design of differential correlation, along with our
logarithmic results for random input placement, relies
on the fundamental assumption that the probability of
getting an ad O1 targeted at an input D1 in a shadow ac-
count that lacks D1 is vanishingly small. However, when
inputs attract the same ads (a.k.a., overlapping inputs),
a naive input placement can contradict this assumption.
Imagine a Gmail account with multiple emails related
to a Caribbean trip. If placement includes Caribbean
emails in every available shadow account, related ads
will appear in groups of accounts with no email object
in common. XRay will thus classify them as untargeted.
Our Amazon experiments showed XRay’s recall drop-
ping from 97% to 30% with overlapping inputs (§6.5).

To address this problem, XRay’s Input Matching
module identifies similar inputs and directs the Place-
ment Module to co-locate them in the same shadow
accounts. The key challenge is to identify similar inputs.
One method is to use content analysis (e.g., keywords
matching), but this has limitations. First, it is not service
agnostic; one needs to reverse engineer complex and
ever-changing matching schemes. Second, it is hard to
apply to non-textual media, such as YouTube videos.

In XRay, we opt for a more robust, systems technique
rooted in the key insight that we can deduce similar
inputs from contextual targeting. Intuitively, inputs
that trigger similar targeting from the Web service
should attract similar outputs in their context. The
Input Matching module builds and compare inputs’
contextual signatures. Contextual signature similarity is
the distance between inputs (e.g., email) in a Euclidean
space, where each output (e.g., ad) is a dimension. The
coordinate of an email in this dimension is the number of
times the ad was seen in the context of the email. XRay
then forwards close inputs to the same shadow accounts.
Once the placement is done, behavioral targeting against
that email’s group can be inferred effectively.

This input matching mechanism differs fundamentally
from any content analysis technique, such as keyword
matching, because it groups inputs the same way the
Web service does.2 It is robust and very general: we
used it on both Gmail and Amazon without changing a
single line of code to change.

5 XRay-based Tools
To evaluate XRay’s extensibility, we instantiated it on
Gmail, YouTube, and Amazon. The engine, about 3,000
lines of Ruby, was first developed for Gmail. We then ex-
tended it to YouTube and Amazon, without any changes
to its correlation algorithms. We did need to do minor
code re-structuring, but the experience felt turn key when
integrating a new service into the correlation machinery.

Building the full toolset required non-trivial coding
effort, however. Instantiating XRay for a specific Web
service is a three-step process. First, the developer
instantiates appropriate data models (less than 20 code
lines for our prototypes). Second, she implements a
service-specific shadow account manager and plugin;
care must be taken not be too aggressive to avoid ad-
versarial service reactions. While these implementations
are conceptually simple, they require some coding; our
Amazon and YouTube account managers were built
by two graduate students new to the project, and have
around 500 lines of code. Third, the developer creates
a few shadow accounts for the audited service and
runs a small exploratory experiment to determine the
service’s coverage. XRay uses the coverage to estimate
the number of shadow accounts needed for a given input
size. All other parameters are self-tuned at runtime.

6 Evaluation
We evaluated XRay with experiments on Gmail, Ama-
zon, and YouTube. While Amazon and YouTube provide
ground truth for their targeting, Gmail does not. We
therefore manually labeled ads on Gmail and measured

2We call this method “monkey see, monkey do” because we watch
how the service groups inputs and group them similarly.
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Service Sample Category Sample Input

Gmail
Electronics Email: “We need to buy that TV.”

Accounting Email: “Know a good tax accountant?”

Amazon
Toys & Games Product: Crayola 64 Crayons

Health & Personal Product: Waterpik Ultra Flosser

YouTube
Skin Health Video: Organic Acne Treatment

Books & Literature Video: Rowling's Love of Hufflepuff

Figure 5: Sample Inputs and Categories. In total, we
developed inputs in 64 categories for Amazon and YouTube
and in 51 categories for Gmail.

XRay’s accuracy, as described in §6.1 and validated in
§6.2. We sought answers to four questions:

Q1 How accurate are XRay’s inference models? (§6.3)
Q2 How does XRay scale with input size? (§6.4)
Q3 Does input matching reduce overlap? (§6.5)
Q4 How useful is XRay in practice? (§6.6)

6.1 Methodology
We evaluated XRay with experiments on Gmail, Ama-
zon, and YouTube. For inputs, we created a workload
for each service by selecting topics from well-defined
categories relevant for that service. For Gmail and
YouTube, we crafted emails and selected videos based
on AdSense categories [17]; for Amazon, we selected
products from its own product categories [2]. Figure 5
shows several sample categories and sample inputs
in each. We used these categories for most of our
experiments (§6.3–§6.5). We used these categories to
create two types of workloads: (1) a non-overlapping
workload, in which each data item belonged to a distinct
category, and (2) an overlapping workload, with multiple
data items per category (described in §6.5).

To assess XRay’s accuracy, we needed the ground
truth for associations. Amazon and YouTube provide it
for their recommendations. For instance, Amazon pro-
vides a link “Why recommended?” for each recommen-
dation; when clicked, it shows an explanation of the form
“The [Coloring Book] is recommended because your
wish list includes [Crayola Crayons Set].” For Gmail, we
manually labeled ads based on our personal assessment.
The ads for different experiments were labeled by differ-
ent people, generally project members. A non-computer
scientist labeled the largest experiment (51 emails).

We evaluate two metrics: (1) recall, the fraction of
positive associations labeled as such, and (2) precision,
the fraction of correct associations. We define high
accuracy as having both high recall and high precision.

6.2 Sanity-Check Experiment
To build intuition into XRay’s functioning, we ran
n simple sanity-check experiment on Gmail. Recall
that, unlike Amazon and YouTube, Gmail does not
provide any ground truth, requiring us to manually label
associations, a process that can be itself faulty. Before
measuring XRay’s accuracy against labeled associations,

Ad Targeted Detected XRay # Accounts
Keyword Email by XRay? Scores & Displays
Chaldean Like Chaldean Yes 0.99, 13/13,
Poetry Poetry? 1.0 1588/1622
Steampunk Fan of Steampunk? Yes 0.99, 13/13,

1.0 888/912
Cosplay Discover Cosplay. Yes 0.99, 13/13,

1.0 440/442
Falconry Learn about Falconry. Yes 0.99, 13/13,

1.0 1569/1608

Figure 6: Self-Targeted Ads. Fourth column shows XRay’s
correlation scores X, Y, the (Bayesian) Behvioral and Contex-
tual scores, respectively. Fifth column shows raw behavioral
and contextual data for better interpretation: X/Y, Z/T means
that the ad was seen in X active accounts that contain the
targeted email out of a total of Y active accounts; the ad was
shown Z times in the context of the targeted email out of a
total of T times.
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Figure 7: Bayesian Model Accuracy. Recall and precision
for each of the three Bayesian models vs. shadow account
number, using the Bayesian algorithm. XRay needed 16
accounts to reach the “knee” with high recall and precision.

we checked that XRay can detect associations for our
own ads, whose targeting we control. For this, we
strayed away from the aforementioned methodology to
create a highly controlled experiment. We posted four
Google AdWords campaigns targeted on very specific
keywords (Chaldean Poetry, Steampunk, Cosplay, and
Falconry), crafted an inbox that included one email per
keyword, and used XRay to recover the associations
between our ads and those emails. In total, we saw our
ads 1622, 912, 442, and 1608 times, respectively, across
all accounts (shadows and master). Figure 6 shows our
results. After one round of ad collection (which involved
50 refreshes per email), XRay correctly associated all
four ads with the targeted email. It did so with very
high confidence: composite model scores were 0.99
in all cases, with very high scores for both contextual
and behavioral models. The figure also shows some
of the raw contextual/behavioral data, which provides
intuition into XRay’s perfect precision and recall in this
controlled experiment. We next turn to evaluating XRay
in less controlled environments, for which we use the
workloads and labeling methodology described in §6.1.
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Figure 8: Bayesian vs. Set Intersection Comparison. Recall
and precision for detecting behavioral targeting with each algo.

6.3 Accuracy of XRay’s Inference Models (Q1)

To assess the accuracy of XRay’s key correlation
mechanisms (Bayesian behavioral, contextual, and
composite), we measured their recall and precision
under non-overlapping workloads. Figures 7(a) and
7(b) show how these two metrics varied with the number
of shadow accounts for a 20-email experiment on Gmail.
The results indicate two effects. First, both contextual
and behavioral models were required for high recall.
Of the 193 distinct ads seen in the user account, 121
(62%) were targeted, and XRay found 109 (90%) of
them, a recall we deem high. Of the associations XRay
found, 37% were found by only one of the models: 15
by the contextual model only, and 24 by the behavioral
model only. Thus, both models were necessary, and
composing them yielded high recall. Our Amazon and
YouTube experiments (which provide ground truth)
yielded very similar results: on a 20-input experiment,
we reached over 90% recall and precision with only 8
and 12 accounts, respectively.

Second, the composite model’s recall exhibited
a knee-shaped curve for increasing shadow account
numbers, with a rapid improvement at the beginning
and slow growth thereafter. With 16 accounts, XRay
exceeded 85% recall; increasing the number of accounts
to 100 yielded a 1.9% improvement. Precision also
remained high (over 84%) past 16 accounts. We define
the knee as the minimum number of accounts needed to
reap most of the achievable recall and precision.

We also wished to compare the accuracy of the
Bayesian algorithm, which conveniently self-tunes
its parameters, to the parameterized Set Intersection
algorithm. We manually tuned the latter as best as
we could. Figures 8(a) and 8(b) show the recall and
precision for detecting behavioral targeting with the
two methods for a non-overlapping workload. The
two algorithms performed similarly, with the Bayesian
staying within 5% of the manually tuned algorithm.
We also tested the algorithms on an Amazon dataset,
and using a version of the Set Intersection algorithm
with empirical optimizations. The conclusion holds:

the Bayesian algorithm, with self-tuned parameters,
performs as well as the Set Intersection technique with
manually tuned parameters. We focus the remainder of
this evaluation on the Bayesian algorithm.

6.4 Scalability of XRay with Input Size (Q2)
A main contribution of this paper is the realization
that, under certain assumptions, the number of accounts
needed to achieve high accuracy for XRay scales
logarithmically with the number of tracked inputs.
We have proven that under certain assumptions, the
Set Intersection algorithm scales logarithmically. This
theoretical result is hard to extend to the Bayesian
algorithm, so we evaluated it experimentally by studying
three metrics with growing input size: the number of ac-
counts required to reach the recall knee and the value of
recall/precision at this knee. Figures 9(a), 9(b) and 9(c)
show the corresponding results for Gmail, YouTube and
Amazon. For Gmail, the number of accounts necessary
to reach the knee increased less than 3-fold (from 8
to 21) as input size increased more than 25-fold (from
2 to 51). For Amazon and YouTube, the increases in
accounts were 6- and 8-fold respectively, for a 32-fold
increase in input size. In general, the roughly linear
shapes of the log-x-scale graphs in Figure 9(a) confirm
the logarithmic increase in the number of accounts
required to handle different inputs. Figure 9(b) and 9(c)
confirm that the “knee number” of accounts achieved
high recall and precision (over 80%).

What accounts for the large gap between the number
of accounts needed for high accuracy in Gmail versus
Amazon? For example, tracking a mere two emails in
Gmail required 8 accounts, while tracking two viewed
products in Amazon needed 2 accounts. The distinction
corresponds to the difference in coverage exhibited by
the two services. In Gmail, a targeted ad was typically
seen in a smaller fraction of the relevant accounts
compared to a recommended product in Amazon. XRay
adapted its parameters to lower coverage automatically,
but it needed more accounts to do so.

Overall, these results confirm that our theoretical
scalability results hold for real-world systems given
carefully crafted, non-overlapping input workloads. We
next investigate how more realistic overlapping input
workloads challenge the accuracy of our theoretical
models and how input matching – a purely systems
technique – helps address this challenge.

6.5 Input Matching Effectiveness (Q3)
To evaluate XRay’s accuracy with overlapping inputs,
we infused our workloads with multiple items from the
same category (e.g., multiple emails targeting the same
AdSense categories on Gmail and multiple products
in the same category in Amazon). For the Gmail
experiments, we (as users) could not tell when Gmail
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Figure 9: Scalability. (a) Number of accounts required to achieve the knee accuracy for varied numbers of inputs. (b), (c)
Recall/precision achievable with the number of accounts in (a). Behavioral uses the Bayesian algorithm.
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Figure 10: Input Matching effectiveness. Behavioral
(Bayesian) recall and precision in Gmail with overlapping
inputs, with and without Matching.

targeted a specific email from a group of similar emails.
We therefore ran two different types of experiments: (1)
a controlled, albeit unrealistic, one for Gmail, and (2) a
more realistic one for Amazon.

For Gmail, our controlled experiment replicated
various emails identically in a user’s inbox: 1 email was
replicated 4 times, 2 emails 3 times, 4 emails 2 times,
and 12 were single, for a total of 30 emails. This end-of-
a-spectrum workload demonstrates how matching works
ideally. XRay matched all redundant emails correctly.
More importantly, Figures 10(a) and 10(b) show XRay’s
precision/recall with and without matching-aware
placement for XRay’s behavioral model, the only model
improved by matching. Without input matching, XRay
struggled to find differential signals: even with 35
shadow accounts for a 30-email experiment, recall was
only 48%. With input matching, XRay’s correlation
model drew a stronger signal from each account and
attained close to 70% recall for 16 accounts.

For Amazon, we created an overlapping workload by
selecting three distinct products in each of six product
categories (e.g., from the Outdoor & Cycling category,
we selected a helmet, pedals, and shoes). With a
total workload of 18 products, XRay’s input matching
matched all but one item (shoes) into its correct group.
With the new grouping, XRay’s recall improved by

a factor of 3 (from 30% to 93%) compared to the
no-matching case for 18 products with 10 accounts;
precision was 2.6 times higher (from 34% to 88%).

These results demonstrate that XRay’s matching
scheme is both portable across Web services and
essential for high accuracy with overlapping workloads.

6.6 Anecdotal Use Experience (Q4)
To gain intuition into XRay’s value in practice, we ran
a small-scale, anecdotal experiment that looked for
ads attracted by a few specific topics in Gmail. We
created emails focused on a few topics, including cancer,
Alzheimer, depression, HIV, race, homosexuality, preg-
nancy, divorce, debt, and others. Each email consisted
of a number of keywords closely related to one topic
(e.g., the depression-related email included depression,
depressed, and sad; the homosexuality email included
gay, homosexual, and lesbian). We then launched
XRay/Gmail’s ad collection several times at intervals
of two days, and examined its targeting associations.
Figure 11 shows example XRay associations for each
of the topics we considered, along with its confidence
scores and some of the raw data behind its scores (see
§??). We conservatively show only a select few of
the ads we gathered, for which XRay’s confidence –
particularly in behavioral score – was particularly high.
While our experiment is too small to draw definitive and
detailed conclusions about ad targeting in Gmail, we
make three high-level observations from our experience.

First, our small-scale experiment confirms that it is
possible to target sensitive topics in users’ inboxes.
For example, all disease-related emails, except for the
HIV-related one, correlated very strongly with various
ads. For example, Pregnancy, homosexuality, race,
divorce, and debt also attracted ads. Interestingly, our
experience suggests that disease- and Overall, we have
been surprised . For instance, ads 7/8, 15/16, and 17 tar-
get race, sexual orientation and cancer, respectively. The
ads we observed were mostly benign or even positive.
However, if no keyword in the ad suggested relation
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Topic Targeted XRay # Accounts
Ads Scores & Displays
Black Mold Allergy Symptoms? 0.99, 9/9,

Alzheimer Expert to remove Black Mold. 0.05 61/198
Adult Assisted Living. 0.99, 8/8,
Affordable Assisted Living. 0.99 12/14
Ford Warriors in Pink. 0.96, 9/9,

Cancer Join The Fight. 0.98 1022/1106
Rosen Method Bodywork for 0.98, 7/7,
physical or emotional pain. 0.05 24/598
Shamanic healing over 0.99, 16/16,

Depression the phone. 0.99 117/117
Text Coach - Get the girl 0.93, 7/7,
you want and Desire. 0.04 31/276
Racial Harassment? 0.99, 10/10,

African Learn your rights now. 0.2 851/5808
American Racial Harassment, 0.99, 10/10,

Hearing racial slurs? 0.2 627/7172
SF Gay Pride Hotel. 0.99, 9/9,

Homosexuality Luxury Waterfront. 0.1 50/99
Cedars Hotel Loughborough, 0.96, 8/8,
36 Bedrooms, Restaurant, Bar. 1.0 36/43
Ralph Lauren Apparel. 0.99, 10/10,
Official Online Store. 0.6 85/181

Pregnancy Clothing Label-USA. 0.99, 9/9,
Best Custom Woven Labels. 1.0 14/14
Find Baby Shower Invitations. 0.99, 9/9,
Get Up To (60% Off) Here! 1.0 22/22
Law Attorneys specializing 0.99, 9/9,

Divorce in special needs kids education. 0.99 635/666
Cerbone Law Firm, Helping 0.99, 10/10,
Good People Thru Bad Times 1.0 94/94
Maui Beach Weddings Serving. 0.99, 7/7,

Enough with Affordable ceremonies. 0.0 2/728
this marriage Romantic Wedding. 0.99, 8/8,

Ceremony Planning. 0.04 4/31
Take a New Toyota Test Drive, 0.99, 7/7,
Get a $50 Gift Card On The Spot. 0.9 58/65

Debt Great Credit Cards Search. 0.99, 9/9,
Apply for VISA, MasterCard... 0.0 151/2358
Stop Creditor Harassment, 0.99, 8/8,
End the Harassing Calls. 0.96 256/373

Figure 11: Example Targeted Ads Uncovered by XRay.
Columns three and four show the same data as columns four
and five in Figure 6.

with sensitive topics (e.g., ad 17), a users clicking on
the ad may not realize that they could be disclosing
private information to advertisers. This case inspired
Scenario 2 in §2.1. Suppose an insurance company
wanted to gain insight into pre-existing conditions of
its customers before signing them up. It could create
two ad campaigns – one that targets cancer and another
youth – and assign different URLs to each campaign. It
could then offer higher premium quotes to visitors who
come through the cancer-related ads to discourage them
from signing up while offering lower premium quotes to
those who come through youth-related ads.

Second, our experiments suggest that some advertis-
ers use targeting capabilities to focus their campaigns
on vulnerable subgroups. In one case, a shamanic
phone healing service heavily targeted keywords in our
depression email (ad 1). In another case, our “broke”
email attracted many personal loan offers (ad 10) and
deals with high scam potential (ad 11). Whether these
practices are fair is beyond the scope of this work, but
we believe that informed users are empowered users.

Third, many cases, targeting did not have a good
semantic understanding of the emails. For instance,
an email about divorce, that also contained the word
marriage received many ads about wedding ceremonies,
like ad 13. The TV Show email also contained the word
“watch” and hence got targeted heavily by watch brands
(ads 5 and 6). Context does not seem to be used to disam-
biguate specific keywords. We could not tell if the target-
ing algorithm were incapable of such semantic analysis,
or if the feature were not exposed or used by advertisers.

These results show probable correlations, although
we cannot be sure that they denote targeting. However,
we selected only those cases with strong evidence of
correlation between email and ad.

6.7 Summary
Our evaluation results show that XRay supports fine-
grained, accurate data tracking in popular Web services,
scales well with the size of data being tracked, is general
and flexible enough to work efficiently for three Web ser-
vices, and robustly uses systems techniques to discover
associations when ad contents provide no indication of
them. We next discuss how XRay meets its last goal:
robustness against honest-but-curious attackers.

7 Security Analysis
As stated in §3.3, two threat models are relevant for
XRay and applicable to different use cases. First, an
honest-but-curious Web service does not attempt to frus-
trate XRay, but it could incorporate defenses against typ-
ical Web attacks, such as DDoS or spam, that might inter-
fere with XRay’s functioning. Second, a malicious ser-
vice takes an adversarial stand toward XRay, seeking to
prevent or otherwise disrupt its correlations. Our current
XRay prototype is robust against the former threat and
can be extended to be so against the latter. In either case,
third-party advertisers are untrusted and can attempt to
frustrate XRay’s auditing. We discuss each threat in turn.
Non-Malicious Web Services. Many services incor-
porate protections against specific automated behaviors.
For example, Google makes it hard to create new ac-
counts, although doing so remains within reach. More-
over, many services actively try to identify spammers and
click fraud. Gmail includes sophisticated spam filtering
mechanisms, while YouTube rate limits video viewing to
prevent spam video promotion. Finally, many services
rate limit access from the same IP address.

XRay-based tools must be aware of these mechanisms
and scale back their activities to avoid raising red flags.
For example, our XRay-based tools for Gmail, YouTube,
and Amazon rate limit their output collection in the
shadow accounts. More importantly, XRay’s very design
is sensitive to these challenges: by requiring as few
accounts as possible, we minimize: (1) the load on the
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service imposed by auditing, and (2) the amount of input
replication across shadow accounts. Moreover, XRay’s
workloads are often atypical of spam workloads. Our
XRay Gmail plugin sends emails from one to a few
other accounts, while spam is sent from one account to
many other accounts.
Malicious Third-Party Advertisers. Third-party adver-
tisers have many ways to obfuscate their targeting from
XRay, particularly if it may arouse a public outcry. First,
an advertiser could purposefully weaken its targeting by,
for example, targeting the same ad 50% on one topic and
50% on another topic. This weakens input/output cor-
relation and may cause XRay to infer untargeting. How-
ever, it also makes the advertisers’ targeting less effective
and potentially more ambiguous if their goal is to learn
specific sensitive information about users. Second, an
advertiser might target complex combinations of inputs
that XRay’s basic design cannot discover. We show in
Appendix an example of how advertisers might use it,
and that our theoretical results extend to those combina-
tions. It also extends our theoretical models so they can
detect targeting on linear combinations with only a con-
stant factor increase in the number of accounts. We plan
to incorporate and evaluate these extensions in a future
prototype.
Malicious Web Services. A malicious service could
identify and disable shadow accounts. Identification
could be based on abnormal traffic (successive reloads
of email pages), data distribution within accounts (one
account with lots of data, several others with subsets of
it), and perhaps more. XRay could be extended to add
randomness and deception (e.g., fake emails in shadow
accounts, vary email copies). More importantly, a col-
laborative approach to auditing, in which users con-
tribute their ads and input topics in an privacy-preserving
way is a promising direction for strengthening robustness
against attacks. Web services cannot, after all, disable le-
gitimate user accounts to frustrate auditing. We plan to
pursue this direction in future work.

8 Discussion
XRay takes a significant step toward providing data
management transparency in Web services. As an initial
effort, it has a number of limitations. First, both the Set
Intersection and Bayesian algorithms assume indepen-
dent targeting across accounts and over time. In reality,
ad targeting is not always independent across either. For
example, advertisers set daily ad budgets. When the bud-
get runs out, an ad can stop appearing in accounts mid-
experiment even though it has the targeted attributes. The
system might incorrectly assume that no targeting is tak-
ing place, when it could resume the next day. XRay takes
reduced coverage into account, but differences between
ads can let some targeting pass unnoticed. XRay does not

currently account for these dependencies, but estimating
their impact is an important goal for future work.

Second, we assume that targeting noise is bounded
and smaller than the targeting signal. While this con-
dition seems to hold on the evaluated services, other
services making more local decisions may be harder to
audit. For instance, a social network (e.g., Facebook)
could target ads based on friends’ information. The
noise created by the environment could potentially be
as high as the targeting signal. A future solution might
be to create shadow accounts with the same friends or
shadows of friends.

Third, XRay uses Web services atypically. To the best
of our knowledge, it does not violate any terms of ser-
vice. It does, however, collect ads paid for by advertisers
to detect correlation. Ad payment is per impression and
pay per click. The former is vastly less expensive than
the latter [34]. XRay creates false impressions only but
never clicks on ads. A back-of-the-envelope calculation
using impression pricing from [34] of $0.6/thousand
impressions reveals that XRay’s cost should be minimal:
at most 50 cents per ad for our largest experiments.

Despite these limitations, XRay has proven itself use-
ful for many needs, particularly in an auditing context.
An auditor can craft inputs that avoid many of these
limitations. For example, emails can be written to avoid
as much overlap as possible and keep the size of inputs
used for targeting within reasonable bounds. We hope
that XRay’s solid correlation components will streamline
much-needed investigations – by researchers, journalists,
or the FTC – into how personal data is being used.

9 Related Work
While §2.2 covered Web data protection and auditing
related works, we next cover other related topics. Our
work relates to recent efforts to measure various forms of
personalization, such as search [21, 46], pricing [33], and
ad discrimination [41]. These efforts start from the as-
sumption that personalization has a dark side (e.g., cen-
sorship [46], filter bubble [21]). They generally employ
a methodology similar in spirit to differential correlation,
but their goals differ from ours. They aim to quantify
how much output is personalized and what type of infor-
mation is used overall (be it a user’s geography, demo-
graphic attributes, or past behavior). In contrast, XRay
seeks to provide fine-grained diagnosis of which input
data generates which personalized results. Through its
scaling mechanisms – unique in the personalization and
data tracking literature – XRay scales well even when
the relevant inputs are many and unknown in advance.

Our work also relates to a growing body of research
measuring advertising networks. These networks,
notably complex and difficult to crawl [3], are rendered
opaque by the need to combat click fraud [9], and have
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been shown to be susceptible to leakage [27] and profile
reconstruction attacks [6]. As for other personalization,
prior studies have focused mostly on macroscopic trends
(e.g., What fraction of ads are targeted overall?) [3] or
qualitative trends (e.g., Which ads are targeted toward
gay males?) [20]. Various studies showed traces – but
not a prevalence – of potential abuse through concealed
targeting [20] and data exchange between services [45].
These works primarily focus on display advertising,
and each distinguishes contextual advertising using a
specific classifier with semantic categories obtained
from Google’s Ad Preferences Managers or another
public API [31].

XRay departs significantly from these works. First,
since it entirely ignores the content and even the domain
of targeting, it is readily applied as-is to ads in Gmail,
product recommendations, and videos. Second, while
previous methods label ads as “behavioral” in bulk once
other explanations fail [31], XRay remains grounded on
positive evidence of targeting, and it determines to which
inputs an output should be attributed. Third, XRay’s
mechanisms to avoid exponential input placement and
deal with overlapping inputs are unprecedented in
the Web-data-tracking context. While they resemble
black box software testing [4], the specific targeting
assumption we leverage have, to our knowledge, no
prior equivalent.

10 Conclusions
The tracking of personal data usage poses unique
challenges. XRay shows for the first time that accurate,
fine-grained tracking need not compromise portability
and scalability. For users who care about which piece
of their data has been targeted, it offers a unique level
of precision and protection. Our work calls for and pro-
motes the best practice of voluntary transparency, while
at the same time empowering investigators and watch-
dogs with a significant new tool for increased vigilance.
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A Proof of Theorem 1
A.1 Targeting functions, Axioms and Core Family
To formalize our main result we need to carefully define
how targeting works and the simple qualitative axioms
that it obeys. We show in this section that, provided
those axioms are satisfied, targeting can always be
associated with a small number of input combinations
that we call its core.

A.1.1 Definitions and main result

Given a fixed universe of N inputs, a combination C
of order r, also called r combination, is a subset of r
elements among the N inputs.

Each given ad is associated with a targeting function
defined as a mapping f from any subset C of the N in-
puts into {0,1}, where f (C ) = 1 denotes that an account
containing C as inputs should be targeted. By conven-
tion, untargeted ads are associated with the null function
f (.) = 0. Any targeting function f satisfies two axioms:
• monotonicity: C ⊆ C ′ =⇒ f (C )≤ f (C ′).
• input-sensitivity: ∃C ,C ′ s.t. f (C ) 6= f (C ′).
Monotonicity simply reflects that an account with strictly
more interest or hobbies should in theory be relevant to
more ads, and never to less. Input sensitivity prevents the
degenerate case where a targeting function is constant.

A family S of size l is any collection of l distinct com-
binations. The order of this family is defined as the
largest order of a combination it contains. For any fam-
ily S, one can define a targeting function that takes value
f (C ) = 1 whenever the subset C contains at least one
combination in S. We now show the converse also holds.

Lemma 1 For each monotone, input-sensitive targeting
function there exists a unique family S satisfying:

(i) S has size l and order r and it explains f , which
means f (C ) = 1 holds if and only if ∃C ′ ∈ S,C ′ ⊆ C .

(ii) No family of size l′ < l explains f .
(iii) No family of order r′ < r explains f .
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Hence, associated with each ad and therefore each tar-
geting function is a unique family of input combinations
that is targeted. We call this the ad’s core family.

Before proving the result above, we discuss its mean-
ing and consequences. Let us first introduce a definition,
the following order relation will play an important role:
We say that a family S explains another S′ if for any
combination C ′ in S′ there exists a combination C ∈ S
such that C ⊆ C ′. Note that according to the definitions
above, S explains a function f if and only if it explains
S f = { C | f (C ) = 1 }= f−1({1}) and S⊆ S f .

For example, with n = 4 inputs, S = { {1,3} , {4} }
and S′ = { {1,2,3} , {4} , {2,4} , {1,3} } we see that
S explains S′. Intuitively, if S explains S′, then if we
were to observe that all combinations in S′ receive an
ad, this could in theory be explained by the hypothesis
that the ad is targeted at accounts which contain any of
the combinations of inputs in S. Alternatively, if S does
not explain S′, then it shows that S is not sufficient on its
own to interpret this observation. Similarly, a family S
explains f if all its combinations are relevant to the ad,
and for any subset of inputs S′ that leads f to take value
1, at least one combination in S is included in S′.

Note that, by definition S f explains f , but it does
not explain f succinctly. In particular S f is a big
family that contains a lot of combinations, and since
by monotonicity we have f ({1, . . . ,N}) = 1 then S f
contains the combination of all inputs (which has order
N)). What Lemma 1 and the definition of a core family
indicate is that it is possible to find a small family, as
small as possible both in terms of number and length of
combinations involved, that also explains f . Note that
this result is a consequence of the monotonicity axiom
and does not hold for non-monotonic function.

Take the following example: if f (S) = 1 if and only if
S contains a particular input Di. S f contains all supersets
of {Di}, a family containing 2N−1 combinations, but the
family S = {{Di}} explains f as well, it is of size 1 and
order 1.

Proof: Let
−→
D f be the digraph with vertex-set S f and

with arc-set { (C ,C ′) | C ( C ′ }. We have that
−→
D f is

a DAG because the subset-containment relation defines
a partial order. So, let S be the non-empty set of com-
binations with null in-degree in

−→
D f . By construction, S

explains S f and S⊆ S f , hence S explains f .
Furthermore, we claim that S is contained in any fam-

ily S′ explaining f : indeed, since S′ is required to contain
a subset of any combination C ∈ S, and no combination
of S f is strictly contained in C , then it must contain C .
This shows that S satisfies all conditions of Lemma 1. Fi-
nally, since another family explaining f needs to include
S, then it will necessarily have a higher size l, hence S is
the unique with both minimum size and order. �

Hence, associated with each ad and therefore each tar-
geting function is a unique family of input combinations
that are targeted, called the ad’s core family, and we now
sketch why it is correctly identified by our algorithm.

A.2 Algorithm and correctness
We first describe the gist of the proof of Theorem 1
as following from two main claims. These claims are
established by using properties of random subsets of
elements, which we analyze before providing a formal
complete proof.

A.2.1 Definitions and proof overview

A subset of inputs C is an x intersecting subset of a fam-
ily S (for 0≤ x≤ 1) if at least a fraction x of the subsets in
S intersect C (i.e., each contains an input chosen in C ):

{ S ∈ S | ∃i ∈ C , i ∈S } ≥ x · |S| .

Similarly, we say that S′ is an x intersecting family of a
family S if at least a fraction x of the subsets contained
in S contain a combination chosen in S′:{

S ∈ S
∣∣ ∃C ∈ S′,C ⊆S

}
≥ x · |S| .

One can immediately deduce the following lemma

Lemma 2 Let S′ be an x intersecting family of |S|, ∃C
an x intersecting subset of S such that |C | ≤ |S′|.

Indeed, one can build C by including for each combina-
tion of S′ any single input it contains.

Overview of the proof: The gist of the argument
for Theorem 1 is an original connection between small
intersecting subsets and the effect of a core family.
Given an ad, let us denote by S(ad) the family of all
inputs combinations that are receiving the ad. The
proof relies on the following claim: There exists a
value of 0 < x < 1 such that with high probability an
x intersecting subset of order ≤ l exists for S(ad) if and
only if the ad is targeted with a core family of size ≤ l.
Hence, finding such subset is a sound and complete test
for detecting that targeting occurs.

The proof unfolds with two complementary claims:
• Completeness: Let S(core) be the ad’s core family,

then an x intersecting subset of S(ad) with size |S(core)|
exists.

This claim holds trivially when targeting is strict and
the ad is never shown outside the target (i.e., pout = 0).
Indeed, all combinations of inputs S seeing the ad
(i.e., in S(ad)) necessarily need to be within the target
(i.e., f (S ) = 1) and hence they have to include a
combination chosen in S(core). We then deduce that
S(core) is a 1 intersecting family of S(ad) with size l,
hence by Lemma 2 a 1 intersecting subset exists with at
most the same size.
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When targeting is not strict (i.e., pout > 0) it is more
complicated, we can however prove that a similar claim
holds for a smaller value of x with high probability by
exploiting properties of random subsets as shown below.
• Soundness: If targeting does not occur, then S(ad)

does not admit an x intersecting subset of size l.
This claim follows naturally from the properties of
random subsets and is not qualitatively surprising.
However, it is important that we prove that the same
value of x that is used for completeness also allows to
obtain that property, which is why a careful analysis is
required. Note also that it is critical that both properties
hold using a small number m of accounts to test (i.e., m
should be of the order ln(N) where N is the number of
inputs to monitor).

Finally, while the above argument explains an algo-
rithm can detect that targeting takes place, it does not
explain how the core family can be exactly computed.
Again, this can be done by leveraging stronger results of
random subsets, and we present different algorithms that
determine the core family with varying time-complexity
tradeoff.

A.2.2 Random subsets and probabilistic inequalities

Let us start with some definitions:
• A random Bernoulli subset, denoted by B(n, p), is a

subset such that any of n elements is contained with
probability p independently of all others.

• A random Bernoulli family of size m is a collection of
m independent Bernouilli subsets.
Since Bernouilli subsets and families derive from

many independent decisions to include or not a single el-
ement, we will use inequalities on the distribution of sum
of binary variables, especially this one due to Chernoff:

Lemma 3 If Y is a sum of independent binary variables,
let µ = E [Y ], we have for any 0 < δ ≤ 1:

P [Y ≥ (1+δ )µ ]≤ exp
(
− δ 2µ

3

)
, and

P [Y ≤ (1−δ )µ ]≤ exp
(
− δ 2µ

2

)
Thus, for any polynomial P, integer N and value ε > 0,

µ ≥ 3
δ 2 ln

(
2P(N)

ε

)
=⇒ P [|Y −µ| ≤ δ µ ]≥ 1− ε

P(N)
.

In other words, such variable Y remains close to its ex-
pectation (i.e., up to a constant multiplicative factor) ex-
cept on an event of polynomially small probability. This
holds as soon as its expectation is at least logarithmic.

The lemma below allows us to prove soundness:

Lemma 4 Let 1 > x > 0, l ∈N, p < 1− (1−x)
1
l , and a

Bernouilli family B1(n, p),B2(n, p), . . . ,Bm(n, p). There
exists C > 0 such that for any ε > 0 and polynomial

P, if m ≥ C · (l ln(n)+ lnP(n)+ ln(1/ε)) , then with
probability (1− ε/P(n)) no x intersecting subset exists
of size l for this Bernouilli family.

Proof: Let us consider an arbitrary subset C of size l.
The probability that it intersects an arbitrary Bernouilli
subset is 1− (1− p)l . If we introduce Y the variable
counting how many Bernouilli subset C intersects, we
observe that it is a sum of binary independent variables,
with expectation µ =

(
1− (1− p)l

)
m. We also note

that C is an x intersecting subset exactly if Y ≥ xm. As-
suming p < 1− (1− x)

1
l as we do, µ is multiplicatively

smaller than xm. Hence we can apply Chernoff Bound
to conclude that P [Y ≥ xm ]≤ ε

P(n)nl when

m≥C ·
(

ln
(

nlP(n)/ε

))
, with C = 3

1− (1− p)l(
x−
(

1− (1− p)l
))2 .

Since there are
(n

l

)
≤ nl choices of C , by the union

bound the probability that at least one of them is an
x intersecting subset is at most ε

P(n) . �

A.2.3 Detailed proof

First, let us consider soundness. Assuming no targeting
takes place, subsets of inputs in S(ad) are chosen inde-
pendently of the inputs that they contain. Hence it is a
Bernouilly family of average size p /0m with parameter
N (the number of inputs) and p = α . By choosing
x > 1− (1−α)l and m sufficiently large, with very high
probability no x intersecting subset of size l exists. In
this case, our test correctly concludes that no targeting is
taking place.

Now, let us consider completeness. We already
explained why this test will be correct when the ad is re-
ceived only by accounts within the target (i.e., pout = 0)
but it remains to be shown in the general case. We
start from the following observation: The family S(ad)

is composed of two families. The first, S(ad,in), contains
subsets of inputs that are in the target, and hence contain
a combination of S(core). The second, S(ad,out), includes
subsets that are not in the target but received the ads
due to pout > 0. It can be observed that the size of
both families depends on the values of pout, pin, α . We
already know that a 1 intersecting subset of size l exists
for S(ad,in), that we can construct using S(core). Note
that it is also an x intersecting subset for S(ad), where
x = |S(ad,in)|/(|S(ad,in)|+ |S(ad,out)|).

Lemma 5 We assume that targeting takes place, where
the targeting function admits a core family of size l and
order r, and uses targeting probability pin and pout. Let
x > 0, α > 0, and assume pout/pin <

1−x
x

αr

1−αr . Finally,
let C be any combination.
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There exists C > 0 such that for any ε > 0 and
polynomial P, whenever we have

m≥C · (lnP(N)+ ln(1/ε)) .

then with probability (1− ε/P(N)) the following holds:
among accounts containing C and receiving the ad, at
least a fraction x of them is within the targeting scope,

i.e.,

∣∣∣{ S ∈ S(ad,in) | C ⊆S
}∣∣∣∣∣{ S ∈ S(ad) | C ⊆S
}∣∣ ≥ x .

Proof: For each of the accounts A1, . . . ,Am we
introduce Yj which takes he following value:

1 if A j is in target, sees the ad, and C ⊆ A j,
− x

1−x if A j is not in target, sees the ad, and C ⊆ A j,
0 otherwise

We then introduce Y = ∑
m
j=1 Yj, which is a sum of binary

independent variables. We also note that the property of
the theorem holds exactly if Y ≥ 0, it is then sufficient
to prove that this occurs with high probability using a
Chernoff bound argument.

First by the linearity of expectation we have that:

E[Y ] =
m

∑
j=1

(
α
|C |qC pin−

x
1− x

α
|C | (1−qC ) pout

)
=

(
qC pin−

x
1− x

(1−qC ) pout

)
α
|C |m,

where qC denotes the probability for an account
to be within scope knowing that it contains C .
This expectation is positive as long as it holds that
pout/pin <

1−x
x

qC
1−qC

. Moreover, the above upper-bound
is monotonically increasing with qC , which is at least αr

because it suffices to complete C with any combination
of the core to be within scope. As a result, it always
holds that E [Y ] > 0 (with respect to our assumption
about the ratio pout/pin for the lemma).

Accordingly we deduce whenever m≥C · ln(P(N)/ε)

with C =
2

α |C |qC pin

(
1− x

1− x
1−qC

qC

pout

pin

)−1

≤ 2
α |C |+r pin

(
1− x

1− x
1−αr

αr
pout

pin

)−1

,

that P [Y ≥ 0 ]≥ 1− ε

P(N) holds �

Final argument. According to Lemma 5 (applied with
C = /0), the existence of an x intersecting set of size l
is guaranteed with high probability, if we can satisfy the
condition on x.

In particular, since we could a priori fix α to satisfy
x > 1− (1−α)l we have that both proof apply simulta-
neously whenever there exists 0 < x < 1 verifying:

pout

pin
<

1− x
x

(1− (1− x)
1
l )r

1− (1− (1− x)
1
l )r

= ϕl,r(x) . (1)

Whenever this condition is verified (i.e., whenever the
gap between pout and pin is sufficiently large), one
can choose a value of x, α and subsequently C such
that if m ≥ C ln(n/ε) the detection test is correct with
probability 1− ε/n.

Note that while finding an x intersecting subset is
a sufficient evidence that targeting takes place, it does
not allow us to directly compute the core family. In
particular this subset is neither a combination of the core
family, it is a union of elements that all appear in at least
one combination of the core family, but it is not unique.

However, using this detection brick, various algo-
rithms can be used to exhaustively search for a core
family. We will also show that a polynomial-time
algorithm can refine this analysis to compute the core
family at the expense of a more complex recursion.
A.2.4 When is the condition verified?

The condition of Eq.(1) is important because it denotes
the maximum ratio pout/pin that can be detected by our
algorithm. Intuitively, if this ratio is 1 and pout = pin
targeting has no effect and hence its presence and its
core family remains impossible to determine. Since
the choice of the percentage x is a parameter of the
algorithm that can be tuned (along with the value of α)
it would be interesting to know under which condition
we can detect targeting with the largest pout/pin ratio.
The following lemma answers that question precisely:

Lemma 6 Let Ml,r = maxx∈]0;1[ ϕl,r(x), we have
if l = 1, M1,r = 1/r ,
if r = 1, Ml,1 = 1/l ,
if r = l = n > 1, Mn,n = 1/(2n−1)2 ,

if r > 1, l > 1, Ml,r =
zl

1−zl
(1−z)r

1−(1−z)r ,

where z is the only solution in ]0;1[ of

rzl+1− l(1− z)r+1− (r+ l)z+ l = 0 ,

and this maximum is attained for x = 1− zl .

Proof: When l = 1 one can easily see that ϕ1,r is
strictly increasing on this interval and computes its limit
as x approaches 1. A similar argument holds for r = 1.

Whenever r > 1 and l > 1, introducing the new
variable z = (1− x)1/l we first observe:

ϕl,r(z) = fl(z) · fr(1− z) , where fn(z) =
zn

1− zn .

We observe ϕ ′l,r(z) = f ′l (z) · fr(1−z)− fl(z) · f ′r(1−z),
and note that this derivative becomes null whenever
f ′l (z)/ fl(z) = f ′r(1− z)/ fr(1− z). Moreover, we have

f ′n(z) =−
lzn−1

(1− zn)2 hence f ′n(z)/ fn(z) =
n

z(1− zn)
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so that the condition is l
z(1−zl)

= r
(1−z)(1−(1−z)r) which

yields the value of z reaching the maximum.
To conclude, we just need to observe that there is a

unique solution in ]0;1[. We can immediately observe,
when r > 1 and l > 1 that the product fl(z) · fr(1− z)
has null limits on both side, and a derivative that is
positive near 0+ and 1−. Since its third derivative is
strictly positive, its second derivative increases and can
only be null once. We deduce that the derivative cannot
cancel twice between 0 and 1 since it would create two
inflexion points.

Finally, when r = l = n, since the product is symmetric
in z and it has a unique maximum on ]0;1[ it has to be in
z = 1

2 which yields the result. �
According to this lemma, when a single input is used

for targeting i.e., l = 1,r = 1, the condition is always
verified as soon as pout < pin and hence any targeting is
detected. When the targeting uses a single combination
of r > 1 inputs (i.e., l = 1) or a union of l > 1 single
inputs (i.e., r = 1), the condition holds as long as pout is
below some threshold.

When l and r are allowed to grow beyond 1, the quick
combinatorial explosion of the number of hypotheses
to test by our system requires that the ratio pout/pin
decreases exponentially fast, but detection remains
possible. For l = r = 3, a relatively complex case, we
can still detect targeting even when 2% of accounts
outside the target received the ads. Figure 12 presents
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Figure 12: The function ϕl,r(z) for l > 1 and r > 1.

the value of the RHS defining the necessary condition,
as a function of the variable z = (1− x)

1
l . We observe

maxima for different values of l and r.

A.2.5 Beyond detection, computing the core family

So far, we have shown that, after computing the family
made with inputs of account receiving ads, looking
for an x intersecting subset of this family with size
l is a correct test with high probability whenever we
have a logarithmic number of accounts. If this test

determines that targeting does not take place, there is no
other explanation to find. However, if targeting occurs,
one would also like to deduce from this test which
combination of inputs are used for targeting this ad, or
computing exactly the core family of the function f .

Here we show that under the same condition as
detection, we can compute the core family. There are
multiple algorithms to do so, each one potentially better
depending on what is known about the targeting. They
all use a common result that we draw below:

Lemma 7 We assume Eq.(1) and targeting occurs with
a core family S(core). There is C > 0, 0 < x < 1 such
that for any ε > 0, polynomial P, and combination C , if
m≥C ·(ln(n)+ lnP(n)+ ln(1/ε)), then with probability
(1− ε

P(n) ) exactly one of the following claims holds:
(i) C contains a combination from the core family

i.e., ∃S ∈ S(core) , S ⊆ C .

(ii) an x intersecting subset of size l exists for

∆
(ad) (C ) =

{
S ∩C

∣∣∣S ∈ S(ad) , C ⊆S
}
.

This result combines all lemmas used in the proof
of the detection test. In fact, with the convention
S(core) = /0 used to denote non-targeting, it contains the
proof of detection test as a particular case with C = /0.
But its strength is to be applied to multiple different
combination C as a building block to determine S(core).

Proof: First we prove (i) implies (ii) cannot hold
which is the easy part of the result. If a combination of
the core is contained in C , then any account that contains
C as part of its input is in the target and hence it receives
an ad with probability pin, and this holds irrespectively of
all other inputs. One deduces that ∆(ad) (C ) in that case is
a Bernouilli family, we can then apply Lemma 4 and con-
clude that (ii) may only occur with probability ε/P(n).

We now show that if (i) does not hold, then (ii) does.

Let ∆
(ad,in) (C ) =

{
S ∩C

∣∣∣S ∈ S(ad,in) , C ⊆S
}
,

and ∆
(core) (C ) =

{
S ∩C

∣∣∣S ∈ S(core)
}
.

Note that since no combination of the core family is
included in C , no element of ∆(core) (C ) is empty.
Observe that, by definition a combination in S(ad,in)

should contain a combination of the core. This directly
implies that a combination in ∆(ad,in) (C ) necessary
contains a combination from ∆(core) (C ), which is by
consequence a 1 intersecting family of ∆(ad,in) (C ).

It is an immediate consequence of Lemma 5 that under
the condition above, |∆(ad,in) (C ) |/|∆(ad) (C ) | ≥ x holds
with probability 1− ε/P(n). Therefore ∆(core) (C ) is an
x intersecting family of ∆(ad) (C ), proving (ii). �
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The result above shows that under the same conditions
as those used for detection, one can design a provably
correct test to decide whether a combination C is a
superset of a combination in the core. This test resem-
bles the previous one, it looks for an intersecting subset
of size l that does not use the inputs of C among the
accounts containing C . It uses no more than O(Nl+1)
operations with a naive exhaustive search. What remains
to be shown is how one can conduct multiple tests on
various combinations C to compute S(core). There are
multiple ways:

Agglomerative algorithms: Assume an upper bound
lmax is known. A simple (costly) search looks for the
results of all tests for all combinations. For instance, one
can maintain a current core S(core) initialized to be empty,
and a queue of combinations remaining to be checked,
which is initialized to contain C = /0. The first test in
effect tests whether targeting occurs. Whenever a combi-
nation C is at the head of the queue, we update it as fol-
lows: (1) if the combination already contains one combi-
nation identified in S(core), simply drop it otherwise run
the test; (2) if the test finds an intersecting subset of size
l ≤ lmax, conclude that C does not contain a combination
of the core, and add N−|C | combinations to the queue
constructed as { C ∪{i} | i /∈ C }, while avoiding those
already in the queue; (3) if the test concludes that C
contains a combination of the core, add C to S(core).

It’s possible to run the queue infinitely, stopping
whenever lmax combinations have been identified, or
when all combinations of order rmax have been checked,
assuming such bound is known. This uses at most
O(Nlmax+rmax+1) operations.

Removal algorithms: There are two drawbacks in the
precedent algorithm: it tests a large number of combi-
nations, and if the bound rmax is loose, and l < lmax it
will test absolutely all combinations of size rmax before
concluding, which seems very costly. We now present
another algorithm that does not assume any bound on r,
and prevents this exhaustive search.

It works as follows: let us assume we already
identified a family of some combinations in the core,
S ⊆ S(core). If we assume we start from a combination
C that (1) is not a superset of a combination in S, and
(2) contains a combination from the core family S(core),
then we are guaranteed to find another combination of
S(core) using at most |C | tests. In fact, one can update C
as follows: order all inputs from C arbitrarily, and for
each one do the following: first remove the input from
C and run the test to determine whether it still contains
a combination of the core. If the test indicates that a
core combination remains, this removal is permanent,
otherwise, it proves that, for the remainder of inputs left,
this one is “critical” and we put it back in C . After we

do that for all inputs, the ones remaining in C form a
combination of the core.

One can start with S = /0 and C containing all inputs,
as this is guaranteed to find a core combination C1. At
any time, S contains at most l combinations of at most
r inputs, which means there are at most rl subsets con-
structed by taking all inputs and removing at least one
inputs from each of the combinations of S. All those sub-
sets satisfy property (1) above, but not necessarily (2).
In fact, we can consider them in any order, and run the
test of property (2). If one of them does satisfy it, it can
be used to find a new combination of the core, and the
process repeats with a new value of S. Otherwise, if all of
those subsets are shown not to contain any more combi-
nation, we can conclude that S contains all combinations
of the core. There could not be more than l combinations
in S, hence this algorithms uses at most lrlN tests, which
hence uses in total O(Nlmax+2) operations.
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