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Abstract The vaccination against ongoing epidemics is seldom compulsory
but remains one of the most classical means to fight epidemic propagation.
However recent debates concerning the innocuity of vaccines and their risk with
respect to the risk of the epidemic itself lead to severe vaccination campaign
failures and new mass behaviors appeared driven by individual self-interest.
Prompted by this context we analyze, in a Susceptible-Infected-Recovered
(SIR) model, whether egocentric individuals can reach an equilibrium with
the rest of the society. Using techniques from the ”Mean Field Games” theory,
we extend previous results and show that an equilibrium exists and charac-
terizes completely the individual best vaccination strategy (with or without
discounting). We also compare with a strategy based only on overall societal
optimization and exhibit a situation with non-negative price of anarchy. Fi-
nally, we apply the theory to the 2009-2010 Influenza A (H1N1) vaccination
campaign in France and hint that a group of individuals stopped vaccinating
at levels that indicated a pessimistic perception of the risk of the vaccine.
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L. Laguzet
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1 Introduction

The vaccination, when available, is one of the most classical defense against
an evolving epidemic. Theoretical works have been proposed to describe the
optimal vaccination policy as function of the vaccine cost and epidemic dy-
namics and severity, see for instance (Hethcote and Waltman, 1973, Abakuks,
1974, Morton and Wickwire, 1974, Sethi and Staats, 1978, Diekmann and
Heesterbeek, 1999, Laguzet and Turinici, 2015). The point of view of these
initial studies is that of a benevolent planner that optimizes the overall so-
cietal welfare. However in most situations vaccination is not compulsory and
people have the choice to vaccinate or not. For a number of childhood diseases
(with no compulsory vaccination) a decay in the vaccination coverage has been
observed in developed countries and debates over the danger of vaccines and
their usefulness emerged. This suggested that the individual point of view has
also to be taken into account: any individual may choose to vaccinate or not
and the epidemic dynamics is influenced by all these individual choices. The
individual defines a cost rV incurred if he takes the vaccine and a cost rI in-
curred if infected; the costs can be expressed in terms of money, medical side
effects or general morbidity. For a discussion on this topic refer to Zeckhauser
and Shepard (1976), Anand and Hanson (1997), Sassi (2006) and related lit-
erature on QALY/DALY measuring scales. The cost rI is to be weighted by
the probability to be infected; it is immediate that when the epidemic is near
extinction there is very low incentive to vaccinate (because the probability to
be infected is small). Thus people stop vaccinating before the epidemic stops,
which can cause in fact the epidemic to start again. In theory the situation can
be highly unstable oscillating between no vaccination, followed by an epidemic
outburst, then massive vaccination followed by epidemic near extinction and
so on. An important question is the existence of a stable equilibrium and the
impact on the vaccination coverage.

Several works on this topic appeared as early as Fine and Clarkson (1986),
Brito et al. (1991) and Geoffard and Philipson (1997) and ask the question of
disease eradication, market equilibrium and externalities in relationship with
vaccination; recently Bauch et al. (2003) (using a SEIR model) contributed to
the renewal of interest on vaccination policies and individual decisions. In a
subsequent paper, Bauch and Earn (2004) use a SIR model with vital dynam-
ics to describe the propagation of a childhood disease; the individual choices
converge to a sub-optimal vaccine coverage. The vaccination strategy of the
individual is of all-or-nothing type and time-independent. Furthermore, Bauch
(2005) proposes a learning process based on a ”rule of thumb” to explain why
and how the people vaccinate, resulting in a time-dependent vaccination strat-
egy. The presence of a time-dependent optimal strategy is more realistic and
an advance over the previous work but the model is dependent on the ”rule
of thumb” chosen a priori. This study was completed by Shim et al. (2012)
where the depart from an 100% egocentric decision is investigated. Coelho and
Codeço (2009) and Codeço et al. (2007) also model the vaccination behavior
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and apply the results to the yellow fever scare in Brazil. Buonomo et al. (2008)
also introduce a feed-back mechanism but for a SEIR system.

In a very elegant approach, Francis (2004) studied a situation that match
very well our setting: the equilibrium in the SIR model. They study in addition
the impact of taxes and subsidies and propose revenue-neutral health policies
to encourage vaccination. Although the techniques are very intuitive, they do
not explicitly introduce a cost functional for the individual and as such this
approach has yet to be extended to general settings (for instance when using
discounting). We present in Section 3 additional comments comparing the two
approaches.

In another work Reluga et al. (2006) studied the impact of the perceptions
of the relative risk between vaccine and epidemic; they used a SIR model
with vital dynamics and also discussed the imitation dynamics. Galvani et al.
(2007) consider a double SIR periodic model of influenza with vaccination and
two age groups (more or less than 65 years). Vaccination is separated from
dynamics and arrives once at the beginning of each season. The effect of the
group dependent vaccination is analyzed. Cojocaru et al. (2007) and Cojocaru
(2008), Chen (2006) also consider the mathematical questions related to the
presence of several groups having distinct epidemic characteristics.

Further contributions for models with vital dynamics include d’Onofrio
et al. (2007), d’Onofrio et al. (2008), Reluga and Galvani (2011).

A review on the relationship between human behavior and epidemic dy-
namics is proposed by Funk et al. (2010). In particular they discuss the re-
lationship between the timescales of the vaccination and epidemic dynamics,
which is also the object of several contributions by Vardavas et al. (2007), Bre-
ban et al. (2007). Chen (2009) discusses how the available information change
the decisions made by an individual.

Even if realistic vaccination behavior is very likely to depend on the imi-
tation and altruistic dynamics, there is a need to separate this part from the
optimization of the cost-benefit ratio at the individual level.

A recent example of low individual vaccination is the 2009-10 influenza A
(H1N1) epidemic. In this case the vaccine is only relevant for one epidemic sea-
son and therefore previous models do not describe accurately the dynamics. We
compare in Table 1 the difference between the target coverage of the vaccines,
as defined by the sanitary authorities, and the effective rate of vaccination
obtained. In many European countries one order of magnitude separates the
two.

But today there is still need for theoretical guidance to explain this data
with existing models. In particular we expect the optimal vaccination strategy
to be time-dependent. We also want to identify the vaccination dynamics and
propose a model that only takes into account the effect of the individual cost
optimization; such a result can then help identify the impact of other effects:
imitation, altruism.

We prove the existence of an equilibrium between individual vaccination
and an epidemic propagation described by a deterministic SIR-model (with or
without discounting). We compare the theoretical result with the optimal pol-
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Country Target Effective rate
coverage of vaccination

Germany 30− 100% 8− 10%
Spain 40% 4− 27.1%
France 70− 75% 7.9− 8.5%
Italy 40% 1.4− 4%

Table 1 Vaccination Coverage expected and realized in different countries as percentage
of population during the 2009-10 Influenza A (H1N1) epidemic. Sources: Guthmann et al.
(2010), Mereckiene et al. (2012), Walter et al. (2011), Schwarzinger et al. (2010), Brien et al.
(2012),(Door, 2010, page 157).

icy at the societal level and describe the differences between the two. Finally we
apply the theoretical result to the Influenza A (H1N1) 2009-10 epidemic season
in France and observe that people were not homogeneous in their perception of
the rV /rI quotient: while some saw the vaccine as harmless, a non-negligible
portion of the population saw the vaccine as potentially risky.

1.1 The model

We consider an epidemic spreading in a non-immune population; the dynamics
of the epidemic follows a SIR model (Anderson and May, 1992, Diekmann and
Heesterbeek, 1999). The epidemic is supposed to take place at a rapid time
frame (several months up to 1-2 years) when compared with the demographic
dynamics (births, deaths) and therefore the model does not take into account
any vital dynamics.

The costs incurred by an infected individual (either in terms of monetary
value or of medical condition) are the same for any individual and are denoted
by rI . We also suppose that a vaccine giving lifelong immunity exists. Its cost
rV is considered known by all the individuals and takes into account not only
the economic price but also all possible side-effects of the vaccine. The people
in the Susceptible class can choose to vaccinate or not (people in other classes
cannot vaccinate).

The mathematical equation describing the SIR model with vaccination is:{
dS(t) = −βS(t)I(t)dt− dU(t), S(0−) = S0− ,

dI(t) =
(
βS(t)I(t)− γI(t)

)
dt, I(0−) = I0− .

(1)

Here dU(t) is the vaccination rate, S(t) is the proportion of individuals in the
Susceptible class and I(t) is the proportion in the Infected class. The propor-

tion of people in the Recovered class is
∫ t
0−
γI(τ)dτ and V (t) :=

∫ t
0−
dU(τ) is

the proportion of people that vaccinated by the time t. The parameters β, γ
and the initial conditions S0− and I0− are supposed known. Note that when
vaccination is instantaneous the function S(t) may be discontinuous and its
derivative is a measure because dU(t) only exists as a measure. We refer to
the Appendix A for the mathematical details.
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Equations (1) only represents the overall, societal dynamics. At the micro-
scopic level, the individual dynamics is modeled by a continuous time Markov
chain with individual jumping between the Susceptible, Infected, Recovered
and Vaccinated classes, as illustrated in Figure 1.

Susceptible Infected Recovered

Vaccinated

...

rate βI rate γ

Fig. 1 Individual dynamics: continuous time Markov jumps between Susceptible, Infected,
Recovered and Vaccinated classes.

The jump from the Susceptible to the Vaccinated class depends on the
willingness of the individual to vaccinate. We suppose that each individual is
aware of the propagation dynamics at the societal level (1) but cannot influ-
ence it. His only concern is whether it is useful for himself to vaccinate or not
and when to do it. This decision is called a strategy. A first interpretation of the
strategy is the instant t ∈ [0,∞[ when the individual vaccinates (if he is still in
the Susceptible class at time t). Such a strategy is denoted Πt; if the individual
never vaccinates his strategy is Π∞. However it turns out (see discussion in
Appendix B) that it is better to represent the individual strategies as mixed
strategies which are probability laws on the set of all pure strategies. We rep-
resent such a probability law by its CDF (cumulative distribution function)
ϕV with ϕV (0−) = 0; then ϕV (t) represents the probability to choose a pure
strategy in the interval [0, t]. When ϕV (∞) 6= 1 this means that with proba-
bility 1 − ϕV (∞) the individual never vaccinates. When ϕV (0) > 0 then the
individual vaccinates immediately with probability ϕV (0)−ϕV (0−) = ϕV (0).
When the vaccination capacity is limited by a constant umax > 0, the CDF
ϕV has to comply with the constraints given in equation (19).

Another useful mathematical object is the cumulative probability of infec-
tion in [0, t], denoted ϕI(t):

ϕI(t) = 1− e−
∫ t
0− βI(τ)dτ . (2)

Note that ϕI(t) depends on S0− , I0− and U ; however to ease notations this
dependence will not be written explicitly.

Given the epidemic dynamics (fully determined by S0− , I0− and U) the
individual can associate a cost, denoted Jpure(·), to each pure strategy. For
instance Jpure(Π0) = rV . For general t ∈ [0,∞[ the cost of Πt is the sum of
the cost of infection rI weighted by the probability ϕI(t) that infection occurs
before time t plus the cost of vaccination weighted by the probability 1−ϕI(t)
that infection did not occurred before time t:

Jpure(Πt) = rIϕI(t) + rV (1− ϕI(t)). (3)
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The non-vaccination strategy Π∞ costs rIϕI(∞). Summing up the terms, the
cost of the mixed strategy with CDF ϕV (t), denoted Jindi(ϕV ), is:

Jindi(ϕV ) = (1− ϕV (∞))Jpure(Π∞) +

∫ ∞
0−

Jpure(Πt)dϕV (t)

= rIϕI(∞) +

∫ ∞
0−

[
rV − rIϕI(∞) + (rI − rV )ϕI(t)

]
dϕV (t). (4)

Alternative equivalent definitions have been proposed in the general con-
text of timing games, see (Fudenberg and Tirole, 1991, page 118).

When a discount factor D > 0 is introduced, the discounted risk of infection
is:

ΦI(t) =

∫ t

0−
e−DτdϕI(τ), ΦI(0

−) = 0. (5)

The cost of pure strategies is for t ∈ [0,∞[:

JDpure(Πt) = rIΦI(t) + e−DtrV (1− ϕI(t)). (6)

In this case JDpure(Π∞) = rIΦI(∞). The the cost of the mixed strategy with
CDF ϕV (t) is:

JDindi(ϕV ) = rIΦI(∞) +

∫ ∞
0−

[
rI(ΦI(t)−ΦI(∞)) + rV e

−Dt(1−ϕI(t))
]
dϕV (t).

(7)
We work under the constraints (S, I) ∈ Ω, where

Ω = {(S, I) ∈ R2 | S, I > 0, S + I < 1}. (8)

Recall that the global dynamics is an aggregation of individual dynamics.
Therefore I(t) in Equation (1) is the same as in (16) and a compatibility
relation has to exist between dU(t) (societal vaccination) and ϕV (individual
vaccination).

To make explicit this last compatibility requirement one has to investigate
the relationship between the Markov chain of one individual and the evolution
dynamics of the population; such an endeavor is beyond the scope of this
work but has been explored in several papers starting with Kurtz (1970), see
also Sandholm (2010, Theorem 10.2.3 pages 373-374) for an application to
population dynamics. Further results very close to the setting of this work
are given by Gomes et al. (2013), Guéant (2015). The conclusion is that the
societal dynamics is compatible with the individual dynamics when:

dU(t) =
dϕV (t)

1− ϕV (t)
S(t). (9)

An intuitive understanding of this formula is the following: for a given
individual, the probability that it is vaccinated at time t+∆t provided that it

was not vaccinated at time t equals ϕV (t+∆t)−ϕV (t)
1−ϕV (t) +o(∆t) (see Equation (15)

for a similar computation). At the same time, since individuals are all the

same, the same probability has to be U(t+∆t)−U(t)
S(t) + o(∆t). Comparing the

two in the limit ∆t→ 0 we obtain the Equation (9).
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1.2 Questions regarding the equilibrium

When everybody is vaccinating this collective behavior stops the epidemic. For
a given individual that still has to make its own choice, the perceived benefit
of vaccination is low because the risk associated with the epidemic is very
low. Why should he vaccinate then ? The individual will therefore not act as
everybody else.

On the contrary, when nobody vaccinates and the individual foresees a
severe epidemic (because of lack of vaccination for instance), the individual is
lead to vaccinate, therefore will not act as everybody else.

In both situations there is an incoherence between the overall, societal,
dynamics and the individual self-interest. A legitimate question is whether an
equilibrium scenario exists where the best vaccination policy of the individual
and the vaccination policy of everybody else agrees.

To illustrate this question consider the Figure 2 corresponding to the model
in Section 1.1. Vaccination is represented by a parameter indicated the time
during which vaccination takes place. A low time indicates low vaccination level
and a large time a high vaccination level. We plot a three-dimensional surface
of the cost Jindi(θI) incurred by an individual which has the vaccination time
θI in a circumstance when the societal vaccination time is θG. Note that, with
an abuse of notation, we write θG instead of dU = 1[0,θG]umaxdt and θI instead
of the solution of dϕV (t) = (1 − ϕV (t))1[0,θI ]umax/S(t)dt, see Appendices A
and B.

For any societal vaccination strategy represented by the parameter θG the
individual minimizes θI 7→ Jindi(θI). The optimal value θoptI of θI as a func-
tion of θG is represented as the solid bottom curve in the Figure 2. The exis-
tence and uniqueness of the function θoptI (θG) (for general societal vaccination
strategies dU , not necessarily given in terms of vaccination time) is discussed
in Section 2.1 and Appendix C for D = 0 and Section 3 and Appendix G for
D > 0. As expected, for low θG the curve θoptI (θG) takes a large value while

for large values of θG the curve θoptI (θG) takes small values. The equilibrium

is when θoptI (θG) = θG. We therefore ask for the existence of a common point
of the solid and dashed curves. The existence and uniqueness of an equilib-
rium is discussed in Section 2.2 and Appendix D for D = 0 and Section 3 and
Appendix G for D > 0. Such questions have been given a firm mathematical
ground since the introduction of the ”Mean Field Games” theory in the pi-
oneering works of Lasry and Lions (2006a,b), Huang et al. (2006, 2005) (see
also Gomes et al. (2013), Guéant (2015) for related aplications).

2 Illustration of the theoretical results: the undiscounted case

We consider in this Section the undiscounted case corresponding to D = 0.
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Fig. 2 Jindi(θI) for parameters β = 73,
γ = 36.5, umax = 10, rI = 1, rV = 0.5 and
D = 0. The solid bottom curve represent
the optimal individual choice θoptI (θG) and
the dashed bottom curve is θG = θI .

2.1 Individual optimal strategy for arbitrary epidemic propagation

If the societal vaccination strategy dU is given, there exists an individual strat-
egy ϕV that minimizes the individual cost (4). The strategy is unique (except
degenerate cases). The technical details concerning the existence, uniqueness
and other properties of the optimal individual strategy are proved in the Ap-
pendix C. Here we only illustrate these results in a particular case.

The theoretical results tell us that, in order to find the optimal decision at

time t, an individual has to calculate the quantity ϕI(∞)−ϕI(t)
1−ϕI(t) and compare

it with rV /rI . While ϕI(∞)−ϕI(t)
1−ϕI(t) ≥ rV /rI it is optimal for the individual to

vaccinate, otherwise he should not vaccinate. Note that ϕI(∞)−ϕI(t)
1−ϕI(t) can only

decrease during the course of an epidemic.

The Figure 3 gives an example of such a situation with U = 0. Until the

time 0.06, ϕI(∞)−ϕI(t)
1−ϕI(t) ≥ rV /rI and the individual vaccinates. After this time

individual vaccination stops. The probability to be vaccinated is constant equal
to 0.07% after time 0.06.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

S

I

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.2

0.4

0.6

0.8

t

Fig. 3 The parameters used are (S0− , I0− ) = (0.75, 0.1), β = 73, γ = 36.5, rI = 1,
rV = 0.5, umax = 10 and constraint in Equation (19). Left: The trajectory (S(t), I(t)) of

the system (1) with U = 0. Right: The decreasing dotted curve is t 7→ ϕI (∞)−ϕI (t)
1−ϕI (t)

, the

constant densely dashed line is the level rV /rI and the increasing dashed-dotted curve is
the probability of vaccination over time.
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2.2 Equilibrium strategies

In classical settings that disregard individual choices (see (Abakuks, 1974,
Laguzet and Turinici, 2015)) the cost for the society defined as:

Jsoc(S0− , I0− , U) =

∫ ∞
0−

rIS(t)
dϕI(t)

1− ϕI(t)
+ rV dU(t), (10)

is the only quantity of interest and is minimized. An optimal societal strategy
can be found, which will be denoted from now on (OS). The strategy (OS) par-
titions the domain Ω into a region of vaccination and a region without vaccina-
tion. The frontier of the two regions is the curve {(S, I) ∈ Ω |∂Sζ(S, I) = rV /rI }.

Remark 1 We recall that for any (S, I) ∈ Ω one can introduce the number
ζ(S, I) of infected people (in absence of vaccination) for a trajectory starting
in (S, I). In particular ζ is the solution of the following equation (see (Abakuks,
1974, 1972, Laguzet and Turinici, 2015)):

1− ζ(S, I)/S = e−
β
γ (I+ζ(S,I)). (11)

In our setting, the situation is not a simple optimization. Any individual
optimizes its cost but the coherence of the model requires that the aggrega-
tion of individual optimal policies ϕV result in the global vaccination policy
dU . Therefore the situation is more adequately described by an equilibrium
in the form of a fixed point property: a global vaccination dU gives optimal
individual responses ϕV which sum up to form a societal response dU ′. The
equilibrium is reached only when dU = dU ′.

The first good news is that the results in Appendix D show that an equilib-
rium always exists, i.e., even if the individuals are only driven by self-interest
some vaccination level is conserved (and does not drop to zero). This is com-
pletely coherent with other results from the literature, see Bauch and Earn
(2004) and related works.

The couple of optimal individual strategy and resulting societal strategy in
equilibrium will be denoted from now on (EIS). The equilibrium (EIS) is also
described as a partition of Ω into a region of vaccination and a region without
vaccination. Individuals will vaccinate in the first region and stop vaccination
upon reaching the boundary of the second region. The line that delimits the
two regions is of equation:

{(S, I) ∈ Ω |I + (rV /rI)S + (γ/β) ln(1− rV /rI) = 0} . (12)

The Proposition 1 shows that the vaccination region of the (OS) strategy
includes strictly the vaccination region of the (EIS) strategy.

The Figure 4 presents the comparison of the regions in Ω. The response of
an individual to a given state (S, I) of the epidemic dynamics depends on the
location of (S, I) in Ω. In the gray region the individual (in the (EIS) strategy)
will vaccinate and also the (OG) strategy is to vaccinate. In the hashed region
the individual (in the (EIS) strategy) will not vaccinate but the (OG) strategy
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is to vaccinate. In the white region the individual (in the (EIS) strategy) will
not vaccinate and the (OS) strategy is to not vaccinate.

Therefore only the hashed region, delimited by the curve ∂Sζ(S, I) = rV /rI
and the line I+(rV /rI)S+(γ/β) ln(1−rV /rI) = 0, is conflictual, in the sense
that the individual does not have incentive to vaccinate but the societal best
decision is to vaccinate. In this region the individual will tend to free-ride on
the vaccination of the rest of the society.

S1

I
1

O

Individual: yes.
Societal: yes.

Individual: no.
Societal: no.

Individual: no.
Societal: yes.

Fig. 4 The representation of the
domain Ω and its regions. Gray
region: vaccination in the (OG)
strategy and in the (EIS) strat-
egy. Hashed region: vaccination
in the (OG) strategy but not in
the (EIS) strategy. White region:
no vaccination in the (OG) strat-
egy and no vaccination in the
(EIS) strategy.

We illustrate in Figure 5 the societal trajectories for three possible strate-
gies in equilibrium, that is, satisfying the constraint (9) (but not all optimal
at the individual level). The dashed curve with no label corresponds to no
vaccination and the individual cost is 0.65. The second dashed curve corre-
sponds to the (EIS) strategy: between point (S0− , I0−) and A, the individual
vaccinates (dϕV = umax/S(t)(1 − ϕV (t))) and after point A, there is no vac-
cination (dϕV = 0). The individual cost is 0.55. The third curve corresponds
to the trajectory with vaccination coherent with the (OS) societal strategy:
vaccination occurs between point (S0− , I0−) and B. The individual cost is 0.53.

A very counter-intuitive fact is that the individual cost for the (OS) strat-
egy is lower than the cost of the (EIS) strategy. Is this not in contradiction
with the fact that the (EIS) strategy is the optimal strategy for an individual ?
How can be something better than the optimal ? In fact the equilibrium is a
Nash equilibrium which is not globally optimal. Although everybody would
be better off adopting the (OS) strategy this choice is not stable at the indi-
vidual level. A new individual added to such a population has the incentive
to vaccinate less, driving the equilibrium towards the (EIS) stable point. See
also Appendix E for the relation between the two costs. In game theory such
a circumstance is termed ”price of anarchy”.
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Fig. 5 The dashed curve (with-
out the point A) is with no vac-
cination (dU = 0) and has indi-
vidual cost 0.68; the solid curve is
with (OS) strategy and has indi-
vidual cost 0.51; the dashed curve
(with point A) is with the (EIS)
strategy and has individual cost
0.54. The parameters used for the
three trajectories are β = 73,
γ = 36.5, umax = 10, rV = 0.5,
rI = 1, S0− = 0.75, I0− = 0.1.

3 Illustration of the theoretical results: the discounted case

We consider in this Section D > 0. Such a situation appears when individuals
favor the present more than the future: when faced with two identical events,
one in t > 0 years and one in the present, the event in the future is seen as
less severe (or less beneficial) than the event in the future. The attenuation
factor is by definition e−Dt. There is no general prescription on the precise
numerical value to use for D because it is specific to the subjective behavior
of the individuals in relationship with a given epidemic. Discounting has been
also discussed in the context of the QALY/DALY scales (see Zeckhauser and
Shepard (1976), Anand and Hanson (1997), Sassi (2006)).

This situation features several important novelties. First, the optimal in-
dividual strategies are not based on the comparison between the infection risk
and the vaccine cost. This approach, used profitably by Francis (2004) (see
also Francis (1997)) is only valid when there are precisely two regions (a vacci-
nation and a non-vaccination region) and the only pure strategies ever used are
Π0 and Π∞. Or, in general, it is impossible to know in advance the structure
of the solution and therefore their approach needs to be extended, as shown
in this work.

When D > 0, vaccinating in the future makes sense when I0− is small and
S0− large because the infection risk is temporarily attenuated by the discount
factor. The criterion is the difference between the quantity rV (1 − e−D∆t)
(gained from postponing vaccination ∆t units of time) and the increase in the
risk of infection during the ∆t units of time. The correct solution requires
proper consideration of the probability law ϕV , see Appendix G for details. A
graphical illustration of this situation is given in Figure 6.

WhenD > 0 the equilibrium features three types of regions: a no-vaccination
region Ωn, a instantaneous vaccination region Ωi and a delayed vaccination
region Ωd. The zone Ωd does not exist when D = 0 or D > 0 and rV /rI is
large; however Ωd appears in the realistic situation when D > 0 and rV /rI is
small. The Figure 7 illustrates this partition.
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Fig. 6 The parameters used are (S0− , I0− ) = (0.9, 0.04), β = 73, γ = 36.5, rV = 0.4,
rI = 1 and D = 10. Left: Evolution of the function g (see Appendix G). The optimal
individual vaccination occurs at time τ∗ = 0.0329 (minimum of the function). Right: The

risk of infection t 7→ rI (ΦI (∞)−ΦI (t))
rV e
−Dt(1−ϕI (t))

; the initial value is 0.3897. The vaccination does not

occur when the risk of infection reaches rV for the first time (at time t = 0.0048) nor at the
maximum value of the infection risk (time t = 0.0425).

When the initial point (S0− , I0−) ∈ Ωd the equilibrium is such that vacci-
nation is not stable and will not be requested until the infection level I = I∗

has been reached (see Appendix F for the definition of I∗).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Ωi

Ωn
Ωd

•
(S∗, I∗)

S

I

Fig. 7 The partition of the domain Ω
in three regions: Ωi (dotted, instan-
taneous vaccination), Ωn (white, no
vaccination), Ωd (gray, delayed vacci-
nation) for γ = 36.5,β = 73, rV /rI =
0.4 and D = 10. In this case Ωd 6= ∅.
The equilibrium dynamics is as fol-
lows: if (S0− , I0− ) ∈ Ωn it will always
remains there; if (S0− , I0− ) ∈ Ωi par-
tial vaccination will bring it to Ωn
and total vaccination to the bound-
ary S = 0; if (S0− , I0− ) ∈ Ωd it will
evolve to some point (S, I∗), then vac-
cinate till the point (S∗, I∗) on the
boundary of all three regions, then
will evolve in the region Ωn. If on the
contrary rV /rI = 0.6 we have Ωd = ∅;
this situation is not illustrated here as
it is similar to Figure 4).
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4 An application to the Influenza A (H1N1) 2009/2010 epidemic in
France

We apply in this Section the previous theoretical results to a practical situ-
ation. Recall that in our model individuals are all the same and are rational
optimizing agents with perfect knowledge and foresight. Although this is never
true in reality, the model may still prove useful in order to understand in what
regards the reality is different from the model. In particular we will show
here that it is unlikely that all individuals shared the same rV in the specific
example chosen in this Section.

4.1 Epidemic context

The 2009/2010 Influenza A (H1N1) epidemic in France is a recent example
of vaccination campaign that displays a large difference between the target,
planned, vaccination coverage and the effective coverage obtained at the end
of the campaign (see also (Schwarzinger et al., 2010)).

The 2009/2010 worldwide H1N1 epidemic spread through 213 countries
and has been attributed 18156 deaths by 15/06/2010 (when epidemic was
declared over by the WHO). In France the first cases appeared in May 2009
and 1334 severe forms were declared out of, approximately, 7.7 to 14.7 Millions
people infected. The vaccination campaign in France was costly (around 500M
EUR, although cost estimation vary) for a low efficiency of 8% coverage (to be
compared with 24% in the US or 74% in Canada) although the target was set
to 75%. During the French vaccination campaign some undesired neurological
side-effects of the adjuvant present in the vaccines were under debate and
known to the public.

The campaign was designed in waves (people were called to the vaccine cen-
ters according to their risk status) and all vaccination centers were not 100%
operational at once. Moreover the government mobilized additional medical
personnel (military, medicine interns,...) latter during the epidemic propaga-
tion. The joint combination of these effects is that the maximum vaccination
capacity was non-constant increasing from zero to some peak obtained by the
end of 2009.

4.2 Data sources

The information concerning the vaccination capacities were available in the
general news but no quantitative estimation is, up to our knowledge, available.
However the actual cumulative vaccination curve was reported by Guthmann
et al. (2010) (up to the maximum coverage of 7.9%). The vaccine effectiveness
coefficient was estimated by Valenciano et al. (2011) to be 71.9%. We set U in
the model (1) to fit this data, see Figure 8.
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Fig. 8 Left: Fit of the cumulative vaccination in percents weighted by the effectiveness
coefficient. The curve U (labeled ”Model”) and the curve in Guthmann et al. (2010) (labeled
”Data”) cannot be distinguished. Right: Instantaneous vaccination dU , weighted by the
effectiveness coefficient.

In what concerns the size of the Infected class, the French ”Sentinel” net-
work (cf. Flahault et al. (2006)) reports the estimation of the number of in-
fections per week starting from the beginning of the epidemic. Using the same
data Valleron and Guidet (2010) compared the epidemic with seasonal epi-
demic dynamics. Finally Bone et al. (2012) measure seroconversion and ob-
tain results on the number of people immunized at the end of the epidemics.
All this data was used to estimate the curve I(t) in the model (1). The data
obtained by the Sentinel network takes into account the number of consul-
tations in medical offices. However some infected persons are asymptomatic
(but contribute to the propagation) and thus only some percentage of the in-
fected individuals will consult a medical doctor. This percentage is difficult to
evaluate; we follow the European Centre for Disease Prevention and Control
(ECDC) (2009) who estimated this rate at 50%; thus to estimate the num-
ber of infections we set I(t) two times larger than the curve reported by the
Sentinel network.

The propagation parameters β and γ were chosen consistent with ranges
from the literature (see Boëlle et al. (2011)) although large confidence intervals
were present, see for instance (Carrat et al., 2010). We took R0 = β/γ = 1.35.
We fit γ in a very limited range, S0− in the range 0.8 to 0.95 (compatible with
estimation concerning already immunized persons) and I0− . The parameters
were optimized in order to reproduce the cumulative number of infections∫∞
0−
βS(t)I(t)dt and the peak of the epidemic. We obtained γ = 365/3.2, S0− =

0.84 and I0− = 2 × 10−6. The overall fit obtained is described in Figures 8
and 9. Given the large uncertainties surrounding the propagation parameters
and the number of infections the fit is considered very satisfactory. Given the
short time of propagation of the epidemic we took D = 0.
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Fig. 9 Comparison between the Infected class as obtained from the Sentinel network and
the one from the model in (1). Left: Infected class as function of time. The peak of the
epidemic is well reproduced. Right: cumulative number of Infections. The overall number
of infection (at the end of the epidemic) is well reproduced.

4.3 Methods

Once the overall dynamics (1) is given, there is still the quotient rV /rI to be
estimated. Such an endeavor is very difficult because this is depending on the
individuals’ perception and very few data is available on the heterogeneity of
this parameter within the population. Rather than using very uncertain data
we preferred to see what the model says about the quotient rV /rI .

On the vaccination intensity Figure 8 (left) one can note that vaccination
had a sharp increase up to week 50− 51 of 2009 followed by a sharp decrease.
The decrease was not due to the capacity of vaccination centers. We interpret it
as reflecting a perception of a low infection risk coupled with high vaccination
risk, i.e., a high quotient rV /rI . We can compute the precise value of the
quotient rV /rI compatible with our model. In Figure 10 we plot three risk

indicators: first of them is ϕI(∞)−ϕI(t)
1−ϕI(t) , the second ζ(S(t),I(t))

S(t) ; the third is

the quotient between the number of infections from t to ∞ divided by the
number of susceptible people in t (which is the initial value S0− minus the
total infections and vaccinations between 0 and t). Note that this last criterion
is model free and can be computed from the vaccination coverage report and
the Sentinel network data (weighted by the asymptomatic infected individuals
rate).

We looked therefore at the level of the three criterions that were attained
at the time when vaccination decreased. According to our model this level is
an indication of the quotient rV /rI .
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4.4 Results

An individual that stops vaccinating at the peak of the curve in Figure 8 (left)
will have rV /rI in the range 5%−10%. This is a huge value meaning that 1 out
of 10 vaccinated people will develop side-effects as severe as the influenza A
H1N1 itself. Such situations reflect probably a communication failure around
the epidemic and the vaccines (infection risk, severity, vaccine side effects, need
for a mass vaccination campaign, ...) rather than specific medical data about
the risks involved. See also (Brien et al., 2012) for a discussion on the determi-
nants of individual vaccination and (Basu et al., 2008) for a related discussion
concerning the controversial Human papillomavirus (HPV) vaccines.

Note also that vaccination did not stop completely at week 50 − 51 of
2009 but continued at detectable levels up to week 10 of 2010. An individual
that stops vaccinating at week 10/2010 time has rV /rI < 1% (probably much
less as the model cannot be more precise with available data). This is a more
common accepted figure.

Therefore at least two groups with very heterogeneous perceptions of the
vaccination risk were present: a first group very worried about vaccine risk
and another group less pessimistic.

We want to stress again that these results are highly dependent on the
quality of the model and should be interpreted with care. Moreover the ro-
bustness of the results with respect to the input parameters γ, β, dU have also
to be assessed in practice.

5 Discussion and conclusions

In the context of individual vaccination (as opposed to global, compulsory
vaccination) we develop an equilibrium model that allows to quantify the re-
lationship between the individual perception of vaccine side-effects and of the
epidemic morbidity.

The first important result is that, even when individuals are only driven by
self interest, such an equilibrium exists. Secondly we are able to characterize
the individual decision. When there is no discounting the individual will vac-
cinate or not depending on his estimations of the infection risk compared with
the cost of the vaccine. When discounting is taken into account the individual
may choose to wait until epidemic risk rises and only then vaccinate.

The equilibrium is a Nash equilibrium with an infinity of players (as pio-
neered by Lasry and Lions (2006a,b)), which means in particular that it can
have (and has) a non-null ”price of anarchy”. This means that self-interest,
although stable from both individual-societal points of view, is not the best
solution that can be obtained.

Finally, we apply the results to the Influenza A 2009/2010 vaccination
campaign in France and see that, under the assumptions of the model, it is
hinted that at least two distinct groups existed, one very pessimistic about
vaccine side-effects and the other rather optimistic.
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Fig. 10 Using the dynam-
ics in (1), fitted with our
data, we plot three criterions:
ϕI (∞)−ϕI (t)

1−ϕI (t)
,
ζ(S(t),I(t))

S(t)
and the

quotient between the infections
in [t,∞[ and the susceptibles
in t (see text). By the time the
first group of people stopped
vaccination (week 50 − 51 of
2009) there was still 5 − 10%
chance for an individual to
contract the Influenza A. The
individual that do not vaccinate
at this point estimates the side
effects of the vaccine to occur
with frequency of about 5− 10%,
which is considered a very large
and pessimistic value. Individu-
als that stopped last (week 10
of 2010) had this figure down
to less than 1% (probably much
less given data uncertainties).
Although the precise values may
depend on the parameters we
noticed that two distinct groups
were found for a wide domain
of parameters (compatible with
data and with dU).

This work has several limitations which open the way for future develop-
ments; the parameters in Section 4 were calibrated in the following way: the
reproduction number γ/β was taken in an interval centered around the param-
eters of seasonal influenza; on the contrary the initial number of Susceptibles
(S0−) and Infected (I0−) was calibrated from data specific to this season. Pa-
rameters were optimized to fit the final number of Infected, Vaccinated and
give a correct epidemic peak. However it is not certain that only one set of
parameters is compatible with data and the robustness has to be investigated,
in particular for epidemics which are different from historical data.

In addition, our hypothesis that rV is known may be a limitation in gen-
eral. Nevertheless, although vaccines are specific to each Influenza season, their
risks are generally well understood and can be transferred from one season
to another (but the vaccine immunity does not). For the specific case of In-
fluenza A (H1N1) 2009-10 season in France it turns our that the vaccination
arrived after several other European countries already started their vaccina-
tion programs; data from these earlier programs were largely discussed and
even sparkled important controversies in France concerning the vaccine side-
effects. In general, when the risk rV is not known the model could be extended
as in Bhattacharyya and Bauch (2011) where the authors discuss the learning
of rV parameter during the Influenza A (H1N1) 2009-10 epidemic season in
North America.
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Fig. 11 Illustration of instantaneous vaccination of 30% per-
cent of the population at time t∗ = 0.25. The function V (t) =∫ t∗
0− dU(τ) is plotted. It has a discontinuity at time t∗ and is equal

to H(· − t∗) with H(·) the Heaviside function.

Another limitation arises from the schedule of the vaccination campaign:
people were assigned to risk groups and in principle, cannot vaccinate without
a written invitation received by mail (at a time corresponding to the risk group
they belonged). However many centers were under-utilized by mid December
2009, see (Cour des Comptes, page 26) and on the other hand almost 2.7
Millons on-the-spot invitations were issued to people that presented at their
initiative for vaccination, see (Door, 2010, page 95). We conclude that absence
of invitations did not prevented, by itself, voluntary vaccination at the end of
2009.

A On the societal and individual SIR model with vaccination

The mathematical description of the SIR model with vaccination has to take into account
the possibility of instantaneous vaccination, which means that a non-negligible proportion of
the total population can be vaccinated instantaneously at some time t. A first consequence is
that S(0) can be strictly less than S0− (when some vaccination occurs at time 0). Recall that
V (t) represents the proportion of people vaccinated by the time t. If, for instance, nobody
vaccinates before time t∗ = 0.25 years (3 months) and 30% of the population vaccinates at
time t∗ this means that V (t) is discontinuous at this point (see Figure 11 for an illustration).
In particular it is not derivable and neither will be S(t); as such it is not possible to use in
Equation (1) the derivative dS(t)/dt. This explains why the equation is only written in the
differential form: dS(t) = −βS(t)I(t)dt−dU(t). In this writing all objects have a well defined
mathematical meaning: dU(t) is a positive measure which, for our example will be the Dirac
mass 0.3δt∗ . We refer to Bressan and Rampazzo (1991), Dal Maso and Rampazzo (1991),
Miller (1996), Silva and Vinter (1997) for the mathematical properties of the solutions to
such evolution equations. In the particular situation when U(t) has a jump at 0 we will have
S0− − S(0) = U(0)− U(0−) = U(0).

In this dynamics all individuals are the same. Each individual is following a continuous
time Markov dynamics jumping between the states Susceptible, Infected, Recovered and
Vaccinated. Let Mt be the state of one such individual at time t. The time of the jump from
the Infected to the Recovered class is a exponential random variable of mean 1/γ. We write
in terms of probabilities:

P
(
Mt+∆t = Recovered

∣∣∣Mt = Infected
)

= γ∆t+ o(∆t). (13)

For a given individual in the Susceptible class at time t, the probability to be infected during
the time interval [t, t+∆t] is βI(t)∆t+ o(∆t), therefore

P
(
Mt+∆t = Infected

∣∣∣Mt = Susceptible
)

= βI(t)∆t+ o(∆t). (14)
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Fig. 12 The individual cumulative probability of vacci-
nation ϕV (t) is an increasing, right continuous with left
limits (càdlàg) function with ϕV (0−) = 0, ϕV (∞) ≤ 1.

On the other hand, denote by ϕI(t) the probability of infection (in the absence of
vaccination) during the time interval [0, t]. Then

P
(
Mt+∆t = Infected

∣∣∣Mt = Susceptible
)

=
P (Mt+∆t = Infected,Mt = Susceptible)

P (Mt = Susceptible)

=
ϕI(t+∆t)− ϕI(t)

1− ϕI(t)
=

1

1− ϕI(t)
ϕ′I(t)∆t+ o(∆t). (15)

Passing to the limit ∆t→ 0 in Equations (14) and (15) we obtain:

ϕ′I(t) = βI(t)(1− ϕI(t)), ϕI(0−) = 0. (16)

therefore ϕI is given by formula (2). Note that since I(t) is continuous ϕI is differentiable
everywhere.

In particular, for an individual in the Susceptible class at time τ that does not vaccinate
any more from that time on, the probability of infection after time τ is:

ϕI(∞)− ϕI(τ)

1− ϕI(τ)
. (17)

We can prove, by direct computations, that dU = 0 on [τ,∞[ implies:

ϕI(∞)− ϕI(τ)

1− ϕI(τ)
=
ζ(S(τ), I(τ))

S(τ)
. (18)

Remark 2 Since ϕI(∞) < 1 the cost Jpure(Π∞) is not the limit of the costs Jpure(Πt) (for
t→∞). On the contrary JDpure(Π∞) = limt→∞ JDpure(Πt).

B Individual strategies

The simplest individual strategy is to vaccinate or not at some given time (provided he is
still susceptible). Such a strategy is called a pure strategy. However pure strategies do not
always have good theoretical properties and in his Nobel award winning work John Forbes
Nash proved that on the contrary, any finite game admits equilibrium if mixed strategies
are allowed. A mixed strategy is a probability law on the set of all pure strategies. With
the notations of Section 1.1 the mixed strategy are probability laws on [0,∞] with special
meaning of values 0 (immediate vaccination) and ∞ (no vaccination). The CDF function
ϕV (t) is such that ϕV (0−) = 0 (no vaccination before time 0). Note that ϕV is not necessary
a continuous function (the discussion is very much similar to the one in Appendix A). In
particular when the individual chooses the pure strategy Πt∗ then ϕV is the Heaviside
function H(· − t∗). See the illustration in Figure 12.

It may also be necessary to impose some constraints. Suppose that global vaccination
(at the society level) can only happen with the maximal rate of umax percent of population
in a unit time. Then, with the notations in Equation (1): U(t + ∆t) − U(t) ≤ umax∆t.
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Suppose now that all individuals want to vaccinate at the same time with the same ϕV
then the constraint above, coupled with (9), implies that ϕV is differentiable in any t with
S(t) > 0 and denoting fV (t) = umax

S(t)
:

∀t ≥ 0 with S(t) > 0 :
dϕV (t)

dt
≤ fV (t)(1− ϕV (t)). (19)

Another interpretation of the constraint is the following: when the number of people that
want to vaccinate exceeds the capacity of the vaccination centers people will have to wait.
In this model all individuals are the same (that is, have the same characteristics therefore
same strategies) then the probability for a given individual to obtain vaccination in a time

interval [t, t + ∆t] is umax∆t
S(t)

. The probability to be not yet vaccinated at time t but be

vaccinated by time t + ∆t is on the one hand
ϕV (t+∆t)−ϕV (t)

1−ϕV (t)
and on the other hand is(

umax∆t
S(t)

)
+ o(∆t); for ∆t→ 0 we obtain the constraint

dϕV (t)

dt
≤
umax(1− ϕV (t))

S(t)
. (20)

C Proof of the properties of the individual optimal strategy: the
undiscounted case

We set D = 0.

Theorem 1 (Case umax <∞) Let U be a given societal policy in (1), increasing, U(t) ≤
1, ∀t ≥ 0 and fV (t) = umax

S(t)
. Suppose that the set of admissible individual strategies is

composed of all increasing functions ϕV differentiable in any t with S(t) > 0 such that:
ϕV (0−) = 0;

ϕV (∞) ≤ 1;

∀t ≥ 0 with S(t) > 0 :
dϕV (t)
dt

≤ fV (t)(1− ϕV (t)).

(21)

Then the individual optimal strategy ϕ∗V that minimizes the cost in Equation (4) (with the
system (1)) is:

a/ If rI ≤ rV : ϕ∗V (t) = 0.
b/ If rI > rV and ϕI(∞) ≤ rV /rI then ϕ∗V (t) = 0.
c/ If rI > rV and ϕI(∞) > rV /rI then ϕ∗V (t) is the solution of

ϕ∗V (0−) = 0, ϕ∗V (∞) ≤ 1, ϕ∗V increasing

∀t ∈ [0,min{ZS , θI}[:
dϕ∗V (t)

dt
= fV (t)(1− ϕ∗V (t))

if ZS ≤ θI : ϕ∗V (Z−S ) = ϕ∗V (∞) = 1

if ZS > θI : ϕ∗V (θ−I ) = ϕ∗V (∞) < 1,

(22)

with the notation ZS = infτ≥0{τ |S(τ) = 0}.
The parameter θI is the unique solution of the equation:

ϕI(∞)− ϕI(θI)

1− ϕI(θI)
=
rV

rI
. (23)

Proof We use individual cost in the form in Equation (4). It may be noted that:

rV − rIϕI(∞) + (rI − rV )ϕI(t) = rV (1− ϕI(t)) + (rV − rI)(ϕI(∞)− ϕI(t)). (24)
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Case a/ If rI ≤ rV , since ϕI is an increasing function, the quantity in (24) is the sum
of positive terms. The minimum attainable value is therefore zero and it obtained when
dϕV (t) = 0 ∀t. Or ϕV (0−) = 0 thus ϕV (t) = 0 ∀t ≥ 0.
Cases b/ and c/ If rI ≥ rV let us compute

d

dt
[rV − rIϕI(∞) + (rI − rV )ϕI(t)] = (rI − rV )

dϕI(t)

dt
≥ 0, (25)

(recall that ϕI(t) is increasing) and moreover rV −rIϕI(∞)+(rI−rV )ϕI(0) = rV −rIϕI(∞)
is positive as soon as ϕI(∞) ≤ rV /rI . To minimize the cost, vaccination should not occur
when the term to integrate against dϕV (t) is positive therefore there is no vaccination if
ϕI(∞) ≤ rV /rI .

If ϕI(∞) > rV /rI , vaccination occurs for all t such that rV −rIϕI(∞)+(rI−rV )ϕI(t) ≤
0, or equivalently

ϕI (∞)−ϕI (t)
1−ϕI (t)

≥ rV
rI

.

Moreover,
d

dt

[
ϕI(∞)− ϕI(t)

1− ϕI(t)

]
= −

[1− ϕI(∞)]

[1− ϕI(t)]2
dϕI(t)

dt
< 0. (26)

Then t 7→ ϕI (∞)−ϕI (t)
1−ϕI (t)

is a decreasing, continuous function from ϕI(∞) to zero. To minimize

the cost, the vaccination should appear right at the beginning and last until the boundary
of the domain Ω is attained by the dynamics (1) or until time θI , the unique solution of
ϕI (∞)−ϕI (θI )

1−ϕI (θI )
= rV

rI
. Therefore in order to minimize the integral one has to set dϕV = 0 on

[θI ,∞[ and vaccinate on [0, θI [ with maximal values coming first. Taking into account the
constraint (21) we obtain equation (22) (the constraint umax <∞ implies that if ZS ≤ θI
then

∫ ZS
0

umax
S(τ)

dτ =∞ thus ϕV (Z−S ) = 1).

Remark 3 There is no individual vaccination if rV /rI > 1− e−β/γ .

The next results applies when the individual vaccination can be unbounded, i.e., dϕV
can contain Dirac masses.

Theorem 2 (Case umax = ∞) The individual strategy ϕ∗V that minimizes the cost (4)
with the system (1) is:

a/ if rIϕI(∞) < rV then ϕ∗V ≡ 0,
b/ if rIϕI(∞) > rV then dϕ∗V = δ0,
c/ if rIϕI(∞) = rV then dϕ∗V = αδ0 with α arbitrary in [0, 1].

Proof Case a/ If
∫∞
0− rV − rIϕI(∞) + (rI − rV )ϕI(t)dϕV (t) is positive, then the mini-

mum is greater than rIϕI(∞). This value is attained only if
∫∞
0− rV − rIϕI(∞) + (rI −

rV )ϕI(t)dϕV (t) = 0 so ϕV (t) = 0 for all t.
Case b/ The strict monotony of the integrand rV − rIϕI(∞) + (rI − rV )ϕI(t) allows to
write: ∫ ∞

0−
rV − rIϕI(∞) + (rI − rV )ϕI(t)dϕV (t)

≥
∫ ∞
0−

[rV − rIϕI(∞) + (rI − rV )ϕI(t)]t=0− dϕV (t)

= [rV − rIϕI(∞)]

∫ ∞
0−

dϕV (t) ≥ rV − rIϕI(∞),

where we used ϕV (∞) ≤ 1 and rV − rIϕI(∞) ≤ 0. This gives a lower bound for the
minimum. The bound is attained when both inequalities become equalities that is dϕV (t)
is the Dirac mass in 0.
Case c/ The difference with the previous case is that the last term rV − rIϕI(∞) is 0.
Therefore the last inequality is always satisfied. We obtain the conclusion.
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D Equilibrium strategy: the undiscounted case

We set D = 0.

Theorem 3 (Case umax <∞) Consider admissible individual strategies as in Theorem 1.
Then:

a/ If rV ≥ rI or rV < rI and I0− + rV /rIS0− + (γ/β) ln(1− rV /rI) ≤ 0 then the unique
equilibrium is U = 0 = ϕV .

b/ Otherwise consider the dynamics (Y∞1 , Y∞2 ) starting from S0− , I0− with dU = umaxdt
at all times until S(t) = 0. Let θumax (S0− , I0− ) be the first time when this dynamics
touches the ensemble of curves:{

(S, I) ∈ Ω |I + (rV /rI)S + (γ/β) ln(1− rV /rI) = 0
}
∪
{

(S, I) ∈ Ω
∣∣∣S = 0

}
. (27)

Then the unique equilibrium is:

dU(t) = umax1[0,θumax (S
0− ,I0− )](t)dt, (28)

dϕV (t)

dt
= (1− ϕV (t))fV (t)1[0,θumax (S

0− ,I0− )](t). (29)

Proof Case a/ If rV > rI then any optimal individual strategy is ϕV = 0 and the com-
patibility relation (9) imply U = 0. Therefore the only possible equilibrium in this case is
U = 0 = ϕV . It is easy to see that this is effectively an equilibrium.

If rV ≤ rI and ζ(S0− , I0− ) ≤ (rV /rI)S0− , from Equations (18) and (26) it follows that
an individual strategy that vaccinates cannot be optimal, thus ϕV = 0. As before we obtain
the unique equilibrium U = 0 = ϕV .
Case b/ Since ζ(S0− , I0− ) > rV /rIS0− any optimal individual strategy must satisfy (22).
Therefore, from the compatibility relation (9) we obtain dU(t) = umax1[0,θ](t) for some
θ ≥ 0. We have to find θ such that θ is solution of (23) for dU(t) = umax1[0,θ](t). This is a
fixed point equation.

Let (S, I) be the solution of the system (1) with dU(t) = umax1[0,θ](t). Since dU = 0
on [θ,∞] by Equation (18), any θ solution of (23) is also solution of

ζ(S(θ), I(θ)) = rV /rIS(θ). (30)

But (S, I) = (Y∞1 , Y∞2 ) for t ≤ θ, thus:

ζ(S(θ), I(θ))

S(θ)
=
ζ(Y∞1 (θ), Y∞2 (θ))

Y∞1 (θ)
. (31)

Therefore, any θ that represents an equilibrium is also solution of the equation:

ζ(Y∞1 (θ), Y∞2 (θ))

Y∞1 (θ)
=
rV

rI
. (32)

But,

d

dt

[
ζ(Y∞1 (t), Y∞2 (t))

Y∞1 (t)

]
=

1

(Y∞1 (t))2

[(
∂ζ

∂S

dY∞1 (t)

dt
+
∂ζ

∂I

dY∞2 (t)

dt

)
Y∞1 (t)− ζ

dY∞1 (t)

dt

]
=

(ζ − Y∞1 (t))(ζumax + βY∞1 (t)Y∞2 (t)(ζ − Y∞1 (t) + γ/β)

(Y∞1 (t))2(1 + β/γ(ζ − Y∞1 (t)))
< 0,

because ζ < S and ζ > S − γ/β (see Laguzet and Turinici (2015) for details and the
expressions of the partial derivative of ζ).

Thus if (32) has a solution then this solution is unique. Therefore in any case at most
one equilibrium exists. Under the hypothesis ζ(S0− , I0− ) < rV

rI
S0− Equation (32) does have

a solution so θ is also solution of Equation (30) and this is the equilibrium.
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Theorem 4 (Case umax =∞) The equilibrium is:

a/ If rV ≥ rI or rV < rI and I0− +(rV /rI)S0− +(γ/β) ln(1−rV /rI) ≤ 0 then the unique
equilibrium is dU = 0 and dϕV = 0 (no vaccination).

b/ If I0− + (γ/β) ln(1 − rV /rI) > 0 then the unique equilibrium is dU = δ0S0− and
dϕV = δ0 (total instantaneous vaccination).

c/ Otherwise the unique equilibrium is dU = α∗δ0 and dϕV = (α∗/S0− )δ0 (partial instan-
taneous vaccination) with α∗ = rV ((I0− + rV /rIS0− + γ/β) ln(1− rV /rI))/rI .

Proof Previous results indicate that in the unbounded case the individual optimal strategies
are of the form dϕV = ηδ0 thus dU = ηS0−δ0. Moreover, let α = ηS0− and recall that
S(0) = S(0−)− α = S0− − α; moreover:

d

dα

[
ζ(S0− − α, I0− )

S0− − α

]
=

1

(S0− − α)2

[
∂ξ

∂S
(−1)(S0− − α)− ξ(−1)

]
=

ζ(ζ − S0− + α)

(S0− − α)2 (γ/β + ζ − S0− + α)
< 0,

so the function α→ ζ(S
0−−α,I0− )

S
0−−α

is decreasing. Recall that ζ(S0− − α, I0− )/(S0− − α) =

rV /rI is the same as I0− + rV /rI(S0− − α) + γ/β ln(1− rV /rI) = 0. Similar arguments as
in the proof of the Theorem 3 apply and allow to reach the conclusion.

Proposition 1 The vaccination region of the (OS) strategy contains the vaccination region
of the (EIS) strategy.

Proof In the (OS) strategy, the vaccination only stops if ∂Sζ ≤ rV
rI

(see Laguzet and Turinici

(2015) for details). Or ∂Sζ = ζ
S

1

1+ β
γ
(ζ−S)

and ζ − S ≤ 0 so 1 + β
γ

(ζ − S) ≤ 1. Then

ζ
S
≤ ∂Sζ ≤ rV

rI
and the conclusion follows.

E Relation between global and individual cost.

Lemma 1 Let ϕV and U satisfy Equation (9). Then the individual cost is the average of
the global cost, that is:

1

S0−
Jsoc(S0− , I0− , U) = Jindi(ϕV ). (33)

Proof We can write:∫ ∞
0−

rI(1− ϕV (t))dϕI(t) =

∫ ∞
0−

rI(1− ϕV (t))(1− ϕI(t))

[
−
dS(t)

S(t)
−
dU(t)

S(t)

]
(34)

because from (1) for S(t) 6= 0:
dϕI (t)
1−ϕI (t)

= βI(t) = − dS(t)
S(t)

− dU(t)
S(t)

.

Furthermore (9) implies:∫ ∞
0−

rV (1− ϕI(t))dϕV (t) =

∫ ∞
0−

rV (1− ϕV (t))(1− ϕI(t))

[
dU(t)

S(t)

]
. (35)

By summing the Equations (34) and (35) we get:

Jindi(ϕV ) =

∫ ∞
0−

(1− ϕV (t))(1− ϕI(t))

[
−rI

dS(t)

S(t)
− rI

dU(t)

S(t)
+ rV

dU(t)

S(t)

]
=

∫ ∞
0−

S(t)

S0−

[
−rI

dS(t)

S(t)
− rI

dU(t)

S(t)
+ rV

dU(t)

S(t)

]
=

1

S0−

∫ ∞
0−

[−rIdS(t)− rIdU(t) + rV dU(t)] , (36)
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where we used (1− ϕV (t))(1− ϕI(t)) = S(t)/S0− . Using Equation (16) and the definition
of Jsoc(S0− , I0− , U) in Equation (10), we obtain the result.

Corollary 1 The average cost per person with the (OS) strategy is lower than the average
cost per person with the (EIS) strategy.

Proof Denote by UG the (OG) strategy and ϕGV its individual counterpart. Also denote by

ϕIV the individual strategy in the (EIS) equilibrium and UI its global counterpart. By the

definition of the optimality of UG: Jsoc(S0− , I0− , U
G) ≤ Jsoc(S0− , I0− , U

I). From Lemma 1
after simplification by S0− we obtain: Jindi(ϕ

G
V ) ≤ Jindi(ϕGV ) which is the conclusion.

F Some properties of the discounted number of infected

In this Section and in Appendix G we consider D > 0 and umax = ∞. Define I∗ =
(rV D)/((rI − rV )β) and ζd(S0− , I0− ) =

∫∞
0− e

−DtβS(t)I(t)dt where (S(t), I(t)) is a non-
vaccinating dynamics starting in (S0− , I0− ). Denote also CrV /rI = {(S, I) ∈ Ω|ζd(S, I) =
(rV /rI)S}.

Lemma 2 1. The point (0, I∗) is always below the curve CrV /rI . In particular either
CrV /rI intersects the line I = I∗ in a point (S∗, I∗) ∈ Ω or CrV /rI is completely above
the line I = I∗.

2. When CrV /rI ∩ {(S, I) ∈ Ω|I = I∗} 6= ∅ , the non-vaccination dynamics starting from
(S, I) ∈ CrV /rI is entering the domain {(S, I) ∈ Ω|ζd(S, I) ≤ (rV /rI)S} if and only if
I ≥ I∗.

Proof Item 1: It is enough to prove that limε→0 ζd(ε, I∗)/ε ≤ rV /rI . Let (S(t), I(t)) be the
evolution of the system without vaccination starting from the point (ε, I∗). From I′(t) =
(βS(t)− γ)I(t) we obtain

I(t) = I∗e
∫ t
0−

(βS(u)−γ)du ∈ [I∗e−γt, I∗e(βε−γ)t] and from S′(t) = (−βI(t))S(t) we

obtain S(t) = εe
∫ t
0−
−βI(u)du ∈ [εe

∫ t
0−
−βI∗e(βε−γ)udu

, εe
∫ t
0−
−βI∗e−γudu

]. For ε→ 0:

lim
ε→0

ζd(ε, I∗)

ε
=

∫ ∞
0−

e−DtβI∗e−γte
−βI∗

∫ t
0−

e−γudu
dt

=

∫ ∞
0−
−e−Dt

(
e
−βI∗

∫ t
0−

e−γudu
)′

= 1−
∫ ∞
0−
De−Dt−βI

∗ ∫ t
0−

e−γudu
dt

≤ 1−
∫ ∞
0−
De−Dt−βI

∗tdt = rV /rI , (37)

where, in the last inequality, we used that
∫ t
0− e

−γudu ≤ t.
Item 2: It is enough to show that the tangent in (S∗, I∗) to CrV /rI coincides with the
direction (−βS∗I∗, βS∗I∗ − γI∗) (the dynamics of the system without vaccination). It is
standard to prove (see Laguzet and Turinici (2015)) that ζd satisfies the following equation:

∂Sζd(S, I)(−βSI) + ∂Iζd(S, I)(βSI − γI)−Dζd(S, I) + βSI = 0. (38)

On the other hand the normal to the curve CrV /rI in (S∗, I∗) is (∂Sζd(S∗, I∗)−rV /rI , ∂Iζd(S∗, I∗)).
A simple computation shows that the condition

(∂Sζd(S∗, I∗)− rV /rI , ∂Iζd(S∗, I∗)) ⊥ (−βS∗I∗, βS∗I∗ − γI∗) (39)

reduces to (38) when I = I∗.
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G Individual and equilibrium strategy with a discount factor

Let g be the following function:

g(t) = rI(ΦI(t)− ΦI(∞)) + rV e
−Dt(1− ϕI(t)). (40)

The individual cost functional can then be written as:

JDindi(ϕV ) = rIΦI(∞) +

∫ ∞
0−

g(t)dϕV (t). (41)

Since I(t) is continuous with continuous derivative the same is true for g and

g′(t) = e−Dt(1− ϕI)
[
(rI − rV )βI − rV D

]
. (42)

Therefore the function g is increasing when I < I∗ and decreasing otherwise. On the other
hand I decreases to zero at ∞ and may remain superior to I∗ on a bounded time interval.
As such, depending on (S0− , I0− ) and U , the following possible behaviors can occur:

- g(t) is decreasing from g(0) > 0 to g(∞) = 0

- g(t) is decreasing from g(0) to some value g(t1), increases from g(t1) to g(t2) and then
decreases from g(t2) to g(∞) = 0.

The minimum of JDindi(ϕV ) is realized as following:

A/ If g(t) > 0 for all t then ϕV = 0 (never vaccinate).

B/ If inft≥0 g(t) < 0 then the optimum is realized when dϕV is a Dirac mass placed at the
(unique) time τ∗ such that g(τ∗) = inft≥0 g(t). In particular τ∗ <∞.

C/ Otherwise there exists an unique τ∗ such that g(τ∗) = 0 and the optimal strategies are
dϕV = αδτ∗ (δτ∗ being the Dirac mass in τ∗), α ∈ [0, 1] arbitrary.

Remark 4 For the individual strategy described in item B/ it is optimal to delay vaccination
to a latter time. Such a strategy is never encountered when D = 0, where vaccination occurs
either at t = 0 or never.

Finally, as in Equation (18) we can prove that if dU = 0 on [τ,∞[, for any t ≥ τ the
value g(t) is positive / negative / null if and only if ζd(S(t), I(t)) is less / larger / equal to
(rV /rI)S(t).

Consider the following notations:

I) When, with the notations of Lemma 2, a point (S∗, I∗) ∈ CrV /rI exists let S∗∗ be the
unique solution in [γ/β, 1] of the equation: x− (γ/β)ln(x) = I∗ + S∗ − (γ/β)ln(S∗).

Then the domain Ω is divided in three subdomains: Ωi = {(S, I) ∈ Ω|ζd(S, I) >
(rV /rI)S, I > I∗}, Ωd = {(S, I) ∈ Ω|I < I∗, I + S − (γ/β)ln(S) > I∗ + S∗ −
(γ/β)ln(S∗)}, Ωn = Ω \Ωi ∪Ωd.

II) When CrV /rI is above the line I = I∗, Ωi = {(S, I) ∈ Ω|ζd(S, I) > (rV /rI)S}, Ωn =
{(S, I) ∈ Ω|ζd(S, I) < (rV /rI)S}.

Theorem 5 Let (S0− , I0− ) ∈ Ω; the unique equilibrium of the individual-societal vaccina-
tion is the following:

a/ If (S0− , I0− ) ∈ Ωn then dU = 0 and dϕV = 0 (no vaccination).

b/ If (S0− , I0− ) ∈ Ωi let α ∈ [0, 1] be the maximum value such that (S0− − α, I0− ) ∈ Ωi.
Then dU = αδ0 and dϕV = (α/S0− )δ0 (partial or total instantaneous vaccination).

c/ If (S0− , I0− ) ∈ Ωd let τ∗ be the time at which the system (without vaccination) evolving

from (S0− , I0− ) reaches the line I = I∗. Then dU = (S(τ−∗ ) − S∗)δτ∗ and dϕV =

(S(τ−∗ )/S∗ − 1)δτ∗ (vaccination after waiting the time τ∗).
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Proof We will consider only the more involved situation when a point (S∗, I∗) ∈ CrV /rI
exists.

Recall that the evolution of the system without vaccination satisfies I+S−(γ/β)ln(S) =
cst. Therefore the frontier of Ωd and Ωn is a trajectory of the system without vaccination.
Let us consider the global vaccination strategy U given in this Theorem. This strategy
does not vaccinate in domain Ωn, vaccinates (instantaneously) in domain Ωi and when the
evolution starts in domain Ωd it waits to reach the line I = I∗; at that time it vaccinates
until reaching the point (S∗, I∗). This dynamics is illustrated in Figure 7. In order to prove
that this is effectively an equilibrium we still have to prove that the best individual policies
ϕV are coherent with U .

But the properties of the function g(t) show that g(t) is positive in Ωn: therefore for a
starting point (S0− , I0− ) ∈ Ωn the best individual strategy is to never vaccinate.

When the starting point (S0− , I0− ) ∈ Ωi, the instantaneous vaccination makes it arrive
at time 0 on the boundary Ωn and Ωi; therefore g(0−) = g(0) = 0. Optimal individual
strategies are ηδ0 with η ∈ [0, 1]; among those only one is coherent with U (the one described
in item b/).

Finally, when the starting point (S0− , I0− ) ∈ Ωd, the free (non-vaccination) evolution

makes it arrive at some point (S(τ−∗ ), I∗). Then at time τ∗ it reaches the point (S∗, I∗)
thus g(τ∗) = g(τ−∗ ) = 0. But, before τ∗ the coordinate I was inferior to I∗ thus g(t) was
decreasing to zero during this time. Then all ηδτ∗ , η ∈ [0, 1] will be optimal strategies.
Among those, only one value of η is compatible with U . Thus the strategies proposed in this
Theorem are equilibrium strategies. Uniqueness is proved as in Theorems 1 and 2.

Remark 5 For D > 0 and umax < ∞ we were not able to find an analytic expression for
the domains Ωi, Ωn and Ωd. The individuals, being aware of the shortage of vaccines, will
wait in line in advance to be vaccinated by the optimal time; it is possible to obtain the
corresponding Hamilton-Jacobi-Bellmann equilibrium equation but the equation has to be
solved numerically.
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