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Abstract. Several sets of quaternionic functions are described and studied with respect to hy-

perholomorphy, addition and (non commutative) multiplication, on open sets of H, then Hamil-

ton 4-manifolds analogous to Riemann surfaces, for H instead of C, are defined, and so begin to

describe a class of four dimensional manifolds.
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1. Introduction. We first recall the definition of the field H of quaternions using pairs

of complex numbers and a modified Cauchy-Fueter operator (section 2) that have been

introduced by C. Colombo and al., [CLSSS07]. We will only use right multiplication. We

will consider C∞ H-valued quaternionic functions defined on an open set U of H whose

behavior mimics the behavior of holomorphic functions on an open set of C. If such a

function does not vanish identically, it has an (algebraic) inverse. Finally we describe

properties of Hyperholomorphic functions with respect to addition and multiplication.

In section 3, we characterize the quaternionic functions which are, almost everywhere,

hyperholomorphic and whose inverses are hyperlomorphic almost everywhere, on U , as
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the solutions of a system of two non linear PDE. We find non trivial examples of a solution

showing that the considered space of functions is significant; we will call these functions

Hypermeromorphic.

At the moment, I am unable to get the general solution of the the system of PDE.

Same difficulty for subsequent occurring systems of PDE.

In section 4, we describe a subspace of hyperholomorphic and hypermeromorphic

functions defined almost everywhere on U , having “good properties for addition and

multiplication”; we again obtain systems of non linear PDE.

In section 5 and the following, we consider globalization of the above notions, define

Hamilton 4-manifolds analogous to Riemann surfaces, for H instead of C, and give exam-

ples of such manifolds; our ultimate aim is to describe a class of 4-dimensional manifolds.

2. Quaternions. H-valued functions. Hyperholomorphic functions.

See [CSSS04, CLSSS07, D13].

2.1. Quaternions. If q ∈ H, then q = z1 + z2j where z1, z2 ∈ C. We have z1j = jz1,

and note |q| = |z1|
2 + |z2|

2.

The conjugate of q is q = z1 − z2j. Let us denote * the (right) multiplication in H,

then the right inverse of q is: q−1 = |q|−1q

2.2. Quaternionic functions. Let U be an open set of H ∼= C2 and f ∈ C∞(U,H),

then f = f1 + f2j, where f1, f2 ∈ C∞(U,C). The complex valued functions f1, f2 will be

called the components of f .

2.3. Definitions. Let U be an open neighborhood of 0 in H ∼= C2.

(a) From now on, we will consider the quaternionic functions f = f1 + f2j having the

following properties:

(i) When f1 and f2 are not holomorphic, the set Z(f1) ∩ Z(f2) is discrete on U ;

(ii) for every q ∈ Z(f1) ∩ Z(f2), J
α
q (.) denoting the jet of order α at q (see [M66]),

let mi = supαi
Jαi

q (fi) = 0; mi, i = 1, 2, is finite.

mq = infmi is the order of the zeroe q of f .

(b) We will also consider the quaternionic functions defined almost everywhere on U (i.e.

outside a locally finite set of C∞ hypersurfaces, namely Z(f1), Z(f2)).

2.4. Modified Cauchy-Fueter operator D. Hyperholomorphic functions.

See [CLSSS07, F39].

For f ∈ C∞(U,H), with f = f1 + f2j,

Df(q) =
1

2

( ∂

∂z1
+ j

∂

∂z2

)

f(q).

A function f ∈ C∞(U,H) is said hyperholomorphic if Df = 0.

Characterization of the hyperholomorphic function f on U :

∂f1
∂z1

−
∂f2
∂z2

= 0;
∂f1
∂z2

+
∂f2
∂z1

= 0, on U. (1)
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2.5. Several families of meromorphic functions. The conditions f1 is holomorphic

and f2 is holomorphic are equivalent on U ; the same is true for almost everywhere defined

holomorphic functions on U .

By definition, holomorphic (almost everywhere defined functions of two complex vari-

ables on U are such that f2 = 0, and f1 is (almost everywhere) holomorphic.

2.5.1. Consider the almost everywhere defined hyperholomorphic functions on U whose

components are real.

f = f1 + f2j

According to a remark of Guy Roos in March 2013, they are almost everywhere

holomorphic [R13].

2.5.2. The above considered almost everywhere holomorphic functions are meromorphic

and constitute two H-commutative algebras A1, A2, with common origin 0. Let f = a+bi,

and g = c+dj, with a, b, c, d ∈ R be two almost everywhere defined holomorphic functions

i.e.meromorphic functions on U .

A1 is the set of the meromorphic functions f = a+bi, and A2 is the set of meromorphic

functions g = c+ dj, with a, b, c, d ∈ R

The sums f + g = a + c + dj + bi constitute the algebra A1 + A2 of meromorphic

functions.

More generally, Aα,β = αA1 + βA2, with α, β ∈ R is an algebra of meromorphic

functions on U .

Aαβ =
∑

a,b,c,d,α,β∈R

α(a+ bi) + β(c+ dj)

2.5.3. We now begin to introduce multiplication for hyperholomorphic functions, addition

and scalar muliplication being obvious.

2.6. Multiplication of almost everywhere defined hyperholomorphic functions.

Proposition 2.1. Let f ′, f ′′ be two almost everywhere defined hyperholomorphic func-

tions. Then, their product f ′ ∗ f ′′ satisfies:

D(f ′ ∗ f ′′) = Df ′ ∗ jf ′′ +
(

f ′(
∂

∂z1
) + f

′

j
∂

∂z2

)

f ′′

Proof. f ′ = f ′

1 + f ′

2j, f
′′ = f ′′

1 + f ′′

2 j be two hyperholomorphic functions.

We have: f ′ ∗ f ′′ = (f ′

1 + f ′

2j)(f
′′

1 + f ′′

2 j) = f ′

1f
′′

1 − f ′

2f
′′

2 + (f ′

1f
′′

2 + f ′

2f
′′

1 )j

Compute
1

2

( ∂

∂z1
+ j

∂

∂z2

)(

f ′

1f
′′

1 − f ′

2f
′′

2 + (f ′

1f
′′

2 + f ′

2f
′′

1)j
)

By derivation of the first factors of the sum f ′ ∗ f ′′, we get the first term:

1

2

(∂f ′

1

∂z1
+ j

∂f ′

1

∂z2

)

(f ′′

1 + f ′′

2 j) +
1

2

(∂f ′

2

∂z1
+ j

∂f ′

2

∂z2

)

jj(f
′′

2 − f
′′

1 j)

=
1

2

(∂f ′

1

∂z1
+ j

∂f ′

1

∂z2

)

(f ′′

1 + f ′′

2 j) +
1

2

(∂f ′

2j

∂z1
+ j

∂f ′

2j

∂z2

)

j(f ′′

2 j+ f ′′

1 ) = Df ′ ∗ jf ′′
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By derivation in

1

2

( ∂

∂z1
+ j

∂

∂z2

)(

f ′

1f
′′

1 + f ′

2jf
′′

2 j+ (f ′

1f
′′

2 j+ f ′

2jf
′′

1 )
)

of the second factors of the sum f ′ ∗ f ′′, we get the second term (up to factor 1
2 ):

f ′

1

∂f ′′

1

∂z1
+ f

′

1j
∂f ′′

1

∂z2
+ f ′

1

∂f ′′

2

∂z1
j+ f

′

1j
∂f ′′

2

∂z2
j

+ f ′

2j
∂f ′′

2

∂z1
j+ f

′

2j
∂f ′′

2

∂z2
+ f ′

2j
∂f ′′

1

∂z1
+ f

′

2jj
∂f ′′

1

∂z2

= (f ′

1 + f ′

2j)(
∂

∂z1
)(f ′′

1 + f ′′

2 j) + (f
′

1 + f
′

2j)j
∂

∂z2
(f ′′

1 + f ′′

2 j)

=
(

(f ′

1 + f ′

2j)(
∂

∂z1
) + (f

′

1 + f
′

2j)j
∂

∂z2

)

(f ′′

1 + f ′′

2 j)

=
(

f ′(
∂

∂z1
) + f

′

j
∂

∂z2

)

f ′′.

3. Almost everywhere hyperholomorphic functions whose inverses are almost

everywhere hyperholomorphic.

3.1. Definitions. We call inverse of a quaternionic function f : q 7→ f(q), the func-

tion defined almost everywhere on U : q 7→ f(q)−1; then: f−1 = |f |−1f , where f is the

(quaternionic) conjugate of f , then: f−1 = |f |−1(f1 − f2j).

Behavior of f−1 at q ∈ Z(f). Let n1 = supJα
q (|f |f

−1

1 ); n2 = supJα
q (|f |f

−1

2 ).

Define : nq = sup ni, i = 1, 2 as the order of the pole q of f−1.

3.2. Characterisation.

Proposition 3.1. The following conditions are equivalent:

(i) the function f and its right inverse are hyperholomorphic, when they are defined;

(ii) we have the equations:

(f1 − f1)
∂f1

∂z1
− f2

∂f2
∂z1

− f2
∂f1
∂z2

= 0

f2
∂f1
∂z1

+
∂f2

∂z1
(f1 − f1)− f2

∂f2
∂z2

= 0

Proof. Let f = f1+f2j be a hyperholomorphic function and g = g1+g2j = |f |−1(f1−f2j)
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its inverse; so g1 = |f |−1f1; g2 = −|f |−1f2, where |f | = (f1f1 + f2f2).

Dg(q) =
1

2

( ∂

∂z1
+ j

∂

∂z2

)

g(q) =
1

2

(∂g1
∂z1

−
∂g2
∂z2

)

(q) + j
1

2

(∂g1
∂z2

+
∂g2
∂z1

)

(q)

∂g1
∂z1

= |f |−1 ∂f1
∂z1

− |f |−2f1
(∂f1
∂z1

f1 + f1
∂f1
∂z1

+
∂f2
∂z1

f2 + f2
∂f2
∂z1

)

−
∂g2
∂z2

= |f |−1 ∂f2
∂z2

− |f |−2f2
(∂f1
∂z2

f1 + f1
∂f1
∂z2

+
∂f2
∂z2

f2 + f2
∂f2
∂z2

)

∂g1
∂z2

= |f |−1 ∂f1
∂z2

− |f |−2f1
(∂f1
∂z2

f1 + f1
∂f1
∂z2

+
∂f2
∂z2

f2 + f2
∂f2
∂z2

)

∂g2
∂z1

= −|f |−1∂f2

∂z1
+ |f |−2f2

(∂f1
∂z1

f1 + f1
∂f1
∂z1

+
∂f2
∂z1

f2 + f2
∂f2
∂z1

)

2|f |2Dg

= (f1f1 + f2f2)(
∂f1

∂z1
+
∂f2
∂z2

)− f1f1
∂f1
∂z1

− f1f1

∂f1
∂z1

− f1f2
∂f2

∂z1
− f1f2

∂f2
∂z1

−f1f2

∂f1
∂z2

− f1f2

∂f1
∂z2

− f2f2
∂f2
∂z2

− f2f2

∂f2
∂z2

+j
(

(f1f1 + f2f2)(
∂f1
∂z2

−
∂f2
∂z1

)− f1f1

∂f1
∂z2

− f1f1
∂f1
∂z2

− f1f2

∂f2
∂z2

− f1f2
∂f2
∂z2

+f1f2

∂f1
∂z1

+ f1f2

∂f1
∂z1

+ f2f2
∂f2
∂z1

+ f2f2

∂f2
∂z1

)

Use the fact: f is hyperholomorphic:

(1)
∂f1
∂z1

−
∂f2

∂z2
= 0;

∂f1
∂z2

+
∂f2

∂z1
= 0

2|f |2Dg =

f1f1
∂f2

∂z2
+ f2f2

∂f1
∂z1

− f1f1
∂f1
∂z1

− f1f2
∂f2
∂z1

− f1f2
∂f1
∂z2

− f2f2

∂f2
∂z2

+ f2

∂f2
∂z1

(f1 − f1)+

+j
(

+f2f2

∂f1
∂z2

−f1f2

∂f2
∂z2

−f1f2
∂f2

∂z2
+f1

∂f1
∂z2

(f1−f1)+f1f2
∂f1
∂z1

+f1f2
∂f1
∂z1

+f2f2
∂f2
∂z1

)

f being hyperholomorphic, g hyperholomorphic is equivalent to the system of two

equations:

+f1f1
∂f2
∂z2

+f2f2

∂f1
∂z1

−f1f1

∂f1
∂z1

−f1f2
∂f2
∂z1

−f1f2
∂f1
∂z2

−f2f2
∂f2
∂z2

+f2

∂f2
∂z1

(f1−f1) = 0

+f2f2
∂f1
∂z2

−f1f2

∂f2
∂z2

−f1f2
∂f2

∂z2
+f1

∂f1
∂z2

(f1−f1)+f1f2
∂f1
∂z1

+f1f2
∂f1
∂z1

+f2f2

∂f2
∂z1

= 0

f1 and f2 satisfy, by conjugation of the second equation:

+f2f2
∂f1
∂z1

− f1f1
∂f1
∂z1

− f1f2

∂f2
∂z1

+ f2
∂f2
∂z1

(f1 − f1) + f1f1

∂f2
∂z2

− f1f2
∂f1
∂z2

− f2f2
∂f2
∂z2

= 0
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+f1f2
∂f1
∂z1

+f1f2
∂f1
∂z1

.+f2f2
∂f2
∂z1

+f2f2

∂f1
∂z2

−f1f2

∂f2
∂z2

−f1f2
∂f2

∂z2
+f1

∂f1
∂z2

(f1−f1) = 0

Using (1), we get:

+f2f2

∂f1
∂z1

+ f1(f1 − f1)
∂f1
∂z1

− f1f2
∂f2
∂z1

+ f2
∂f2

∂z1
(f1 − f1)− f1f2

∂f1
∂z2

− f2f2
∂f2

∂z2
= 0

+f1f2
∂f1
∂z1

+ (f1 − f1)f2

∂f1
∂z1

+ f2f2
∂f2
∂z1

+ f1
∂f1
∂z2

(f1 − f1) + f2f2
∂f1

∂z2
.− f1f2

∂f2
∂z2

= 0

Assume f1 6= 0, f2 6= 0

f1
(

f2f2
∂f1
∂z1

+ f1(f1 − f1)
∂f1
∂z1

− f1f2
∂f2
∂z1

+ f2
∂f2

∂z1
(f1 − f1)− f1f2

∂f1
∂z2

− f2f2
∂f2
∂z2

)

= 0

−f2
(

+f1f2

∂f1
∂z1

+(f1−f1)f2
∂f1
∂z1

+f2f2

∂f2
∂z1

−f1

∂f2
∂z1

(f1−f1)+f2f2

∂f1
∂z2

−f1f2
∂f2
∂z2

)

= 0

By sum:

f1
(

f1(f1 − f1)
∂f1
∂z1

− f1f2
∂f2
∂z1

+ f2
∂f2
∂z1

(f1 − f1)− f1f2
∂f1
∂z2

)

−f2
(

(f1 − f1)f2

∂f1
∂z1

+ f2f2
∂f2
∂z1

− f1

∂f2
∂z1

(f1 − f1) + f2f2
∂f1
∂z2

)

= 0

i.e.

(f1f1 + f2f2)
(

(f1 − f1)
∂f1
∂z1

− f2

∂f2
∂z1

− f2
∂f1
∂z2

)

= 0

f2
(

f2f2
∂f1
∂z1

+ f1(f1 − f1)
∂f1
∂z1

− f1f2
∂f2
∂z1

+ f2
∂f2

∂z1
(f1 − f1)− f1f2

∂f1
∂z2

− f2f2
∂f2
∂z2

)

= 0

f1
(

+f1f2
∂f1
∂z1

+(f1−f1)f2

∂f1
∂z1

+f2f2

∂f2
∂z1

−f1
∂f2
∂z1

(f1−f1)+f2f2

∂f1
∂z2

−f1f2
∂f2
∂z2

)

= 0

By sum

f2

(

f2f2

∂f1
∂z1

+ f2
∂f2
∂z1

(f1 − f1)− f2f2
∂f2
∂z2

)

+f1
(

f1f2

∂f1
∂z1

− f1

∂f2
∂z1

(f1 − f1)− f1f2
∂f2

∂z2

)

= 0

i.e.

f2
∂f1
∂z1

+
∂f2

∂z1
(f1 − f1)− f2

∂f2
∂z2

= 0

3.3. Definition. We will call w-hypermeromorphic function (w- for weak) any almost

everywhere defined hyperholomorphic function whose right inverse is hyperholomorphic

almost everywhere.



ON A NONCOMMUTATIVE ALGEBRAIC GEOMETRY 7

4. On the spaces of hypermeromorphic functions.

4.1. Sum of two w-hypermeromorphic functions.

Proposition 4.1. If f and g are two w-hypermeromorphic functions, then the following

conditions are equivalent:

(i) the sum h = f + g is w-hypermeromorphic;

(ii) h satisfies the following PDE:

−
(∂|h|

∂z1
+ j

∂|h|

∂z2

)

(h1 − h2j) + |h|
( ∂

∂z1
+ j

∂

∂z2

)

(h1 − h2j) = 0

Proof. Explicit the condition:

|h|
2
D(h−1) = −D(|h)|)(h) + |h|D(h) = 0;

with h = h1 − h2j

2Dh =
( ∂

∂z1
+ j

∂

∂z2

)

(h1 − h2j) =
∂h1
∂z1

+
∂h2
∂z2

−
(∂h2
∂z1

−
∂h1
∂z2

)

j

D(|h|) = D(h1h1 + h2h2) =
1

2

( ∂

∂z1
+ j

∂

∂z2

)

(h1h1 + h2h2)

=
1

2

(

h1
∂h1
∂z1

+ h2
∂h2
∂z1

+ h1
∂h1
∂z1

+ h2
∂h2
∂z1

)

+
1

2

(

h1
∂h1
∂z2

+ h2
∂h2
∂z2

+ h1
∂h1
∂z2

+ h2
∂h2
∂z2

)

j = 0.

4.2. Product of two w-hypermeromorphic functions.

Proposition 4.2. Let f , g be two w-hypermeromorphic functions on U , then the follow-

ing conditions are equivalent:

(i) the product f ∗ g is w-hypermeremorphic;

(ii) f and g satisfy the system of PDE:

g1(
∂f1
∂z1

+
∂f2
∂z2

) + (f1 − f1)
∂g1
∂z1

+ f2

∂g1
∂z2

− f2
∂g2
∂z1

= 0

g1(
∂f1
∂z2

−
∂f2
∂z1

) + (f1 − f1)
∂g1
∂z2

− f2

∂g1
∂z1

− f2
∂g2
∂z2

= 0

Proof. Let f = f1 + f2j and g = g1 + g2j two hypermeromorphic functions and f ∗ g =
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f1g1 − f2g2 + (f1g2 − f2g1)j their product, then

∂f1
∂z1

−
∂f2
∂z2

= 0;

∂(f1g1 − f2g2)

∂z1
−
∂(f1g2 − f2g1)

∂z2

= g1(
∂f1
∂z1

+
∂f2

∂z2
)− g2(

∂f1

∂z2
+
∂f2
∂z1

) + f1
∂g1
∂z1

− f1

∂g2
∂z2

+ f2
∂g1
∂z2

− f2
∂g2
∂z1

= 0

g1(
∂f1
∂z1

+
∂f2
∂z2

) + f1
∂g1
∂z1

− f1

∂g2
∂z2

+ f2

∂g1
∂z2

− f2
∂g2
∂z1

= 0.

∂(f1g1 − f2g2)

∂z2
+
∂(f1g2 − f2g1)

∂z1

= g1(
∂f1
∂z2

−
∂f2

∂z1
) + g2(

∂f1

∂z1
−
∂f2
∂z2

) + f1
∂g1
∂z2

− f1

∂g2
∂z1

+ f2
∂g1
∂z1

− f2
∂g2
∂z2

= 0

g1(
∂f1
∂z2

−
∂f2
∂z1

) + f1
∂g1
∂z2

+ f1

∂g2
∂z1

− f2

∂g1
∂z1

− f2
∂g2
∂z2

= 0

4.3. Definition. We will call hypermeromorphic the w-hypermeromorphic functions

whose sum and product are w-hypermeromorphic. Their space is nonempty, since it

contains the space of the meromorphic functions.

5. Globalisation. Hamilton 4-manifold.

5.1.. The hypermeromorphic functions on a relatively compact open set U of H play

the part of the meromorphic functions on a relatively compact open set U of C. We

will call pseudoholomorphic function on U , every hypermeromorphic function, without

poles on U . We will call smooth hypermeromorphic function (sha function) on U , every

hypermeromorphic function, without zeroes and poles on U .

Lemma 5.1. The quotient of two pseudoholomorphic functions on U , with the same zeroes

and the same orders, is a sha function on U .

5.2. Manifolds. The sha functions have been defined on open sets of H ∼= C2. Let X

be a 4-dimensional manifold bearing an atlas A of charts (hj , Uj) such as the transition

functions hi,j : Ui ∩ Uj → H are sha functions. X = (X,A) will be called an A-manifold

analogous for H of a Riemann surface for C. I also propose to call an A-manifold a

Hamilton 4-manifold.

5.3. Sheaves of pseudoholomorphic, hypermeromorphic functions.

5.3.1. Functions on an A-manifold X = (X,A). A map f : X → H is called a pseudo-

holomorphic function on X , if it is continuous and satisfies the following condition: for

every chart (h, U) of X , (f |U)h−1 : h(U) → H) is a pseudoholomorphic. In the same way,

a map f : X → H is called a hypermeromorphic function on X , if it is continuous and

satisfies the following condition:for every chart (h, U) of X , (f |U)h−1 : h(U) → H) is a

hypermeromorphic.
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5.3.2. Examples of Hamilton 4-manifold. The identity map of H is: z1 + z2j 7→ z1 + z2j.

Ex. 1: (idH,H) is the unique chart of the atlas defining H as an A-manifold. Proof. The

identity map (idH is f1 = z1, f2 = z2 is pseudoholomorphic.

Ex.2: Every open set V of X bears an induced structure of Hamilton 4-manifold.

Ex. 3: Hamilton hypersphere HP.

In the space HxH \ {0}, consider the equivalence relation ρ1Rρ2: there exists λ ∈

H∗ = H \ 0 such that ρ2 = ρ1λ (right multiplication by λ). The elements of HxH \ {0}

are the pairs (q1, q2) 6= (0, 0). Let

π : HxH \ {0} →
(

HxH \ {0}
)

/R denoted HP.

(q1, q2) 7→ class of (q1, q2)

So, HP is the set of the quaternionic lines from the origin of H2.

Consider the pairs (q1, q2) ∈ H2, with q2 6= 0 we have: π(q1, q2) = π(q1q
−1
2 , 1); let

ζ = q1q
−1
2 , q2 6= 0; in the same way, consider the pairs (q1, q2) ∈ H2, with q1 6= 0 we have:

π(q1, q2) = π(1, q2q
−1
1 ); let ζ′ = q2q

−1
1 , q1 6= 0. The charts ζ, ζ′ have for domains U , U ′,

two open sets of HP, respectively homeomorphic to H forming an atlas of HP. Remark

that U covers the whole of HP except the point π(q1, 0) denoted ∞, and that U ′ covers

the whole of HP except the point π(0, q2) denoted 0. U ′ = HP \ {0}. Over U ∩ U ′, we

have: ζ.ζ′ = 1, i.e. ζ′ = ζ−1 and ζ = q1q
−1
2 .

5.3.3.. Pseudoholomorphic map or morphism.

Let X and Y be two Hamilton 4-manifolds, a map f : X → Y is said pseudoholomor-

phic if it is continuous and if, for every pair of pseudoholomorphic charts (h, U), (k, V )

such that f(U) ⊂ V ,

k(f |U)h−1 : h(U) → k(V ) be pseudoholomorphic.

5.3.4. Sheaf of pseudoholomorphic functions. Let U, V be two open sets of X such that

U ⊂ V , then, the restrictions to U of the pseudoholomorphic functions on V are pseudo-

holomorphic on U .

So is defined the sheaf, denoted P , of (non commutative rings) of pseudoholomorphic

functions on X . The pair (X,P) is a ringed space.

In the same way, the sheaf of non commutative rings, denoted M, of hypermeromor-

phic functions is defined on X .

5.3.5. Hamiltonian Submanifolds. They are submanifolds whose function ring is pseu-

doholomorphic. We will implicitly use the following fact: If f is a pseudoholomorphic or

hypermeromorphic function, the same is true for a+ f , where a is any fixed quaternion.

The following examples are complex analytic submanifolds.

i) H. Let a be a fixed quaternion, then a + C ⊂ H is a complex line from a embedded

in H.

ii) HP. Complex projective line imbedded in HP. Let i : z1 7→ z1 + z2j and j : CP 7→ HP

C× C \ 0 → H×H \ {0}

i× i ↓ ↓
(

C× C \ 0
)

/R′ →
(

H×H \ {0}
)

R

Let p ∈ HP be a fixed point. Then, p+CP 1 is a complex projective line (or Riemann

sphere) from p, embedded in HP.
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iii) Let S be a compact Riemann surface contained in HP as a Hamiltonian submanifold.

Then p+ S is a compact Riemann surface from p, embedded in HP.

5.3.6. A family of complex submanifolds in a Hamilton 4-manifold. We now use the

properties and notions of subsection 2.5.2. They are a + Aα,β and also for restrtictions

to an open set U of H.

On a Hamilton 4-manifold X with an atlas A and every domain of chart U as above,

we obtain:

Proposition 5.2. Let (X,P) be a Hamilton 4-manifold. There exist a family of complex

analytic curves Cb,γ,δ, of X. For every U domain of coordinates in A let Aγ,δ. By gluing,

we get a complex analytic curve in (X,P) from b ∈ X, and γ, δ are real parameters.

Proof. Let b ∈ X ;β, γ ∈ R be given, consider an atlas A whose domains of charts are

either open sets U of X disjoint from Aβ,γ , or Vβ,γ = U ∪ (Aβ,γ ∩ U) where Aβ,γ ∩ U is

connected, not empty. The restrictions of the charts of A to the U ∪ (Aβ,γ ∩ U) define

an atlas of Cb,γ,δ as complex analytic subvariety of (X,P), in the following way: assume

b ∈ Vβ,γ ∩ Aβ,γ ∩ U and consider the open sets analogous to Vβ,γ such that the various

Vβ,γ be connected. Then the corresponding Aβ,γ ∩U constitute a covering of the unique

complex analytic curve Cb,γ,δ.

5.3.7.. Let C be a complex analytic curve embedded into X and an atlas A such that

every chart of domain U meeting C satisfies: U ∩ C is connected

Theorem 5.3. The set of complex analytic curves in X is the family Cb,γ,δ.

6. Hamilton 4-manifold of a hypermeromorphic function.

6.1. Analytic continuation along a path. [D90, p. 116]

Let X be a Hamilton 4-manifold, γ : [0, 1] → X a continuous path from a to b, ϕ ∈ Pa

a germ of pseudoholomorphic function at a.

Let τ ∈ [0, 1] and ϕτ ∈ Pγ(τ), there exists an open neighborhood Uτ of γ(τ) in X and

a pseudoholomorphic function fτ ∈ P(Uτ ) such that ρUτ

γ(τ)fτ = ϕτ . γ being continuous,

it exists an open neighborhood Wτ of τ in [0,1] such that γ(Wτ ) ⊂ Uτ .

6.2. Definition. A germ ψ ∈ Pb is said to be the analytic continuation of ϕ along γ if

there exists a family (ϕt)t∈[0,1] such that:

1) ϕ0 = ϕ and ϕ1 = ψ.

2) for every τ ∈ [0, 1], for every t ∈ Wτ , we have: ρUτ

γ(τ)fτ = ϕτ

Theorem 6.1. Identity theorem. Let X be a connected Hamilton 4-manifold and f1, f2 :

X → Y be two morphisms which coincide in the neighborhood of a point x0 ∈ X, then

f1, f2 coincide on X.

Proof as for Riemann surfaces, [D90, ch. 5].

Theorem 6.2. Let X be a simply connected Hamilton 4-manifold, a ∈ X, ϕ ∈ Pa be a

germ having an analytic continuation along every path from a. Then there exists a unique

function f ∈ P(X) such that ρXa f = ϕ.
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(cf. [D90, ch. 5, 4.1.5])

Let p : Y → X be a morphism of two Hamilton 4-manifolds; p is locally bi-pseudoholo-

morphic, then it defines, for every y ∈ Y , an isomorphism py : Px,p(y) → PY,y; this defines:

p∗ = p∗y = (p∗y)
−1.

6.3. Definition. Let X be a Hamilton 4-manifold, a ∈ X , ϕ ∈ Pa. A quadruple

(Y, p, f, b) is called an analytic continuation of ϕ if:

(i) Y is a Hamilton 4-manifold, p : Y → X is a morphism;

(ii) f is a pseudoholomorphic function on Y ;

(iii) b ∈ p−1(a) ⊂ Y ; p∗(ρ
Y
b f) = ϕ.

An analytic continuation is said to be maximal if it is solution of the following uni-

versal map problem: for every analytic continuation (Z, q, g, c) of ϕ, there exists a fibered

morphism F : Z → Y such that F (c) = b and F ∗(f) = g. Hence

If (Y, p, f, b) is a maximal analytic continuation of ϕ, it is unique up to an isomor-

phism. Y is called the Hamilton 4-manifold of ϕ.

Theorem 6.3. Let X be a Hamilton 4-manifold, a ∈ X, ϕ ∈ Pa. Then there exists a

maximal analytic continuation of ϕ.

6.4. Remark. Then, we will say that the above function f is the unique maximal an-

alytic continuation of the germ ϕ. Moreover, the above definitions and results of the

section 2 are valid for the sheaf M of hypermeromorphic functions instead of the sheaf P .

6.5. Main result.

Theorem 6.4. Let X be a Hamilton 4-manifold and P (T ) = T n + c1T
n−1 + . . . + cn ∈

M(X)[T ] be an irreducible polynomial of degree n. Then there exist a Hamilton 4-manifold

Y , a ramified pseudoholomorphic covering (cf. [D90, ch. 5] for Riemann surfaces) with n

leaves Π : Y → X and a hypermeromorphic function F ∈ M(Y ) such that (Π∗P )(F ) = 0.

F is the unique maximal analytic continuation of every hypermeromorphic germ ϕ of

X such that P (ϕ) = 0; F is called the hyperalgebraic function defined by the polynomial

P and Y is the Hamilton 4-manifold of F .

Proof at the end of the section.

1) X is compact connected.

2) Every pseudoholomorphic function on X is constant.

3) Every hypermeromorphic function f on X different from ∞ is rational.

4) In case X = HP, in Theorem 6.4, cj is rational. Indeed, since cj is hypermeromorphic,

from 3), it is rational.

6.6. Proof of Theorem 6.4. In the notations of Ex. 3, ζ is a local coordinate on

X = HP.

f has a finite set of poles p1, . . . , pn. Assume that∞ is not a pole of f , then p1, . . . , pn ∈

H. Let hν the principal part of f at pν , then f − hν = aν , constant, from 2) and hν =
−1
∑

j=−kν

Cνj(ζ − pjν) is a hypermeromorphic function, where Cνj ∈ H.
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6.6.1. Elementary symmetric functions. Let

Π : Y → X

be a nonramified pseudoholomorphic covering with n leaves, and f be a hypermero-

morphic function on Y . Every point x ∈ X has an open neighborhood U such that

Π−1(U) =
n
⋃

j=1

Vj where the Vj are disjoint and Π|Vj : Vj → U is bi-pseudoholomorphic,

(j = 1, . . . , n); let ϕj : U → Vj the reverse (i.e. set inverse) of Π|Vj and fj = ϕ∗

jf = f.ϕj .

Then:

Πn
j=1(T − fj) = T n + c1T

n−1 + . . .+ cn;

cj = (−1)jsj(f1, . . . , fn), where sj is the j-th elementary symmetric function in n vari-

ables. The cj are hypermeromorphic, locally defined, but glue together into c1, . . . , cn ∈

M(X) and are called the elementary symmetric functions of f with respect to Π.

6.6.2. Remark. The elementary symmetric functions of a hypermeromorphic function

on Y are still defined when the covering Π is ramified.

6.6.3..

Theorem 6.5. Let Π as in Theorem 6.4, with Y not necessarily connected, A ⊂ X be a

discreet closed subset containing all the critical values of Π, and B = Π−1(A).

Let f be a pseudoholomorphic (resp. hypermeromorphic) function on Y \B and

c1, . . . , cn ∈ H(X \A)(resp.M(X \A))

the elementary symmetric functions of f . Then the following two conditions are equiva-

lent:

(i) f has a pseudoholomorphic (resp. hypermeromorphic) extension to Y ;

(ii) for every j = 1, . . . , n, cj has a pseudoholomorphic (resp. hypermeromorphic)

extension to X.

6.6.4. Existence of Y in Theorem 6.4. Let ∆ ∈ M(X) be the discriminant of P (T );

P (T ) being irreducible, ∆ 6= 0: then there exists a discrete closed set A ⊂ X such that,

for every x ∈ X ′ = X \A, ∆(x) 6= 0, and all the functions cj are pseudoholomorphic.

Let Y ′ = {ϕ ∈ Hx, x ∈ X ′;P (ϕ) = 0} ⊂ LH, etal space defined by the sheaf H, and

Π′ : Y ′ → X , (ϕ 7→ x).

It can be shown that, for every x ∈ X ′, there exists an open neighborhood U of x

in X ′ and functions fj ∈ H(U), j = 1, . . . , n, such that P (T )|U = Πn
j=1(T − fj); then

Π′−1(U) =

n
⋃

j=1

[U, fj] where [U, fj] = {fjy, y ∈ U} is an open set of LH and Π′|[U, fj] :

[U, fj] → U is a homeomorphism; Y ′ is a Hamilton 2-manifold non necessarily connected,

and a pseudoholomorphic, non ramified covering of X ′. It can be shown that Π′ can

be extended into a ramified pseudoholomorphic covering Π : Y → X of X for which

Y ′ = Π−1(X ′).

The cj are defined on the whole of X ; from Theorem 6.5, f has an extension F ∈

M(X) such that
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Π∗P (F ) = Fn + (Π∗c1)F
n−1 + . . .+Π∗cn = 0.

It is easy to prove the connectedness of Y and the unicity of F .

This ends the proof of Theorem 6.4.

7. The Hamilton 4-manifold Y of F when X = HP.

7.1. Recall the main properties of Y .

Y is of real dimension 4;

Y is connected;

Y is compact;

Y is C∞;

let m be the number of the critical values of Π and qj these critical values; they define

points of Y forming the 0-skeleton of a simplicial complex K carried by the manifold

Y . K may be supposed to be C∞ by parts. Cutting along the 3-faces of K defines a

fundamental domain FD of the covering Π. FD is a 4-dim polytope in HP with an even

number of 3-faces; gluying together the opposite 3-faces, we get a compact 4-dim polytope

with homology of the Hamilton 4-manifold Y .

7.2. Homology of Y . Hp(Y ;Z), for p = 0, . . . , 4 have to be evaluated, using the critical

values qj , and the Poincaré duality.
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