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Abstract— Health Monitoring is the science of system health 

status evaluation. In the modern industrial world, it is getting 

more and more importance because it is a powerful tool to 

increase systems dependability. It is based on the observation of 

some variables extracted in operation reflecting the condition 

of a system. The quality of health monitoring strongly depends 

on the selection of these variables named health indicators. 

However, the issue in their selection is often underestimated 

and their validation is, of what is known, an untreated subject. 

In this paper, the authors introduce a complete methodology 

for the selection and validation of health indicators in health 

monitoring systems design. Although it can be applied either 

downstream on real measured data or upstream on simulated 

data, the true interest of the method is in the latter application. 

Indeed, a model-based validation can be integrated in the 

design phases of the system development process, thereby 

reducing potential controller retrofit costs and useless data 

storage. In order to simulate the distribution of health 

indicators, a well known surrogate model called Kriging is 

utilized. Eventually, the method is tested on a benchmark 

system: the high pressure pump of aircraft engines fuel 

systems. Thanks to the method, the set of health indicators was 

validated in system design phases and the monitoring is now 

ready to be implemented for in-service operation. 

I. INTRODUCTION 

The end of the last century witnessed a turning point in 
the history of science: the appearance of computational 
science. Over the last decades, the computational capabilities 
increased such that it became possible to simulate the most 
complex problems like flow around a wing or gas diffusion in 
the atmosphere. Nowadays, we are in the era of what some 
call e-science of data-centric science, combining experience-
based, theoretical and computational sciences to maximize 
the amount of knowledge available. 

This easy access to knowledge has allowed the rapid 
development of new disciplines based on systems behavioral 
knowledge. Thus, dependability was introduced in the early 
1980s by Laprie [1] in order to encompass reliability, safety, 
security, maintenability and integrity and has continually 
gained importance to be elevated to the rank of strategic 
challenge for many industries, particularly in the fields of 
transportation and energy. Dependability can be divided into 
three components, namely attributes, threats and means. In 
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this paper, the focus is on the means, and more precisely the 
use of Prognostics and Health Management (PHM) to 
increase dependability.  

PHM was originally developed for structural applications 
under the name Structural Health Monitoring (SHM) [2]. It 
was defined as a way to perform fault detection and fault 
identification of a given system. Afterwards, it has expanded 
to other fields and has been supplemented by a prognostic 
function, aimed at predicting the evolution of a system health 
condition. Eventually, a supervision aspect was added to 
complete the PHM scheme [3]. The purpose of supervision is 
to link monitoring to maintenance in order to act effectively 
on dependability. The global scheme of interactions between 
system, PHM and Maintenance is presented in Fig. 1 where 
MRO means Maintenance, Repair and Overhaul. Nowadays, 
PHM is of paramount importance with the widespread use of 
contracts based on the operating time. It is even becoming a 
selling point for dependability dependent industries such as 
aircraft engine manufacturers. 

As most of the processes, the quality of PHM is strongly 
dependent on its input data. In this case, input data are some 
variables extracted in operation reflecting the condition of the 
system and named Health Indicators (HI). They are the 
keystone of PHM: a good selection of HIs in the upstream 
stages ensures good PHM performances downstream. The 
most important feature for a good set of HI is to be defined 
before the system enters into service in order to reduce the 
retrofit costs, which can be prohibitive for example in cases 
where the controller is subject to stringent certifications. This 
implies that the HIs must be validated within the design 
phases of the system. However, this early validation is not 
possible in the actual PHM development process because the 
amount of knowledge at this point is generally not sufficient 
to overcome the stochastic nature of the HIs behavior.  

 

Figure 1: Interactions between system, PHM and Maintenance 
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Thus, the issue of the selection and validation of HIs 
encounters two types of problems: on the one hand a 
methodological one as the validation of HIs before their 
implementation is not integrated in the PHM system design 
process and on the other hand a technological one as not 
enough measured data is available in the design phases for 
the validation itself. Despite the prominence of HIs, these 
two issues are rarely addressed in the scientific community. 
Concerning the selection aspect, we can cite the method of 
parity space [4] to create residuals with good properties but 
although performing well for academic examples, it faces the 
following issues as soon as real life complex systems are 
considerer: sensors quality, environmental uncertainties, 
manufacturing variability and low computational capabilities, 
to give a short list. Concerning the validation aspect, it is, of 
what is known, an untreated subject. Since the problem is 
twofold, it is the same for the contribution of this paper: 

Firstly, the authors introduce a new PHM development 
process aiming at integrating the construction of HIs in the 
design phases of the system. This new methodology is called 
IPHM for Integrated PHM. The selection and validation of 
the HIs is based on the computation of Numerical Key 
Performance Indicators, presented in section III.  

Secondly, the authors introduce a numerical method for 
the validation of HIs. It is based on the combination of 
physical modeling and uncertainties propagation in order to 
create a database of healthy and faulty distributions of HIs. 
Moreover, as the models are time-demanding, a well-know 
surrogate modeling technics called Kriging inherited from 
geostatistics is introduced. Its purpose is to build a low cost 
estimator of the model outputs. Finally, the whole scheme is 
applied to select and validate a set of HI for the PHM of an 
aircraft engine high pressure gear pump. 

II. SELECTION AND VALIDATION OF HEALTH INDICATORS 

In this section, the authors introduce a new development 
process aiming at integrating the selection and validation of 
HIs. This new development process is called Integrated 
Prognostics and Health Management (IPHM). 

A. Integrated Prognostics and Health Management 

The most common software development scheme is the 
V-model. The principle of IPHM is to divide the V-model of 
the PHM system into two Vs for respectively the monitoring 
and the supervision parts. The new scheme, presented in Fig. 
2, is called V2-model. The main features of this model are 
the presence of a virtual implementation, a two-steps 
Verification and Validation (V&V) and a maturation phase 
[5]. In this paper, the focus is on the virtual implementation 
and the monitoring process validation as the rest of the 
method will be treated separately in other works.  

B. Health Indicators Selection 

The selection of HIs consists in defining what are the 
variables of interest, how they are constructed and how often 
then are recorded. It is based on a complete system analysis 
performed from different levels of knowledge available in 
design phases. The purpose of this analysis is to determine 
the following elements: 

 
Figure 2: V2-model scheme 

 Failure modes: a failure is characterized by a non-
functional state of the system 

 Degradation modes: a degradation is characterized 
by a functional but non-healthy state of the system. 
The Maximal Admissible Magnitude (MAM) of a 
degradation mode is the magnitude for which the 
failure state is reached with a probability of 0.5. 

 Uncertainties: parameters subject to uncertainties 
and the form of their uncertainty  

Generally, the failure modes can be deduced from the 
equipment specifications. The degradation modes are often 
more difficult to determine as their observation is rare. They 
principally rely on expert judgments or experience feedback 
from similar systems. Finally, the most complex step of the 
system analysis is to manage uncertainties because there are 
generally a large number of sources of uncertainties for a 
small amount of knowledge. It is common to use sensitivity 
analysis technics to reduce the number of uncertain 
parameters and focus the uncertainties quantification efforts 
on the most influent ones. At the end, the ideal is to have a 
Probability Density Function (PDF) for all the sources of 
uncertainties. 

C. Health Indicators Validation 

The validation of HIs consists in quantifying the quality 
of the set of HIs for detection, identification and prognostics. 
In this document, focus is on detection and identification, 
since our studies on prognostics are still in their infancy. A 
good set of HI should have the following characteristics: 

 Each HI should detect at least one degradation mode 
within the specified performances 

 The set of HI should detect all the degradation modes 

 The set of HI should identify and localize all the 
degradation modes 

 On-line HI extraction should have a low time of 
computation 

 On-line HI recording should have a low storage cost 

 The set of HI should be defined before the system 
entry into service 

In order to evaluate the performances following these 
axes, the authors have defined some indices called Key 
Performance Indicators (KPI), an acronym quite common in 
the industry. In our application, as these KPI are computed 
before the commissioning of the system, based on numerical 
simulations, we call them NKPI for Numerical KPI. These 
NKPI are introduced in the next section. 



  

III. NUMERICAL KEY PERFORMANCE INDICATORS 

In signal detection theory [6], a classical indicator of the 
performance of a binary classifier system is the Receiver 
Operating Characteristic curve or ROC curve. It is a 
graphical tool representing the True Positive Rate (TPR) or 
number of good detections versus the False Positive Rate 
(FPR) or number of false alarm for a large range of 
thresholds. The authors have defined some NKPI from this 
ROC curves. In this section, it is supposed that the following 
data are available (from measures or simulations): 

 The PDF of each HI 𝑖 in healthy state: 𝜂𝑖
0 

 The PDF of each HI 𝑖 for each degradation mode 𝑗 in 

MAM state 𝜂𝑖
𝑗
 

A. Detection NKPI 

Two different NKPI are defined from the ROC curve [7] 

between 𝜂𝑖
0 and 𝜂𝑖

𝑗
: 

Global Detectability (GD) quantifies the potential of HI 𝑖 
to detect degradation mode 𝑗. Its values range from 0 to 1. It 
is defined as the Gini coefficient [8] of the ROC curve:  

 𝐺𝐷(𝜂𝑖
0,  𝜂𝑖

𝑗
) = 2 × 𝐴𝑈𝐶 (𝑅𝑂𝐶(𝜂𝑖

0,  𝜂𝑖
𝑗
)) − 1 (1)  

where AUC means Area Under The Curve.  

Compliant Detectability (CD) is a Boolean indicating if 
the HI 𝑖 is able to detect degradation mode 𝑗 in compliance 
with detection specifications. In the industry, these 
specifications are commonly expressed in terms of maximal 
FPR and minimal TPR. The CD is defined as following:  

 𝐶𝐷(𝜂𝑖
0,  𝜂𝑖

𝑗
) = {

1 𝑖𝑓 𝑅𝑂𝐶(𝜂𝑖
0,  𝜂𝑖

𝑗
) 𝑎𝑏𝑜𝑣𝑒 𝐶𝑃 

0 𝑖𝑓 𝑅𝑂𝐶(𝜂𝑖
0,  𝜂𝑖

𝑗
) 𝑢𝑛𝑑𝑒𝑟 𝐶𝑃

 (2)  

where CP is the compliance point defined as the point with 

coordinates (𝐹𝑃𝑅𝑠𝑝𝑒𝑐 , 𝑇𝑃𝑅𝑠𝑝𝑒𝑐), with 𝐹𝑃𝑅𝑠𝑝𝑒𝑐  the specified 

maximal FPR and 𝑇𝑃𝑅𝑠𝑝𝑒𝑐  the specified minimal TPR. Fig. 3 

presents the ROC curve and the CP for 𝐹𝑃𝑅𝑠𝑝𝑒𝑐 = 5% and 

𝑇𝑃𝑅𝑠𝑝𝑒𝑐 = 80% between two Gaussian distributions of 

respective parameters 𝜃1 = (0,1) and 𝜃2 = (3,2).  

 

Figure 3: Example of ROC curve with Compliance Point (5%,80%) 

B. Identification NKPI 

To introduce the identification NKPI, it is necessary to 

define the signatures: a signature 𝑺𝒈𝒏𝒋 of a degradation 
mode 𝑗 is defined as the vector of the GD values multiplied 
by the direction of the average variation for the whole set of 
HIs. The signature vectors values range from -1 to 1: 

 {
𝑺𝒈𝒏𝒋 = (𝐴1

𝑗
, … , 𝐴ℎ

𝑗
)

𝑻

 𝐴𝑖
𝑗

=  𝑠𝑖𝑔𝑛[μ(𝜂𝑖
𝑗
) − μ(𝜂𝑖

0)]𝐺𝐷(𝜂𝑖
0 ,  𝜂𝑖

𝑗
)

 (3)  

where ℎ is the number of HIs and μ(. ) is the operator 
calculating the mean of a distribution.  

Assuming that the set of His is a Euclidian vector space, 
the identification NKPI called Distinguishability (𝐷𝑖𝑠) can 
be defined as the angle between two signature vectors:  

 𝐷𝑖𝑠(𝑺𝒈𝒏𝑗 , 𝑺𝒈𝒏𝑘) = 𝑎𝑐𝑜𝑠 (
𝑺𝒈𝒏𝑗𝑇

𝑺𝒈𝒏𝑘

‖𝑺𝒈𝒏𝑗‖‖𝑺𝒈𝒏𝑘‖
)  (4)  

where acos (. ) is the arccosine function and ‖. ‖ is the norm.  

C. Extraction Costs NKPI 

The authors have chosen to define two extraction costs 
NKPI; one to traduce the on-line computation cost (CC) and 
one to traduce the on-line storage cost (SC) of HIs. The CC is 
defined as the number of CPU operations dedicated to the 
extraction of HIs during one sampling period and the SC is 
defined as the number of octets utilized for the storage of HIs 
between two downloads of the data to the supervision station.  

IV. SURROGATE MODELING FOR NUMERICAL VALIDATION 

A. Surrogate Modeling Principle 

When physics based models are time-demanding, 
performing a propagation of uncertainties is too expensive. 
For example, let’s consider a model whose simulation time is 
about one hour on an average desktop computer. Let’s also 
suppose that there is only one degradation mode and only one 
HI. If we use a Monte-Carlo simulation (MCS) of 2000 runs 
for uncertainties propagations, it will take about 3 months to 
compute only the healthy and one faulty distribution. So 
when real life systems are considered, with tens or hundreds 
of degradation modes and HIs, it becomes a Herculean task. 

 
 In order to overcome this problem, it is necessary to use 

surrogate modeling, also called metamodel or emulator, 
which is a kind of “low cost” model of model. For example, 
surrogate modeling is used to optimize aerospace design [9] 
because the simulation of the airflow around the wing 
profiles is highly time-demanding. A surrogate model is 
defined as a mathematic function of negligible computation 
cost approximating the physics based model responses. 
Building a surrogate model is done by following these steps:  

a. Determination of the variation range of influential 
parameters and their PDF. This step derives directly 
from uncertainties quantification. 

b. Choice of the surrogate model type  
c. Initial design of experiment (DoE) for learning sites.  
d. Scatter plot of the learning sample (Visual Checking) 
e. Surrogate model construction as presented in Fig. 4. 
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Figure 4: Principle of surrogate modeling 

There are many types of surrogate models described in 
literature. We can cite for example linear regression, chaos 
polynomials, neural networks or more recently support vector 
regression. In this document, the focus is on Kriging.  

B. Basics of Kriging 

Originally, Kriging, also called Gaussian process, was 
developed by the mining engineer Daniel Krige for 
interpolation in geostatistics before being applied to 
numerical modeling. See [10] for a recent survey. A Kriging 
model can be written as following: 

 𝒀(𝒙) = 𝒇𝑇(𝒙)𝒃 + 𝑍(𝒙)  (5)  

where x is a point in a d-dimensional input space, f T(x)b is a 
regression model and Z is a Gaussian process of mean zero 

and covariance σ2ℛ(θ, xi, xj) with ℛ an assumed correlation 

function between outputs and inputs. As it is not the main 
purpose of this paper, we will not enter in the details of 
Kriging modeling. We highlight the fact that the Kriging 
model depends on hyperparameters θ, b and σ2 which are 
generally estimated by maximum likelihood. The choice of 
Kriging as a surrogate model has been motivated by its 
following characteristics:  

 It is a Best Linear Unbiased Predictor (BLUP)  

 It is an exact interpolator on learning sites 

 It is capable of estimating its own prediction variance 

A Kriging toolbox available for the software Matlab© is 
introduced in [11]. This toolbox proposes an algorithm for 
the estimation of the Kriging hyperparameters which will be 
used in the following application. 

C. Kriging Validation 

Despite its good characteristics mentioned above, the main 

drawback of Kriging is the uncertainty derived from the 

estimation of its hyperparameters which can lead to aberrant 

results. Consequently, it is necessary to use some validation 

criteria. For example, a criterion based on cross validation 

can be used. The cross validation is based on the 

computation of the surrogate model prediction error 𝑒−𝑖: 

 𝑒−𝑖 = 𝑓𝑖 − 𝑓−𝑖 (6)  

where 𝑓𝑖  is the exact output value of design point 𝑖 and 𝑓−𝑖  is 

the prediction given by the Kriging metamodel learnt 

without design point 𝑖.  
Then, the cross validation curve is defined as the curve of 

𝑓−𝑖  versus 𝑓𝑖. The closer to the curve 𝑓−𝑖 =  𝑓𝑖 the scatterplot, 

the more efficient the Kriging model. In this paper, we use 

the cross-validation curve to validate the Kriging model. 

V. APPLICATION: SELECTION OF HEALTH INDICATORS AND 

SYSTEM MODELING 

A. System Analysis 

The studied system is the main fuel pump (MFP) of an 

aircraft engine fuel system. It is a gear pump whose function 

is to supply the fuel flow to the fuel metering unit. As the 

whole fuel injection depends on the MFP, it is a critical 

equipment. Thanks to experience feedback and expertise, it 

has been possible to determine both the failure mode and the 

degradation mode of this system: 

 Failure mode: the specification of the system gives a 
minimum HPP outlet fuel flow 𝑄𝑚𝑖𝑛  at ten percent of 
its nominal rotation speed 𝜔10%.  

 Degradation mode: for this application, only one 
degradation mode was retained: the internal leakage.  

We limit the study to the starting sequence, when the 

aircraft is still on ground and the environmental variability is 

reduced. Thus, there are four sources of uncertainties whose 

quantification is performed via experience feedback from 

others similar types of engines: 

 Fuel temperature: 𝑻𝒇𝒖𝒆𝒍 modeled by a generalized 

extreme values (GEV) PDF 𝒢ℰ𝒱(2,0.1) 

 Low pressure fuel pump (LPP) supply pressure: 𝑃𝐿𝑃  
modeled by a Gaussian PDF 𝒩(2, 0.01) 

 Injection pressure: 𝑃𝑖𝑛𝑗 modeled by a Gaussian PDF 

𝒩(1, 1𝑒−4) 

 Pump displacement: 𝐷𝑖𝑠 modeled by a Uniform PDF 

𝒰(2.34𝑒−5, 1𝑒−7) 

B. System Modeling  

Some related works on the subject have addressed the 

issue of modeling a gear pump and its degradation modes, 

for example [13]. In this paper, the model is built with the 

software AMESim®, based on the Bond Graph theory. The 

pump outlet flow is expressed as: 

 𝑄 = 𝛼 ∙ 𝜂𝑣 ∙ 𝐷𝑖𝑠 ∙ 𝜔 (7)  

where 𝐷𝑖𝑠 is the pump displacement, 𝜂𝑣 the volumetric 

efficiency and 𝛼 an empirical constant. The equation used to 

compute the volumetric efficiency is: 

 𝜂𝑣 = 1 − {[1 − (𝛽 −
𝛾 ∙ ∆𝑃

𝜔
)] ∙ [1 + 𝛿 ∙

𝑇𝑓𝑢𝑒𝑙

𝜔
]} (8)  

where ∆𝑃 is the pressure drop between pump inlet and pump 

outlet and 𝛽, 𝛾, 𝛿 are empirical constant values. We simulate 

the internal leakage by adding a diaphragm between pump 

outlet and pump inlet of section 𝑆𝑙𝑒𝑎𝑘 .  

Finally, 𝑄 can be expressed as a function 𝒻 of 𝜔, 𝐷𝑖𝑠,
∆𝑃, 𝑇𝑓𝑢𝑒𝑙  and the section of the MFP internal leakage 𝑆𝑙𝑒𝑎𝑘. 

If 𝐷𝑖𝑠, ∆𝑃 and  𝑇𝑓𝑢𝑒𝑙  are random variables, we define the 

MAM of the internal leakage as the value of 𝑆𝑙𝑒𝑎𝑘  for which 

𝒻(𝜔10%, 𝐷𝑖𝑠, ∆𝑃,  𝑇𝑓𝑢𝑒𝑙 , 𝑆𝑙𝑒𝑎𝑘) is lower than 𝑄𝑚𝑖𝑛 with a 

probability of 0.5. In our application, the MAM is 1.76 mm2. 



  

C. Health Indicators 

Because the system has no flow sensor, it is not possible 
to perform a direct monitoring of the failure level. Therefore, 
an indirect observation via health indicators is needed. The 
idea is to build HIs which are images of the hydraulic power 
gradient over the starting sequence. To do this, we expand the 
studied system to the following ancillary valves, schematized 
in Fig.5.  

 BSV: Burning Stage Valve to switch between 1 and 2 

injector lines. 

 TBV: Transient Bleed Valve to produce a discharge 

in the high-pressure compressor when needed. 

 HPSOV: High Pressure Shut Off Valve to maintain 

the pressurization of the system and turn on or shut 

off the fuel injection. 

Then we construct three HIs corresponding to the pump 
rotation speed at the opening the BSV, the TBV and the 
HPSOV named respectively 𝑤𝐵𝑆𝑉 , 𝑤𝑇𝐵𝑉  and 𝑤𝐻𝑃𝑆𝑂𝑉 .  

D. Kriging Model 

Even if the physics-based model built with AMESim is 
not so time-demanding; one simulation is about 1 minute 
long, we still use a Kriging model for this application as an 
example to validate general case. The model is defined by a 
vector of five inputs 𝑥:  

 𝑥 = [𝐷𝑖𝑠 𝑃𝐿𝑃 𝑃𝑖𝑛𝑗  𝑇𝑓𝑢𝑒𝑙 𝑆𝑙𝑒𝑎𝑘]𝑇 (9)  

For the learning DoE, we use a uniform Latin hypercube 
sample of 200 points where the variation boundaries of all the 
inputs are the 1% quantile and the 99% quantile except for 
𝑆𝑙𝑒𝑎𝑘  for which the variation range is [0; 1.76]. We then 
choose a zero order regression model and an exponential-
Gaussian correlation model and use the DACE algorithm to 
estimate the Kriging hyperparameters.  

In order to validate the Kriging model, we draw the cross-
correlation curve. Fig.6 shows that cross-correlation curve for 
HI 𝑤𝐵𝑆𝑉. We can see that the different points are well 
grouped around the linear regression curve so for this HI, we 
consider that the Kriging model is accurate enough. Same 
validation is made for the other HIs. 

 
Figure 5: Complete system with ancillary valves where FMV means Fuel 

Metering Valve 

 

Figure 6: Cross-correlation curve for 𝑤𝐵𝑆𝑉 

VI. APPLICATION: VALIDATION OF HEALTH INDICATORS 

A. Uncertainties Propagation 

We use Monte-Carlo simulations (MCS) to propagate 
uncertainties into the Kriging model. Our objective is to 

compute 𝜂𝑖
0 and 𝜂𝑖

𝑗
. In our application, as we have three HIs 

and one degradation mode, 𝑖 ∈ ⟦1; 3⟧ and 𝑗 = 1. Thus, we 

compute six distributions. We recall that  𝜂𝑖
1 is computed for 

the MAM of the degradation mode, i.e. for a leakage section 
of 1.76 mm2. For each distribution, the MCS is performed on 
2000 runs. 

B. Health Indicators Distributions 

The distributions of 𝜂𝑖
0 and  𝜂𝑖

1 for the three HIs computed 
from MCS are shown in Fig.7. It can be noticed that if the 
distributions seem to be well separated for 𝑤𝑇𝐵𝑉  and 𝑤𝐻𝑃𝑆𝑂𝑉 , 
the overlapping is rather important for 𝑤𝐵𝑆𝑉. This suggests 
that the choice of this latter HI is inappropriate whereas the 
others are efficient. To verify these assumptions, we compute 
the NKPIs.  

C. NKPI Computation 

Since there is only one degradation mode in this example, 
identification NKPIs has no sense so we compute only 
detection NKPI. We compute both global detectability and 
compliant detectability for compliance point (0.05,0.8), the 
common values used in the field of aeronautics. The results 
are given in Table I. From this table, we can extract four 
major characteristics of the selected set of HIs: 

a. 𝑤𝐵𝑆𝑉  is not a good HI since its CD is equal to zero. 
Thus, we can remove this HI from the set.  

b. 𝑤𝑇𝐵𝑉  and 𝑤𝐻𝑃𝑆𝑂𝑉  are both efficient to detect the 
degradation mode within required performances so 
the HI set will be robust to the loss of one of them.  

c. 𝑤𝑇𝐵𝑉  and 𝑤𝐻𝑃𝑆𝑂𝑉  have a high GD: their detection 
capability will be robust to changes in specifications. 

d. All the HIs have good Computation Cost NKPI. 

TABLE I.  DETECTION NKPIS 

HI 
Global 

Detectability 

Compliant 

Detectability 

on-line 

computation 

cost 

on-line 

storage 

cost 

𝑤𝐵𝑆𝑉 0.83 0 ~3 flops ~1 ko 

𝑤𝑇𝐵𝑉 0.99 1 ~3 flops ~1 ko 

𝑤𝐻𝑃𝑆𝑂𝑉 1 1 ~3 flops ~1 ko 
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Figure 7: Distributions computed from Monte-Carlo Simulations for 𝑤𝐵𝑆𝑉 (top-left), 𝑤𝑇𝐵𝑉 (top-right) and 𝑤𝐻𝑃𝑆𝑂𝑉 (bottom) 

 

VII. CONCLUSION 

In this paper, the authors have introduced a new method 

to develop prognostics and health management system. This 

new method, called integrated prognostics and health 

management is based on the use of numerical modeling and 

uncertainties propagation to generate data in sufficient 

amount to validate health indicators. As the uncertainties 

propagation is highly time-demanding, we propose to use a 

Kriging model as an emulator to reduce its computation 

costs. The advantage of the method is that it is applicable in 

the upstream system design phases, which avoids useless on-

line storage and limits retrofit costs. The authors have also 

defined some numerical key performance indicators as 

criterion to perform the validation of health indicators.  

The method has eventually been applied to the validation 

of health indicators aimed at monitoring the high pressure 

pump of aircraft engines fuel systems. It shows encouraging 

results to select efficient health indicators and determine 

their robustness. For future prospects, the objective is to 

apply this method to the whole aircraft engine fuel system, 

composed of many subsystems and modeled by a large 

number of inputs and parameters. For the time being, our 

mastery of the Kriging modeling is not sufficient to have an 

accurate enough emulator for such dimensions. Thus, our 

research efforts will be dedicated to the improvement of 

Kriging accuracy. Three axes are considered: the use of 

sensitivity analysis technics to simplify inputs, intelligent 

adjustment of hyperparameters and sequential learning. 
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