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Abstract The vaccination against non recurrent epidemics is seldom compul-
sory but remains one of the most classical means to fight epidemic propagation.
However recent debates concerning the innocuity of vaccines and their risk with
respect to the risk of the epidemic itself lead to severe vaccination campaign
failures and new mass behaviors appeared driven by individual self-interest.
Prompted by this context we analyze, in a Susceptible-Infected-Recovered
(SIR) model, whether egocentric individuals can reach an equilibrium with
the rest of the society. Using techniques from the ”Mean Field Games” theory,
we show that an equilibrium exists and characterizes completely the individ-
ual best vaccination strategy. We also compare with a strategy based only on
overall societal optimization and exhibit a situation with non-negative price
of anarchy. Finally, we apply the theory to the 2009-2010 Influenza A (H1N1)
vaccination campaign in France and show that a group of individuals stopped
vaccinating at levels that indicated a very pessimistic perception of the risk of
the vaccine.
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1 Introduction

The vaccination, when available, is one of the most classical defense against
an evolving epidemic. Theoretical works have been proposed to describe the
optimal vaccination policy as function of the vaccine cost and epidemic dy-
namics and severity, see for instance (Hethcote and Waltman, 1973, Abakuks,
1974, Morton and Wickwire, 1974, Sethi and Staats, 1978, Diekmann and
Heesterbeek, 1999, Laguzet and Turinici, 2014). The point of view of these
initial studies is that of a benevolent planner that optimizes the overall so-
cietal welfare. However in most situations vaccination is not compulsory and
people have the choice to vaccinate or not. For a number of childhood diseases
(with no compulsory vaccination) a decay in the vaccination coverage has been
observed in developed countries and debates over the danger of vaccines and
their usefulness emerged. This suggested that the individual point of view has
also to be taken into account: any individual may choose to vaccinate or not
and the epidemic dynamics is influenced by all these individual choices. The
individual defines a cost rV incurred if he takes the vaccine and a cost rI in-
curred if infected; the costs can be expressed in terms of money, medical side
effects or general morbidity. For a discussion on this topic refer to Zeckhauser
and Shepard (1976), Anand and Hanson (1997), Sassi (2006) and related lit-
erature on QALY/DALY measuring scales. The cost rI is to be weighted by
the probability to be infected; it is immediate that when the epidemic is near
extinction there is very low incentive to vaccinate (because the probability to
be infected is small). Thus people stop vaccinating before the epidemic stops,
which can cause in fact the epidemic to start again. In theory the situation can
be highly unstable oscillating between no vaccination, followed by an epidemic
outburst, then massive vaccination followed by epidemic near extinction and
so on. An important question is the existence of a stable equilibrium and the
impact on the vaccination coverage.

In their seminal work, Bauch and Earn (2004) use a SIR model with vital
dynamics to describe the propagation of a recurrent childhood disease; the in-
dividual choices converge to a sub-optimal vaccine coverage. The vaccination
strategy of the individual is of all-or-nothing type and time-independent. Fur-
thermore, Bauch (2005) proposes a learning process based on a ”rule of thumb”
to explain why and how the people vaccinate, resulting in a time-dependent
vaccination strategy. The presence of a time-dependent optimal strategy is
more realistic and an advance over the previous work but the model is de-
pendent on the ”rule of thumb” chosen a priori. This study was completed
by Shim et al. (2012) where the depart from an 100% egocentric decision is
described and altruism is seen to play an important role in vaccination de-
cisions. Coelho and Codeço (2009) and Codeço et al. (2007) also model the
vaccination behavior and apply the results to the yellow fever scare in Brazil.
Buonomo et al. (2008) also introduce a feed-back mechanism but for a SEIR
system.

In another work Reluga et al. (2006) studied the impact of the perceptions
of the relative risk between vaccine and epidemic; they used a SIR model
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with vital dynamics and also discussed the imitation dynamics. Galvani et al.
(2007) consider a double SIR periodic model of influenza with vaccination and
two age groups (more or less than 65 years). Vaccination is separated from
dynamics and arrives once at the beginning of each season. The effect of the
group dependent vaccination is analyzed. Cojocaru et al. (2007) and Cojocaru
(2008), Chen (2006) also consider the mathematical questions related to the
presence of several groups having distinct epidemic characteristics.

Further contributions for models with vital dynamics include d’Onofrio
et al. (2007), d’Onofrio et al. (2008), Reluga and Galvani (2011).

A review on the relationship between human behavior and epidemic dy-
namics is proposed by Funk et al. (2010). In particular they discuss the re-
lationship between the timescales of the vaccination and epidemic dynamics,
which is also the object of several contributions by Vardavas et al. (2007), Bre-
ban et al. (2007). Chen (2009) discusses how the available information change
the decisions made by an individual.

Even if realistic vaccination behavior is very likely to depend on the imi-
tation and altruistic dynamics, there is a need to separate this part from the
optimization of the cost-benefit ratio at the individual level.

Although most of the literature describes recurrent epidemics, non-recurrent
epidemics also witnessed similar controversy as it was the case for the 2009-
10 influenza A (H1N1) epidemic. In this case the vaccine is only relevant for
that epidemic season and therefore recurrent epidemic models do not describe
accurately the dynamics. We compare in Table 1 the difference between the
target coverage of the vaccines, as defined by the sanitary authorities, and the
effective rate of vaccination obtained. In many European countries one order
of magnitude separates the two.

Country Target Effective rate
coverage of vaccination

Germany 30− 100% 8− 10%
Spain 40% 4− 27.1%
France 70− 75% 7.9− 8.5%
Italy 40% 1.4− 4%

Table 1 Vaccination Coverage expected and realized in different countries as percentage
of population during the 2009-10 Influenza A (H1N1) epidemic. Sources: Guthmann et al.
(2010), Mereckiene et al. (2012), Walter et al. (2011), Schwarzinger et al. (2010), Brien et al.
(2012),(Door, 2010, page 157).

But today there is little theoretical guidance to explain this data from
a model that only takes into account individual vaccination behavior for re-
current epidemics. In particular, while for recurrent epidemic it may be valid
to suppose that some equilibrium is obtained, for an epidemic with a single
propagation period the transient dynamics is important. Thus we expect the
optimal vaccination strategy to be time-dependent. We also want to identify
the vaccination dynamics and propose a model that only takes into account the
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effect of the individual cost optimization; such a result can then help identify
the impact of other effects: imitation, altruism.

We prove the existence of an equilibrium between individual vaccination
and an epidemic propagation described by a deterministic SIR-model. We
compare the theoretical result with the optimal policy at the societal level and
describe the differences between the two. Finally we apply the theoretical result
to the Influenza A (H1N1) 2009-10 epidemic season in France and observe that
people were not homogeneous in their perception of the rV /rI quotient: while
some saw the vaccine as harmless, a non-negligible portion of the population
saw the vaccine as potentially dangerous.

1.1 The model

We consider an epidemic spreading in a non-immune population; the dynamics
of the epidemic follows a SIR model (Anderson and May, 1992, Diekmann and
Heesterbeek, 1999). The epidemic is supposed to take place at a rapid time
frame (several months up to 1-2 years) when compared with the demographic
dynamics (births, deaths) and therefore the model does not take into account
any vital dynamics.

The costs incurred by an infected individual (either in terms of monetary
value or of medical condition) are the same for any individual and are denoted
by rI . We also suppose that a vaccine giving lifelong immunity exists. Its cost
is rV , which takes into account not only the economic price but also all possible
side-effects of the vaccine. The people in the Susceptible class can choose to
vaccinate or not (people in other classes cannot vaccinate).

The mathematical equation describing the SIR model with vaccination is:






















dX1(t) = −βX1(t)X2(t)dt− dU(t), X1(0
−) = X10,

dX2(t) =
(

βX1(t)X2(t)− γX2(t)
)

dt, X2(0) = X20,

dX3(t) = γX2(t)dt, X3(0) = X30,

X4(t) =
∫ t

0
dU(τ), X4(0

−) = 0.

(1)

Here X1 is the proportion of individuals in the Susceptible class, X2 is the
proportion in the Infected class,X3 is the proportion of people in the Recovered
class, X4(t) is the proportion of people that are vaccinated by the time t and
dU(t) the vaccination rate. The parameters β, γ and the initial conditions X10,
X20 andX30 are supposed known. Note that when vaccination is instantaneous
the function X4(t) may be discontinuous and its derivative dU(t) only exists
as a measure. We refer to the Appendix A for the mathematical details.

Equations (1) only represents the overall, societal dynamics. At the micro-
scopic level, the individual dynamics is modeled by a continuous time Markov
chain with individual jumping between the Susceptible, Infected, Recovered
and Vaccinated classes, as illustrated in Figure 1.

In this model all individuals are identical (but each may be in a specific
state). Let Mt be the state of one such individual at time t. The jump from
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Susceptible Infected Recovered

Vaccinated

...

rate βX2 rate γ

Fig. 1 Individual dynamics: continuous time Markov jumps between Susceptible, Infected,
Recovered and Vaccinated classes.

the Susceptible class to the Infected class depends on the proportion of people
already infected; the time of the jump from the Infected to the Recovered
class is a exponential random variable of mean 1/γ. We write in terms of
probabilities:

P

(

Mt+∆t = Infected
∣

∣

∣
Mt = Susceptible

)

= βX2(t)∆t+ o(∆t) (2)

P

(

Mt+∆t = Recovered
∣

∣

∣
Mt = Infected

)

= γ∆t+ o(∆t). (3)

The jumps from the Susceptible to the Vaccinated class are dependent on
the willingness of the individual to vaccinate expressed through the vaccination
parameter pV (t):

P

(

Mt+∆t = V accinated
∣

∣

∣
Mt = Susceptible

)

= pV (t+∆t)−pV (t)+o(∆t). (4)

Note the different writing which is required by the fact that pV (t) may not be
differentiable in general.

We suppose that each individual is aware of the propagation dynamics
at the societal level (1) but cannot influence it. His only concern is whether
it is useful for himself to vaccinate or not and when to do it. This decision
is called a strategy. A naive interpretation of the strategy is to believe that
it represents the instant t∗ in the future when vaccination will occur (with
100% certainty); in game theory terms this is called a pure strategy. However
it turns out (see discussion in Appendix B) that it is better to represent the
individual decision as a cumulative probability of vaccination ϕV with ϕV (t)
representing the probability to vaccinate in the interval [0, t] in the absence
of any infection. The mathematical definition of ϕV is:

dϕV (t) = (1− ϕV (t))dpV (t), ϕV (0
−) = 0. (5)

Similarly, a second useful mathematical object is the cumulative probability
ϕX0,U
I (t) of infection in [0, t] in absence of vaccination defined as:

d

dt
ϕX0,U
I (t) = βX2(t)(1− ϕX0,U

I (t)), ϕX0,U
I (0) = 0. (6)

Given the epidemic dynamics (fully determined by X(0−) and U) the indi-
vidual can associate a cost to each individual strategy ϕV . The cost functional
is the sum, for each time t, of the cost of vaccination (weighted by the prob-
ability dϕV (t) that vaccination occurs at that time) and the cost of infection
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(weighted by the probability dϕX0,U
I (t) that infection occurs at that time, see

Appendix A). This leads to the following cost functional:

Jindi(ϕV ;X0, U) =

∫

∞

0

rI(1−ϕV (t))dϕ
X0,U
I (t)+rV (1−ϕX0,U

I (t))dϕV (t). (7)

Note that the probability for the individual to be in the Susceptible class at
time t is (1 − ϕV (t))(1 − ϕX0,U

I (t)). This explains the terms 1 − ϕV (t) (and

1 − ϕX0,U
I (t) hidden inside dϕX0,U

I (t)), and the corresponding ones for the
second part of the integral. An equivalent form of the cost functional is:

Jindi(ϕV ;X0, U) = rIϕ
X0,U
I (∞)+

∫

∞

0

[

rV −rIϕ
X0,U
I (∞)+(rI−rV )ϕ

X0,U
I (t)

]

dϕV (t).

(8)
Denoting:

Ω = {X = (X1, X2) ∈ R
2 | X1, X2 > 0, X1 +X2 < 1}, (9)

we work under the constraints X ∈ Ω.

1.2 Questions regarding the equilibrium

When everybody is vaccinating this collective behavior stops the epidemic. For
a given individual that still has to make its own choice, the perceived benefit
of vaccination is low because the risk associated with the epidemic is very
low. Why should he vaccinate then ? The individual will therefore not act as
everybody else.

On the contrary, when nobody vaccinates and the individual foresees a
severe epidemic (because of lack of vaccination for instance), the individual is
lead to vaccinate, therefore will not act as everybody else.

In both situations there is an incoherence between the overall, societal,
dynamics and the individual self-interest. A legitimate question is whether an
equilibrium scenario exists where the best vaccination policy of the individual
and the vaccination policy of everybody else agrees.

To illustrate this question consider the Figure 2. Vaccination is represented
by a parameter indicated the time during which vaccination takes place. A
low time indicates low vaccination level and a large time a high vaccination
level. We plot a three-dimensional surface of the cost Jindi(θI ;X0, θG) incurred
by an individual which has the vaccination time θI in a circumstance when
the societal vaccination time is θG. Note that, with an abuse of notation,
we write θG instead of dU = 1[0,θG]umaxdt and θI instead of the solution of
dϕV (t) = (1− ϕV (t))1[0,θI ]umax/X1(t)dt, see Appendices A and B.

For any societal vaccination strategy represented by the parameter θG the
individual minimizes θI 7→ Jindi(θI ;X0, θG). The optimal value θoptI of θI as
a function of θG is represented as the solid bottom curve in the Figure 2.
The existence and uniqueness of the function θoptI (θG) (for general societal
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vaccination strategies dU , not necessarily given in terms of vaccination time)
is illustrated in Section 2.1 and proved in Appendix C.

As expected, for low θG the curve θoptI (θG) takes a large value while for

large values of θG the curve θoptI (θG) takes small values. The equilibrium is

when θoptI (θG) = θG. We therefore ask for the existence of a common point of
the solid and dashed curves. The existence and uniqueness of an equilibrium
is illustrated in Section 2.2 and proved in Appendix D.

Such questions have been given a firm mathematical ground since the in-
troduction of the ”Mean Field Games” theory in the pioneering works of Lasry
and Lions (2006a,b).

0 1 2 3 4 5 6

·10−20

2

4

6

·10−2

0

0.5

θG

θI

J
in

d
i

Fig. 2 Jindi(θI ; 0.62501, 0.15001, θG) for
parameters β = 73, γ = 36.5, umax = 10,
rI = 1 and rV = 0.5. The solid bot-
tom curve represent the optimal individ-
ual choice θoptI (θG) and the dashed bot-
tom curve is θG = θI .

2 Illustration of the theoretical results

2.1 Individual optimal strategy for arbitrary epidemic propagation

If the societal vaccination strategy dU is given, there exists an individual strat-
egy ϕV that minimizes the individual cost (7). The strategy is unique (except
degenerate cases). The technical details concerning the existence, uniqueness
and other properties of the optimal individual strategy are proved in the Ap-
pendix C. Here we only illustrate these results in a particular case.

The theoretical results tell us that, in order to find the optimal decision

at time t, an individual has to calculate the quantity
ϕ

X0,U

I
(∞)−ϕ

X0,U

I
(t)

1−ϕ
X0,U

I
(t)

and

compare it with rV /rI . While
ϕ

X0,U

I
(∞)−ϕ

X0,U

I
(t)

1−ϕ
X0,U

I
(t)

≥ rV /rI it is optimal for

the individual to vaccinate, otherwise he should not vaccinate. Note that
ϕ

X0,U

I
(∞)−ϕ

X0,U

I
(t)

1−ϕ
X0,U

I
(t)

can only decrease during the course of an epidemic.

The Figure 3 gives an example of such a situation with U = 0. Until the

time 0.06,
ϕ

X0,U

I
(∞)−ϕ

X0,U

I
(t)

1−ϕ
X0,U

I
(t)

≥ rV /rI and the individual vaccinates. After this

time individual vaccination stops. The probability to be vaccinated is constant
equal to 0.07% after time 0.06.
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X1

X
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Fig. 3 The parameters used are X0 = (0.75, 0.1), β = 73, γ = 36.5, rI = 1, rV =
0.5, umax = 10 and constraint in Equation (20) f(t) = umax

X1(t)
. Left: The trajectory

(X1(t), X2(t)) of the system (1) with U = 0. Right: The decreasing dotted curve is

t 7→
ϕ
X0,U

I
(∞)−ϕ

X0,U

I
(t)

1−ϕ
X0,U

I
(t)

, the constant densely dashed line is the level rV /rI and the in-

creasing dashed-dotted curve is the probability of vaccination over time.

2.2 Equilibrium strategies

In classical settings that disregard individual choices (see (Abakuks, 1974,
Laguzet and Turinici, 2014)) the cost for the society defined as:

Jsoc(X0, U) =

∫

∞

0

rIX1(t)
dϕX0,U

I (t)

1− ϕX0,U
I (t)

+ rV dU(t), (10)

is the only quantity of interest and is minimized. An optimal societal strategy
can be found, which will be denoted from now on (OS). The strategy (OS)
partitions the domain Ω into a region of vaccination and a region without
vaccination. The curve that delimits the two regions is

{X = (X1, X2) ∈ Ω |∂X1
ζ(X1, X2) = rV /rI } . (11)

Remark 1 We recall that for any X ∈ Ω one can introduce the number ζ(X)
of infected people (in absence of vaccination) for a trajectory starting in X.
In particular ζ is the solution of the following equation (see (Abakuks, 1974,
1972, Laguzet and Turinici, 2014)):

1−
ζ(X)

X1
= e−

β
γ
(X2+ζ(X)). (12)

In our setting, the situation is not a simple optimization. Any individual
optimizes its cost but the coherence of the model requires that the aggrega-
tion of individual optimal policies ϕV result in the global vaccination policy
dU . Therefore the situation is more adequately described by an equilibrium
in the form of a fixed point property: a global vaccination dU gives optimal
individual responses ϕV which sum up to form a societal response dU ′. The
equilibrium is reached only when dU = dU ′.

The first good news is that the results in Appendix D show that an equilib-
rium always exists, i.e., even if the individuals are only driven by self-interest
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some vaccination level is conserved (and does not drop to zero). This is com-
pletely coherent with other results from the literature, see Bauch and Earn
(2004) and related works.

The couple of optimal individual strategy and resulting societal strategy in
equilibrium will be denoted from now on (EIS). The equilibrium (EIS) is also
described as a partition of Ω into a region of vaccination and a region without
vaccination. Individuals will vaccinate in the first region and stop vaccination
upon reaching the boundary of the second region. The curve that delimits the
two regions is of equation:

{X = (X1, X2) ∈ Ω |ζ(X1, X2)/X1 = rV /rI } . (13)

The Proposition 1 shows that the vaccination region of the (OS) strategy
includes strictly the vaccination region of the (EIS) strategy.

The Figure 4 presents the main result of our paper and the comparison of
the three regions in Ω. The response of an individual to a given state X of the
epidemic dynamics depends on the location of X in Ω. In the gray region the
individual (in the (EIS) strategy) will vaccinate and also the (OG) strategy is
to vaccinate. In the hashed region the individual (in the (EIS) strategy) will
not vaccinate but the (OG) strategy is to vaccinate. In the white region the
individual (in the (EIS) strategy) will not vaccinate and the (OS) strategy is
to not vaccinate.

Therefore only the hashed region, delimited by the curves ∂X1
ζ(X1, X2) =

rV /rI and ζ(X1, X2)/X1 = rV /rI , is conflictual, in the sense that the indi-
vidual does not have incentive to vaccinate but the societal best decision is to
vaccinate.

X11

X2
1

O

Individual: yes.

Societal: yes.

Individual: no.

Societal: no.

Individual: no.

Societal: yes.
Fig. 4 The representation of
the domain Ω with the three re-
gions. Gray region: vaccination
in the (OG) strategy and in the
(EIS) strategy. Hashed region:
vaccination in the (OG) strategy
but not in the (EIS) strategy.
White region: no vaccination in
the (OG) strategy and no vacci-
nation in the (EIS) strategy.

We illustrate in Figure 5 the societal trajectories for three possible strate-
gies in equilibrium, that is, satisfying the constraint (19) (but not all optimal
at the individual level). The dashed curve with no label corresponds to no vac-
cination and the individual cost is 0.65. The second dashed curve corresponds
to the (EIS) strategy: between point X0 and A, the individual vaccinates
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(dϕV = umax/X1(t)(1 − ϕV (t))) and after point A, there is no vaccination
(dϕV = 0). The individual cost is 0.55. The third curve corresponds to the
trajectory with vaccination coherent with the (OS) societal strategy: vaccina-
tion occurs between point X0 and B. The individual cost is 0.53.

A very counter-intuitive fact is that the individual cost for the (OS) strat-
egy is lower than the cost of the (EIS) strategy. Is this not in contradiction
with the fact that the (EIS) strategy is the optimal strategy for an individual ?
How can be something better than the optimal ? In fact the equilibrium is a
Nash equilibrium which is not globally optimal. Although everybody would
be better off adopting the (OS) strategy this choice is not stable at the indi-
vidual level. A new individual added to such a population has the incentive
to vaccinate less, driving the equilibrium towards the (EIS) stable point. See
also Appendix E for the relation between the two costs. In game theory such
a circumstance is termed ”price of anarchy”.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5 · 10−2

0.1

0.15

0.2

X0

A

B

C

X1

X
2

Fig. 5 The dashed curve (with-
out the point A) is with no vac-
cination (dU = 0) and has indi-
vidual cost 0.65; the solid curve
is with (OS) strategy and has
individual cost 0.53; the dashed
curve (with point A) is with
the (EIS) strategy and has in-
dividual cost 0.55. The param-
eters used for the three trajec-
tories are β = 73, γ = 36.5,
umax = 10, rV = 0.5, rI = 1,
X10 = 0.75, X20 = 0.1.

3 An application to the Influenza A (H1N1) 2009/2010 epidemic in
France

3.1 Epidemic context

The 2009/2010 Influenza A (H1N1) epidemic in France is a recent example
of vaccination campaign that displays a large difference between the target,
planned, vaccination coverage and the effective coverage obtained at the end
of the campaign (see also (Schwarzinger et al., 2010)).

The 2009/2010 worldwide H1N1 epidemic spread through 213 countries
and has been attributed 18156 deaths by 15/06/2010 (when epidemic was
declared over by the WHO). In France the first cases appeared in May 2009
and 1334 severe forms were declared out of, approximately, 7.7 to 14.7 Millions
people infected. The vaccination campaign in France was costly (around 500M
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Fig. 6 Left: Fit of the cumulative vaccination in percents weighted by the effectiveness
coefficient. The curve U (labeled ”Model”) and the curve in Guthmann et al. (2010) (labeled
”Data”) cannot be distinguished. Right: Instantaneous vaccination dU , weighted by the
effectiveness coefficient.

EUR, although cost estimation vary) for a low efficiency of 8% coverage (to be
compared with 24% in the US or 74% in Canada) although the target was set
to 75%. During the French vaccination campaign some undesired neurological
side-effects of the adjuvant present in the vaccines were under debate and
known to the public.

The campaign was designed in waves (people were called to the vaccine cen-
ters according to their risk status) and all vaccination centers were not 100%
operational at once. Moreover the government mobilized additional medical
personnel (military, medicine interns,...) latter during the epidemic propaga-
tion. The joint combination of these effects is that the maximum vaccination
capacity was non-constant increasing from zero to some peak obtained by the
end of 2009.

3.2 Data sources

The information concerning the vaccination capacities were available in the
general news but no quantitative estimation is, up to our knowledge, available.
However the actual cumulative vaccination curve was reported by Guthmann
et al. (2010) (up to the maximum coverage of 7.9%). The vaccine effectiveness
coefficient was estimated by Valenciano et al. (2011) to be 71.9%. We set U in
the model (1) to fit this data, see Figure 6.

In what concerns the size of the Infected class, the French ”Sentinel” net-
work (cf. Flahault et al. (2006)) reports the estimation of the number of in-
fections per week starting from the beginning of the epidemic. Using the same
data Valleron and Guidet (2010) compared the epidemic with seasonal epi-
demic dynamics. Finally Bone et al. (2012) measure seroconversion and obtain
results on the number of people immunized at the end of the epidemics. All
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Fig. 7 Comparison between the Infected class as obtained from the Sentinel network and
the one from the model in (1). Left: Infected class as function of time. The peak of the
epidemic is well reproduced. Right: cumulative number of Infections. The overall number
of infection (at the end of the epidemic) is well reproduced.

this data was used to estimate the curve X2(t) in the model (1). The data
obtained by the Sentinel network takes into account the number of consul-
tations in medical offices. However some infected persons are asymptomatic
(but contribute to the propagation) and thus only some percentage of the in-
fected individuals will consult a medical doctor. This percentage is difficult to
evaluate; we follow the European Centre for Disease Prevention and Control
(ECDC) (2009) who estimated this rate at 50%; thus to estimate the number
of infections we set X2(t) two times larger than the curve reported by the
Sentinel network.

The propagation parameters β and γ were chosen consistent with ranges
from the literature (see Boëlle et al. (2011)) although large confidence intervals
were present, see for instance (Carrat et al., 2010). We took R0 = β/γ = 1.35.
We fit γ in a very limited range, X10 in the range 0.8 to 0.95 (compatible with
estimation concerning already immunized persons) and X20. The parameters
were optimized in order to reproduce the cumulative number of infections
∫

∞

0
βX1(t)X2(t)dt and the peak of the epidemic. We obtained γ = 365/3.2,

X10 = 0.84 and X20 = 2 × 10−6. The overall fit obtained is described in
Figures 6 and 7. Given the large uncertainties surrounding the propagation
parameters and the number of infections the fit is considered very satisfactory.

3.3 Methods

Once the overall dynamics (1) is given, there is still the quotient rV /rI to be
estimated. Such an endeavor is very difficult because this is depending on the
individuals’ perception and very few data is available on the heterogeneity of
this parameter within the population. Rather than using very uncertain data
we preferred to see what the model says about the quotient rV /rI .
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On the vaccination intensity Figure 6 (left) one can note that vaccination
had a sharp increase up to week 50− 51 of 2009 followed by a sharp decrease.
The decrease was not due to the capacity of vaccination centers. We interpret it
as reflecting a perception of a low infection risk coupled with high vaccination
risk, i.e., a high quotient rV /rI . We can compute the precise value of the
quotient rV /rI compatible with our model. In Figure 8 we plot three risk

indicators: first of them is
ϕ

X0,U

I
(∞)−ϕ

X0,U

I
(t)

1−ϕ
X0,U

I
(t)

, the second ζ(X(t))
X1(t)

; the third

is the quotient between the number of infections from t to ∞ divided by the
number of susceptible people in t (which is the initial valueX10 minus the total
infections and vaccinations between 0 and t). Note that this last criterion is
model free and can be computed from the vaccination coverage report and
the Sentinel network data (weighted by the asymptomatic infected individuals
rate).

We looked therefore at the level of the three criterions that were attained
at the time when vaccination decreased. According to our model this level is
an indication of the quotient rV /rI .

3.4 Results

An individual that stops vaccinating at the peak of the curve in Figure 6 (left)
will have rV /rI in the range 5%−10%. This is a huge value meaning that 1 out
of 10 vaccinated people will develop side-effects as severe as the influenza A
H1N1 itself. Such situations reflect probably a communication failure around
the epidemic and the vaccines (infection risk, severity, vaccine side effects, need
for a mass vaccination campaign, ...) rather than specific medical data about
the risks involved. See also (Brien et al., 2012) for a discussion on the determi-
nants of individual vaccination and (Basu et al., 2008) for a related discussion
concerning the controversial Human papillomavirus (HPV) vaccines.

Note also that vaccination did not stop completely at week 50 − 51 of
2009 but continued at detectable levels up to week 10 of 2010. An individual
that stops vaccinating at week 10/2010 time has rV /rI < 1% (probably much
less as the model cannot be more precise with available data). This is a more
common accepted figure.

Therefore at least two groups with very heterogeneous perceptions of the
vaccination risk were present: a first group very worried about vaccine risk
and another group less pessimistic.

4 Conclusions

In the context of individual vaccination (as opposed to global, compulsory
vaccination) we develop an equilibrium model that allows to quantify the re-
lationship between the individual perception of vaccine side-effects and of the
epidemic morbidity.
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Fig. 8 Using the dynam-
ics in (1), fitted with our
data, we plot three criterions:
ϕ
X0,U

I
(∞)−ϕ

X0,U

I
(t)

1−ϕ
X0,U

I
(t)

,
ζ(X(t))
X1(t)

and the quotient between the
infections in [t,∞[ and the
susceptibles in t (see text).
By the time the first group
of people stopped vaccination
(week 50 − 51 of 2009) there
was still 5 − 10% chance for
an individual to contract the
Influenza A. The individual that
do not vaccinate at this point
estimates the side effects of the
vaccine to occur with frequency
of about 5 − 10%, which is
considered a very large and
pessimistic value. Individuals
that stopped last (week 10 of
2010) had this figure down to
less than 1% (probably much less
given data uncertainties).

The first important result is that, even when individuals are only driven
by self interest, such an equilibrium exists. Secondly we are able to charac-
terize the individual decision in a very simple manner: the individual will
vaccinate or not depending on his estimations of the number of Infected and
Susceptible persons. The set Ω of possible values of (Susceptible, Infected)

couples is divided in two regions by the curve ζ(X)
X1

= rV
rI
. In one region vac-

cination is desired by the individual with maximum intensity (the perceived
infection probability exceeds rV /rI), while in the second region vaccination is
not worthwhile at the individual level.

The equilibrium is a Nash equilibrium with an infinity of players (as pio-
neered by Lasry and Lions (2006a,b)), which means in particular that it can
have (and has) a non-null ”price of anarchy”. This means that self-interest,
although stable from both individual-societal points of view, is not the best
solution that can be obtained.

Finally, we apply the results to the Influenza A 2009/2010 vaccination
campaign in France and show, under the assumptions of the model, that at
least two distinct groups existed, one very pessimistic about vaccine side-effects
and the other rather optimistic.

A On the societal and individual SIR model with vaccination

The mathematical description of the SIR model with vaccination has to take into account
the possibility of instantaneous vaccination, which means that a non-negligible proportion
of the total population can be vaccinated instantaneously at some time t. Recall that X4(t)
represents the proportion of people vaccinated by the time t. If, for instance, nobody vacci-
nates before time t∗ = 0.25 years (3 months) and 30% of the population vaccinates at time
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Fig. 9 Illustration of instantaneous vaccination of 30% per-
cent of the population at time t∗ = 0.25. The function X4(t) =
∫ t∗

0 dU(τ) is plotted. It has a discontinuity at time t∗ and is
equal to H(· − t∗) with H(·) the Heaviside function.

t∗ this means that X4(t) is discontinuous at this point (see Figure 9 for an illustration).
In particular it is not derivable and neither will be X1(t); as such it is not possible to use
in Equation (1) the derivative dX1(t)/dt. This explains why the equation is only written
in the differential form: dX1(t) = −βX1(t)X2(t)dt− dU(t). In this writing all objects have
a well defined mathematical meaning: dU(t) is a positive measure which, for our example
will be the Dirac mass 0.3δt∗ . We refer to Bressan and Rampazzo (1991), Dal Maso and
Rampazzo (1991), Miller (1996), Silva and Vinter (1997) for the mathematical properties of
the solutions to such evolution equations. In the particular situation when U(t) has a jump
at 0 we will have X1(0+) = X1(0−) + (U(0+)− U(0−)).

In this dynamics all individuals are the same. Each individual is following a continuous
time Markov dynamics jumping between the states Susceptible, Infected, Recovered and
Vaccinated.

In particular if one neglects the Infection the model has only two classes, Susceptible
and Vaccinated. Consider the following identity:

P (Mt+∆t = Susceptible) =
(

1− P

(

Mt+∆t = V accinated
∣

∣

∣
Mt = Susceptible

))

P (Mt = Susceptible) .

We obtain, for ∆t → 0 the differential equation for ϕV written in (5). This equation implies
that we can choose to work with the variable ϕV (t) instead of pV (t). The interpretation of
ϕV (t) as probability to vaccinate in [0, t] remains only an approximation when the Infected
class exists.

For a given individual in the Susceptible class at time t, the probability to be infected
during the time interval [t, t+∆t] is βX2(t)∆t+ o(∆t). Define the probability of infection

in the absence of vaccination, denoted ϕX0,U
I (t), that satisfies the Equation 6. Since X2(t)

is continuous ϕX0,U
I is differentiable everywhere.

In particular, for an individual in the Susceptible class at time τ that does not vaccinate
any more from that time on, the probability of infection after time τ is:

ϕX0,U
I (∞)− ϕX0,U

I (τ)

1− ϕX0,U
I (τ)

. (14)

We can prove, by direct computations, that dU = 0 on [τ,∞[ implies:

ϕX0,U
I (∞)− ϕX0,U

I (τ)

1− ϕX0,U
I (τ)

=
ζ(X1(τ), X2(τ))

X1(τ)
. (15)

As a summary we recall that:

P

(

Mt+∆t = Infected
∣

∣

∣
Mt = Susceptible

)

=
ϕX0,U
I (t+∆t)− ϕX0,U

I (t)

1− ϕX0,U
I (t)

+ o(∆t)

=
d

dt
ϕX0,U
I (t)∆t+ o(∆t), (16)

P

(

Mt+∆t = Recovered
∣

∣

∣
Mt = Infected

)

= γ∆t+ o(∆t), (17)

P

(

Mt+∆t = V accinated
∣

∣

∣
Mt = Susceptible

)

=
ϕV (t+∆t)− ϕV (t)

1− ϕV (t)
+ o(∆t). (18)
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Fig. 10 The individual cumulative probability of vacci-
nation ϕV (t) is an increasing, right continuous with left
limits (càdlàg) function with ϕV (0) = 0, ϕV (∞) ≤ 1.

We have therefore a full specification of the Markov chain in terms of ϕX0,U
I and ϕV .

Recall that the global dynamics is an aggregation of individual dynamics. Therefore:
- X2 in Equation (1) is the same as in (6)
- a compatibility relation has to exist between dU(t) (societal vaccination) and ϕV

(individual vaccination).
To make explicit this last compatibility requirement one has to investigate the rela-

tionship between the Markov chain of one individual and the evolution dynamics of the
population; such an endeavor is beyond the scope of this work but has been explored in
several papers starting with Kurtz (1970), see also Sandholm (2010, Theorem 10.2.3 pages
373-374) for an application to population dynamics. Further results under specific technical
assumptions are given in Benaim et al. (2005). The conclusion is that the societal dynamics
is compatible with the individual dynamics when dpV = 1

X1(t)
dU or in terms of ϕV :

dU(t) =
dϕV (t)

1− ϕV (t)
X1(t). (19)

B Individual strategies

The simplest individual strategy is to vaccinate or not at some given time; this strategy is
naive because the individual faces some uncertainty: he is not sure whether he will be still in
class X1 by time t∗. In addition the process of vaccination may depend on random factors
that the individual does not control. Moreover it was shown in the general context of timing
games (see the reference (Fudenberg and Tirole, 1991, page 118)) that representing the
individual decision as a cumulative probability of vaccination ϕV allows to obtain a better
theoretical description of the equilibrium. Here ϕV (t) is the probability to be vaccinated
in the interval [0, t] (in absence of any infection). A strategy of this type is called a mixed
strategy. Note that ϕV is not necessary a continuous function (the discussion is very much
similar to the one in Appendix A). In particular when the decision of the individual is a pure
strategy to vaccinate with certainty at time t∗ then ϕV is the Heaviside function H(· − t∗).
See the illustration in Figure 10.

It may also be necessary to impose some constraints. Suppose that global vaccination
(at the society level) can only happen with the maximal rate of umax percent of population
in a unit time. Then, with the notations in Equation (1): U(t + ∆t) − U(t) ≤ umax∆t.
Suppose now that all individuals want to vaccinate at the same time with the same ϕV

then the constraint above, coupled with (19), implies the individual constraint: dϕV (t) ≤
umax
X1(t)

(1 − ϕV (t))dt. In general we consider a function f(t) instead of umax
X1(t)

; when the

function f is locally bounded (in L∞

loc) it follows that ϕV (t) is derivable and one can write
the constraints in the form:

dϕV (t)

dt
≤ f(t)(1− ϕV (t)). (20)

C Proof of the properties of the individual optimal strategy

Theorem 1 (Case ϕV bounded) Let U be a given societal policy in (1), increasing,
U(t) ≤ 1, ∀t ≥ 0 and fV : R+ → [0,+∞[ be a locally bounded function (that is f ∈
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L∞

loc([0,∞[)). Suppose that the set of admissible individual strategies is composed of all ϕV

such that:
dϕV (t)

dt
≤ fV (t)(1− ϕV (t)). (21)

Then the individual optimal strategy ϕ∗

V that minimizes the cost in Equation (7) (with the
system (1)) is:

a/ If rI ≤ rV : ϕ∗

V (t) = 0.

b/ If rI > rV and ϕX0,U
I (∞) ≤ rV /rI then ϕ∗

V (t) = 0.

c/ If rI > rV and ϕX0,U
I (∞) > rV /rI then ϕ∗

V (t) is the solution of

dϕ∗

V (t)

dt
= fV (t)1[0,θI ]

(1− ϕ∗

V (t)). (22)

The parameter θI is the unique solution of the equation:

ϕX0,U
I (∞)− ϕX0,U

I (θI)

1− ϕX0,U
I (θI)

=
rV

rI
. (23)

Proof We use individual cost in the form in Equation (8). It may be noted that:

rV −rIϕ
X0,U
I (∞)+(rI−rV )ϕX0,U

I (t) = rV (1−ϕX0,U
I (∞))+(rV −rI)(ϕ

X0,U
I (∞)−ϕX0,U

I (t)).
(24)

Case a/ If rI ≤ rV , since ϕX0,U
I is an increasing function, the quantity in (24) is the sum

of positive terms. The minimum attainable value is therefore zero and it obtained when
dϕV (t) = 0 ∀t. Or ϕV (0−) = 0 thus ϕV (t) = 0 ∀t ≥ 0.
Cases b/ and c/ If rI ≥ rV let us compute

d

dt

[

rV − rIϕ
X0,U
I (∞) + (rI − rV )ϕX0,U

I (t)
]

= (rI − rV )
dϕX0,U

I (t)

dt
≥ 0, (25)

(recall that ϕX0,U
I (t) is increasing) and moreover rV − rIϕ

X0,U
I (∞)+ (rI − rV )ϕX0,U

I (0) =

rV −rIϕ
X0,U
I (∞) is positive as soon as ϕX0,U

I (∞) ≤ rV
rI

. To minimize the cost, vaccination

should not occur when the term to integrate against dϕV (t) is positive therefore there is no

vaccination if ϕX0,U
I (∞) ≤ rV

rI
.

If ϕX0,U
I (∞) > rV

rI
, vaccination occurs for all t such that rV − rIϕ

X0,U
I (∞) + (rI −

rV )ϕX0,U
I (t) ≤ 0, or equivalently

ϕ
X0,U

I
(∞)−ϕ

X0,U

I
(t)

1−ϕ
X0,U

I
(t)

≥ rV
rI

.

Moreover,

d

dt

[

ϕX0,U
I (∞)− ϕX0,U

I (t)

1− ϕX0,U
I (t)

]

= −
[1− ϕX0,U

I (∞)]

[1− ϕX0,U
I (t)]2

dϕX0,U
I (t)

dt
< 0. (26)

Then t 7→
ϕ
X0,U

I
(∞)−ϕ

X0,U

I
(t)

1−ϕ
X0,U

I
(t)

is a decreasing, continuous function from ϕX0,U
I (∞) to zero.

To minimize the cost, the vaccination should appear right at the beginning and last until
the boundary of the domain Ω is attained by the dynamics (1) or until time θI , the unique

solution of
ϕ
X0,U

I
(∞)−ϕ

X0,U

I
(θI )

1−ϕ
X0,U

I
(θI )

= rV
rI

. Therefore in order to minimize the integral one has

to set dϕV = 0 on [θI ,∞[ and dϕV > 0 on [0, θI [ with maximal values coming first. Taking
into account the constraint (21) we obtain dϕV = fV (t)(1− ϕV (t)) on [0, θI ] and dϕV = 0
on [θI ,∞[.

The next results applies when the individual vaccination can be unbounded, i.e., dϕV

can contain Diract masses.
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Theorem 2 (Case ϕV unbounded) The individual strategy ϕ∗

V that minimizes the cost
(7) with the system (1):

a/ if
ϕ
X0,U

I
(∞)−ϕ

X0,U

I
(0)

1−ϕ
X0,U

I
(0)

< rV
rI

then ϕ∗

V ≡ 0,

b/ if
ϕ
X0,U

I
(∞)−ϕ

X0,U

I
(0)

1−ϕ
X0,U

I
(0)

> rV
rI

then ϕ∗

V = δ0,

c/ if
ϕ
X0,U

I
(∞)−ϕ

X0,U

I
(0)

1−ϕ
X0,U

I
(0)

= rV
rI

then ϕ∗

V = αδ0 with α arbitrary in [0, 1].

Proof Case a/ If
∫

∞

0 rV − rIϕ
X0,U
I (∞) + (rI − rV )ϕX0,U

I (t)dϕV (t) is positive, then the

minimum is greater than rIϕ
X0,U
I (∞). This value is attained only if

∫

∞

0 rV −rIϕ
X0,U
I (∞)+

(rI − rV )ϕX0,U
I (t)dϕV (t) = 0 so ϕV (t) = 0 for all t.

Case b/ The strict monotony of the integrand rV −rIϕ
X0,U
I (∞)+(rI−rV )ϕX0,U

I (t) allows
to write:

∫

∞

0
rV − rIϕ

X0,U
I (∞) + (rI − rV )ϕX0,U

I (t)dϕV (t)

≥

∫

∞

0

[

rV − rIϕ
X0,U
I (∞) + (rI − rV )ϕX0,U

I (t)
]

t=0
dϕV (t)

=
[

rV − rIϕ
X0,U
I (∞) + (rI − rV )ϕX0,U

I (0)
]

∫

∞

0
dϕV (t)

≥
[

rV − rIϕ
X0,U
I (∞) + (rI − rV )ϕX0,U

I (0)
]

,

where we used ϕV (∞) ≤ 1 and
[

rV − rIϕ
X0,U
I (∞) + (rI − rV )ϕX0,U

I (0)
]

≤ 0. This gives

a lower bound for the minimum. The bound is attained when both inequalities become
equalities that is ϕV (t) is the Dirac mass in 0.

Case c/ The difference with the previous case is that the last term
[

rV − rIϕ
X0,U
I (∞) + (rI − rV )ϕX0,U

I (0)
]

is 0. Therefore the last inequality is always satisfied. We obtain the conclusion.

D Equilibrium strategy

Theorem 3 (Case umax bounded) Consider umax < ∞ and admissible individual
strategies that satisfy:

d

dt
ϕV (t) ≤

umax

X1(t)
(1− ϕV (t)). (27)

Then:

a/ If rV ≥ rI or rV < rI and ζ(X0) ≤
rV
rI

X10 then the unique equilibrium is U = 0 = ϕV .

b/ Otherwise consider the dynamics (Y ∞

1 , Y ∞

2 ) starting from X0 with dU = umaxdt at all
times until X10 = 0. Let θumax (X0) be the first time when this dynamics touches the
ensemble of curves:

{

(X1, X2) ∈ Ω

∣

∣

∣

∣

ζ(X1, X2)

X2
=

rV

rI

}

∪
{

(X1, X2) ∈ Ω
∣

∣

∣
X1 = 0

}

. (28)

Then the unique equilibrium is characterized by:

dU(t) = umax1[0,θumax (X0)](t)dt, (29)

dϕV (t) =
umax

X1(t)
(1− ϕV (t))1[0,θumax (X0)](t). (30)
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Proof Case a/ If rV > rI then any optimal individual strategy is ϕV = 0 and the com-
patibility relation (19) imply U = 0. Therefore the only possible equilibrium in this case is
U = 0 = ϕV . It is easy to see that this is effectively an equilibrium.

If rV < rI and ζ(X0) ≤ rV
rI

X10, note that ζ(X0) does not depend on U therefore

any optimal individual strategy is ϕV = 0. As before we obtain the unique equilibrium
U = 0 = ϕV .
Case b/ Since ζ(X0) > rV

rI
X10 any optimal individual strategy must satisfy (22) with

fV (t) = umax/X1(t). Therefore, from the compatibility relation (19) we obtain dU(t) =
umax1[0,θ](t) for some θ ≥ 0. We have to find θ such that θ is solution of (23) for dU(t) =
umax1[0,θ](t). This is a fixed point equation.

Let (X1, X2) be the solution of the system (1) with dU(t) = umax1[0,θ](t). Since dU = 0
on [θ,∞] by Equation (15), any θ solution of (23) is also solution of

ζ(X1(θ), X2(θ))

X1(θ)
=

rV

rI
. (31)

But (X1, X2) = (Y ∞

1 , Y ∞

2 ) for t ≤ θ, thus:

ζ(X1(θ), X2(θ))

X1(θ)
=

ζ(Y ∞

1 (θ), Y ∞

2 (θ))

Y ∞

1 (θ)
. (32)

Therefore, any θ that represents an equilibrium is also solution of the equation:

ζ(Y ∞

1 (θ), Y ∞

2 (θ))

Y ∞

1 (θ)
=

rV

rI
. (33)

But,

d

dt

[

ζ(Y ∞

1 (t), Y ∞

2 (t))

Y ∞

1 (t)

]

=
1

(Y ∞

1 (t))2

[(

∂ζ

∂X1

dY ∞

1 (t)

dt
+

∂ζ

∂X2

dY ∞

2 (t)

dt

)

Y ∞

1 (t)− ζ
dY ∞

1 (t)

dt

]

=
(ζ − Y ∞

1 (t))(ζumax + βY ∞

1 (t)Y ∞

2 (t)(ζ − Y ∞

1 (t) + γ/β)

(Y ∞

1 (t))2(1 + β/γ(ζ − Y ∞

1 (t)))
< 0,

because ζ < X1 and ζ > X1 − γ/β (see Laguzet and Turinici (2014) for details and the
expressions of the partial derivative of ζ).

Thus if (33) has a solution then this solution is unique. Therefore in any case at most
one equilibrium exists. Under the hypothesis ζ(X0) < rV

rI
X10 Equation (33) does have a

solution so θ is also solution of Equation (31) and this is the equilibrium.

Theorem 4 (Case umax unbounded) When umax = ∞ the equilibrium is:

a/ If rV ≥ rI or rV < rI and ζ(X0) ≤
rV
rI

X10 then the unique equilibrium is dU = 0 and

dϕV = 0 (no vaccination).
b/ If for any α ∈ [0, X10] : ζ(X0 −α(1, 0)) > rV

rI
(X10 − α) then the unique equilibrium is

dU = δ0X10 and dϕV = δ0 (total instantaneous vaccination).
c/ Otherwise let α ∈ [0, 1] be the (unique) solution of

ζ(X0 − α(1, 0)) =
rV

rI
(X10 − α) . (34)

In this case the unique equilibrium is dU = αδ0 and dϕV = α/X10δ0 (partial instanta-
neous vaccination).

Proof Previous results indicate that in the unbounded case the individual optimal strategies
are of the form ϕV = ηδ0 thus dU = ηX10δ0. Moreover, let α = ηX10 and recall that
X1(0) = X1(0−)− α = X10 − α; moreover:

d

dα

[

ζ(X10 − α,X20)

X10 − α

]

=
1

(X10 − α)2

[

∂ξ

∂X1
(−1)(X10 − α)− ξ(−1)

]

=
ζ(ζ −X10 + α)

(X10 − α)2 (γ/β + ζ −X10 + α)
< 0,
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so the function α →
ζ(X10−α,X20)

X10−α
is decreasing. Similar arguments as in the proof of the

Theorem 3 apply and allow to reach the conclusion.

Proposition 1 The vaccination region of the (OS) strategy contains the vaccination region
of the (EIS) strategy.

Proof In the (OS) strategy, the vaccination only stops if ∂X1
ζ ≤ rV

rI
(see Laguzet and

Turinici (2014) for details). Or ∂X1
ζ = ζ

X1

1

1+ β
γ
(ζ−X1)

and ζ−X1 ≤ 0 so 1+ β
γ
(ζ−X1) ≤ 1.

Then ζ
X1

≤ ∂X1
ζ ≤ rV

rI
and the conclusion follows.

E Relation between global and individual cost.

Lemma 1 Let ϕV and U satisfy Equation (19). Then the individual cost is the average of
the global cost, that is:

1

X1(0)
Jsoc(X0, U) = Jindi(ϕV ;X0, U). (35)

Proof We can write:
∫

∞

0
rI(1−ϕV (t))dϕX0,U

I (t) =

∫

∞

0
rI(1−ϕV (t))(1−ϕX0,U

I (t))

[

−
dX1(t)

X1(t)
−

dU(t)

X1(t)

]

(36)

because from (1) for X1(t) 6= 0:

dϕX0,U
I (t)

1− ϕX0,U
I (t)

= βX2(t) = −
dX1(t)

X1(t)
−

dU(t)

X1(t)
. (37)

Furthermore (19) implies:

∫

∞

0
rV (1− ϕX0,U

I (t))dϕV (t) =

∫

∞

0
rV (1− ϕV (t))(1− ϕX0,U

I (t))

[

dU(t)

X1(t)

]

. (38)

By summing the Equations (36) and (38) we get:

Jindi(ϕV ;X0, U) =

∫

∞

0
(1− ϕV (t))(1− ϕX0,U

I (t))

[

−rI
dX1(t)

X1(t)
− rI

dU(t)

X1(t)
+ rV

dU(t)

X1(t)

]

=

∫

∞

0

X1(t)

X1(0)

[

−rI
dX1(t)

X1(t)
− rI

dU(t)

X1(t)
+ rV

dU(t)

X1(t)

]

=
1

X1(0)

∫

∞

0
[−rIdX1(t)− rIdU(t) + rV dU(t)] , (39)

where we used

(1− ϕV (t))(1− ϕX0,U
I (t)) =

X1(t)

X1(0)
. (40)

Using Equation (6) and the definition of Jsoc(X0, U) in Equation (10), we obtain the
result.

Corollary 1 The average cost per person with the (OS) strategy is lower than the average
cost per person with the (EIS) strategy.

Proof Denote by UG the (OG) strategy and ϕG
V its individual counterpart. Also denote

by ϕI
V the individual strategy in the (EIS) equilibrium and UI its global counterpart. By

the definition of the optimality of UG: Jsoc(X0, UG) ≤ Jsoc(X0, UI). From Lemma 1 after
simplification by X1(0) we obtain: Jindi(ϕ

G
V ;X0, UG) ≤ Jindi(ϕ

G
V ;X0, UI) which is the

conclusion.
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