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Abstract—This document introduces a hybrid approach for fault 

detection and identification of an aircraft engine pumping unit. It 

is based on the complementarity between a model-based 

approach accounting for uncertainties aimed at quantifying the 

degradation modes signatures and a data-driven approach aimed 

at recalibrating the healthy syndrome from measures. Because of 

the computational time costs of uncertainties propagation into 

the physics based model, a surrogate modeling technic called 

Kriging associated to Latin hypercube sampling is utilized. The 

hybrid approach is tested on a pumping unit of an aircraft engine 

and shows good results for computing the degradation modes 

signatures and performing their detection and identification. 

Keywords-Prognostics and Health Management, hybrid approach, 

detection, identification, degradations, surrogate modeling, kriging, 

Latin hypercube sampling 

I.  INTRODUCTION  

In recent years, availability was raised to the status of 

strategic challenge for many industries mainly because a great 

amount of the average costs is attributable to Maintenance, 

Repair and Overhaul (MRO) and Delays and Cancellations 

(D&C). For example, in aeronautics, they represent a quarter 

of the total expenses for airliners. In order to optimize 

availability, novel MRO strategies are under development, 

based on failure anticipation and real-time optimization of 

maintenance plan. Most of them are issued from Prognostics 

and Health Management (PHM), and the most proven one is 

Conditioned Based Maintenance (CBM) [1]. 

Typically, PHM is either model-based [2] or data-driven [3] 

but unfortunately, both of these methods have their limitations. 

On the one hand, instead of its good precision in degradation 

modeling and sensitivity analysis, model-based approaches 

have some difficulties adapting to environmental variations 

and unclassifiable, but significant, perturbations. On the other 

hand, data-driven approaches are suitable ways to take into 

account uncertainties but they show their limit when 

confronted to the problem of lack of available measured data. 

Actually, this problem is dual: First, measured data are needed 

in the upstream development stages in order to perform the 

learning step of data-driven algorithms but in practice they are 

not available before the entry into service, which is too late if 

the system suffers from prohibitive controller retrofit costs. 

Then, measured data of degraded states are needed for creating 

a degradation signature database but if the system has a good 

reliability, these data are not numerous enough to manage the 

stochastic nature of PHM.  

As both approaches have their weaknesses, it is interesting 

to combine them in a hybrid approach. This kind of approach 

is quite uncommon in the scientific community, but it has 

already been applied. For example, Garga et al. [4] have 

described a hybrid reasoning approach that integrates domain 

knowledge with test and operational data from an industrial 

gearbox and Kumar et al. [5] have proposed a hybrid 

prognostics framework aimed at performing the PHM of 

electronic products. In this paper, a hybrid approach is also 

used. It combines the advantages of following approaches: the 

model-based one to quantify the degradation modes signatures 

and their related damage model in upstream development 

stages and the data-driven one to recalibrate the healthy 

syndrome in downstream stage.  

The remainder of the document is organized as following: 

In the next section, the hybrid approach is introduced. The 

second section addresses surrogate modeling and particularly 

Kriging and section IV and V are dedicated to an application 

on a pumping unit of an aircraft engine.  

II. HYBRID APPROACH 

In this section, the monitoring of a system 𝒮 using a hybrid 

approach is addressed. Its deterministic numerical model is 

𝒻 so that: 

 
(𝜂1, … , 𝜂ℎ) = 𝒻(𝑼, 𝛽1, … , 𝛽𝑝, 𝛾1, … , 𝛾𝑑) (1)  

where 𝑼 ∈ ℝ𝑛×𝑘 is the matrix of the model inputs (variables 

evolving with time during a run), 𝑘 is the number of samples, 

𝜂1, … , 𝜂ℎ are the Health Indicators (HI) values, 𝛽1, … , 𝛽𝑝  are 

the context parameters (constant during a run) and 𝛾1, … , 𝛾𝑑 

are the degradation values. A degradation is defined by its 

mode 𝑗 (index of the degradation parameter) and its magnitude 



𝜔 (value of the parameter). The nominal magnitude, or healthy 

magnitude of a degradation mode 𝑗 is written 𝜔0
𝑗
.  

A. Model-Based Framework 

1) Uncertainties Management 

Taking into account uncertainties consists in replacing the 

deterministic parameters 𝛽1, … , 𝛽𝑝 by the random variables 

𝜷1, … , 𝜷𝑝 . They can be characterized by their probability 

density functions (pdf). A pdf is completely defined by its 

type (uniform, normal, exponential…) and its parameter 

vector 𝚯. These pdf are often determined through experience 

feedback or expertise.  

Thanks to uncertainties, it is possible to compute stochastic 

HI distributions from a deterministic model by randomly 

sampling model parameters values according to their pdf. This 

operation is called uncertainties propagation [6]. Many tools 

are available for uncertainties propagation but the most 

famous and proven one is the Monte-Carlo algorithm. In this 

case, Equ.1 can be written in its stochastic form: 

 
(𝜼1, … , 𝜼ℎ) = 𝒻(𝑼, 𝜷1, … , 𝜷𝑝, 𝛾1, … , 𝛾𝑑) (2)  

where 𝜼𝟏, … , 𝜼ℎ  are random variable corresponding to the HI 

distributions.  

 

Figure 1.  Model-based framework scheme 

2) Simulated Health Indicators  

The purpose of the model-based approach is to create 

simulated data to overcome the lack of measured data in 

upstream development stages. Simulated pdf Parameters (SP) 

are defined for each triplet (HI  𝑖, mode  𝑗, magnitude  𝜔) as 

following: 

 

𝑺𝑷(𝑖, 𝑗, 𝜔) = ( 𝜃𝑗
𝑖

1(𝜔), … , 𝜃𝑗
𝑖

𝑟(𝜔))
𝑇

 (3)  

where 𝑟 is the number of parameters for the chosen type of pdf 

and 𝜃𝑗
𝑖

𝑘(𝜔), 𝑘 = 1, … , 𝑟  is the value of the pdf parameters of 

𝜼𝑖  obtained by Maximum Likelihood Estimation (MLE) for 

𝒻(𝑼, 𝜷1, … , 𝜷𝑝, 𝜔𝛿1𝑗 , … , 𝜔𝛿𝑗𝑗, … 𝜔𝛿𝑑𝑗)  with 𝛿𝑘𝑙  Kronecker 

delta. It can be noticed that if 𝜔 is equal to 0, then the SP 

corresponds to the parameter vector of a healthy distribution.  

3) Damage Models 

Fixing the HI index 𝑖 and the degradation mode  𝑗 , it is 

supposed that the SP has been computed for k values 

of magnitude 𝜔1, … , 𝜔𝑘 . From these values, it is possible to 

construct regression models for 𝜃𝑗
𝑖

𝑘(𝜔), 𝑘 = 1, … , 𝑟   via Least 

Square Estimation (LSE) as shown in Equ.4. 

 
𝜃𝑗

𝑖
𝑘(𝜔) = ℊ𝑘

𝑇(𝜔) 𝝀𝒌𝒋
𝒊   (4)  

where ℊ𝑘  are the regression functions and 𝝀𝒌𝒋
𝒊  the regression 

coefficients. The Damage Model of HI 𝑖  and degradation 

mode 𝑗 is defined as the following matrix: 

 
𝑫𝒋

𝒊 = | 𝝀𝟏𝒋
𝒊 … 𝝀𝒓𝒋

𝒊 | (5)  

Thus, 𝓰𝑇(𝜔) 𝑫𝒋
𝒊 , 𝓰 = (ℊ1, … , ℊ𝑟) is the LSE of 𝑺𝑷(𝑖, 𝑗, 𝜔). 

4) Degradation Mode Simulated Signatures 

Considering a given degradation mode 𝑗and its magnitude 

𝜔 , the Simulated Syndrome (SSy) is a matrix defined as 

following: 

 
𝑺𝑺𝒚(𝑗, 𝜔) =  |𝓰𝑇(𝜔) 𝑫𝒋

𝟏 … 𝓰𝑇(𝜔) 𝑫𝒋
𝒉 |

𝑇
 (6)  

where ℎ is the number of HI. Then, the simulated healthy 

syndrome (ShSy) is defined whatever the degradation mode 𝑗 

as following: 

 
𝑺𝒉𝑺𝒚 = 𝑺𝑺𝒚(𝑗, 𝜔0

𝑗
) (7)  

The Maximal Admissible Magnitude (MAM) is defined as 

the magnitude for which the system reaches a failure state and  

is written 𝜔𝑀𝐴𝑀
𝑗

for degradation mode 𝑗. The Signature (Sg) of 

a degradation mode 𝑗  is the difference between simulated 

MAM and simulated healthy syndromes. It is defined as 

following: 

 
𝑺𝒈(𝑗)  = 𝑺𝑺𝒚(𝑗, 𝜔𝑀𝐴𝑀

𝑗
) − 𝑺𝒉𝑺𝒚 (8)  

B. Data-Driven Part 

The data-driven process consists first in an extraction of 

real HI. Then, supposing that the data correspond to a healthy 

state of the system, which is normally the case just after the 

entry into service, a MLE of the measured HI distributions pdf 

parameters is performed to compute the measured healthy 

syndrome (MhSy) which is defined as following: 

 
𝑴𝒉𝑺𝒚 = |𝑴𝒉𝑺𝒚𝟏 … 𝑴𝒉𝑺𝒚𝒉|𝑇  (9)  

where 𝑴𝒉𝑺𝒚𝒌  = (𝜃1
𝑘, … , 𝜃𝑟

𝑘)𝑇 , 𝑟 is the number of parameters 

for the chosen type of pdf and 𝜃𝑘
𝑖 , 𝑘 = 1, … , 𝑟 are the MLE 

values of the pdf parameters of the measured distribution of HI 

𝑖. Provided both MhSy and damage model are available, it is 

possible to calculate the Recalibrated Syndromes (RSy) 

defined as following: 

 
𝑹𝑺𝒚(𝑗, 𝜔) =  𝑺𝑺𝒚(𝑗, 𝜔) − 𝑺𝒉𝑺𝒚 + 𝑴𝒉𝑺𝒚 (10)  

The recalibrated failure syndrome (RfSy) is defined for a 

given degradation mode 𝑗 as the syndrome corresponding to 

the MAM: 

 
𝑹𝒇𝑺𝒚(𝑗) = 𝑹𝑺𝒚(𝑗, 𝜔𝑀𝐴𝑀

𝑗
)  (11)  



The RfSy is particularly useful for the detection process 

because it is derived from the true healthy values of HI.  

C. Detection and Identification Performance 

In order to quantify the performance of the detection and 

identification processes, some performance metrics called Key 

Performance Indicators (KPI) need to be defined.  

For detection, the KPI are usually the False Positive ratio 

(FP) and the True Positive ratio (TP) [7] computed for the 

best threshold. FP is equivalent to the rate of type I error or 

false alarms and TP is equivalent to the rate of true alarms. 

The best threshold is defined as the threshold for which the 

couple (FP; TP) is the further from the no-discrimination line 

and it can be determined graphically from the analysis of 

Receiver Operating Characteristic (ROC) curves. An example 

of a ROC curve from the Matlab© dataset is given in figure 2. 

FP and TP are computed for each degradation mode 𝑗 between 

𝑺𝒉𝑺𝒚 and 𝑹𝒇𝑺𝒚(𝑗).  

 
Figure 2.  Example of ROC curve from matlab. The grey dashed line is the 

no-discrimination line. 

For identification, the KPI is called the Distinguishability 

vector, written 𝑫 = (𝐷1 , … , 𝐷𝑟)𝑇 , with coefficient  𝐷𝑘  defined 

for two signatures as following: 

 

𝐷𝑘(𝑖, 𝑗) = cos−1 (
𝑺𝒈𝒌(𝑖)𝑻𝑺𝒈𝒌(𝑗)

‖𝑺𝒈𝒌(𝑖)‖‖𝑺𝒈𝒌(𝑗)‖
)   (12)  

where 𝑺𝒈𝒌(𝑖) and  𝑺𝒈𝒌(𝑗) 𝑘 = 1, … , 𝑟   design the kth column 

of the signature matrices. Typically, specifications require 

𝑇𝑃 > 80% and 𝐹𝑃 < 5%. The vector 𝑫 is a way to quantify 

the angle between two signatures so in fine the potential for 

discrimination between degradation modes. 

Finally, it is obvious that in order to compute the damage 

models, a huge amount of measures is needed (c.f. Equ.4.). 

However, if the numerical physics based model of the system 

is expensive in terms of computation time, it is not possible to 

run all the needed simulations. In the next section, a solution is 

introduced through surrogate modeling whose aim is basically 

to construct a “low cost” model of model. 

III. SURROGATE MODELING AND KRIGING 

A. Surrogate Modeling Basics 

When physics based models are expensive in terms of 

computation time, it is interesting to use surrogate modeling. 

For instance, it is used to optimize aerospace design [8]. A 

surrogate model is a mathematic function: 

 Of negligible computation cost 

 Approximating the physics based model responses  

A surrogate modeling process is composed of the 

following steps, also presented in figure 3: 

a. Determination of the variation range of influential 

parameters and their pdf   uncertainty management 

b. Choice of the surrogate model type (ex: Kriging) 

c. Design sample construction (Design of Experiment) 

d. Scatter plot of the learning sample (Visual Checking) 

e. Surrogate model construction 

 
Figure 3.  Principle of surrogate modeling. The “low cost” model is 

constructed from 𝑋𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔  and 𝑌𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔   

B. Design of Experiment 

As shown in figure 3, some learning points, also called 

design sites, are requested in order to build a surrogate model. 

In order to optimize the sites selection, Design of Experiment 

(DOE) are constructed. Even if the type of DOE to be used 

depends on the surrogate model, the choice is typically made 

among low discrepancy DOE in order to browse in an 

exhaustive way the variation range of model parameters space. 

For instance, Latin Hypercube Sampling (LHS) is widely 

used with Kriging in order to create design sites from 

multidimensional pdf of 𝑝  variables. LHS consists in the 

following steps: 

1. Discretization of the 𝑝  pdf into 𝑛  intervals with 

equal probability. Intervals are noted: ℐ1
𝑝

, … , ℐ𝑛
𝑝
. 

2. Creation of a permutation matrix 𝑨 ∈ ℕ𝑛×𝑝: 

 

𝑨 =  |
𝜎1(1) ⋯ 𝜎𝑝(1)

⋮ ⋱ ⋮
𝜎1(𝑛) ⋯ 𝜎𝑝(𝑛)

|   (13)  

where 𝜎1, … , 𝜎𝑝 are permutations of ⟦1; 𝑛⟧ 

3. Random sampling according to the different pdf in 

order to construct the DOE. 
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𝑫𝑶𝑬 =  |

𝑟𝑎𝑛𝑑( ℐ𝜎1(1)
1 ) ⋯ 𝑟𝑎𝑛𝑑( ℐ𝜎𝑝(1)

𝑝
)

⋮ ⋱ ⋮
𝑟𝑎𝑛𝑑( ℐ𝜎1(𝑛)

1 ) ⋯ 𝑟𝑎𝑛𝑑( ℐ𝜎𝑝(𝑛)
𝑝

)
|   (14)  

where 𝑟𝑎𝑛𝑑 is a function drawing randomly a value 

according to an interval pdf.  

The main advantage of LHS is that it can produce low 

discrepancy DOE not only in the global space but also in each 

single dimension. However, the quality of LHS DOE is not 

homogeneous and it can be interesting to use an optimization 

criterion such as in [9]. 

C. Kriging 

Originally, Kriging was developed by the mining engineer 

Daniel Krige for interpolation in geostatistics before being 

applied to numerical modeling. See [10] for a recent survey. A 

Kriging model can be written as following: 

 
𝒀(𝒙) = 𝒇𝑇(𝒙)𝒃 + 𝑍(𝒙) (15)  

where 𝒙 is a point in a 𝑑-dimensional input space, 𝑓𝑇(𝒙)𝑏 is a 

regression model and 𝑍 is a Gaussian process of mean zero 

and covariance 𝜎2ℛ(𝜽, 𝒙𝒊, 𝒙𝒋) with ℛ an assumed correlation 

function between outputs and inputs so that: 

 

ℛ(𝜽, 𝒙𝒊, 𝒙𝒋) = ∏ ℛ𝑘(𝜃𝑘 , 𝑥𝑖𝑘 , 𝑥𝑗𝑘)

𝑑

𝑘=1

 (16)  

The Kriging model parameters 𝜽, 𝒃 and 𝜎2 are generally 

computed by MLE. Some examples of correlation functions 

are given in table I. These functions imply that 𝑌(𝒙𝒊) and 

𝑌(𝒙𝒋) are more correlated as their input locations 𝒙𝒊 and 𝒙𝒋 are 

closer. The choice of the correlation function is of paramount 

importance because it determines the quality of the Kriging 

model estimations. It depends on the characteristics of the 

model, for example, a Gaussian correlation suits generally 

well to linear models whereas exponential correlation is more 

adapted to non-linear models. 

TABLE I.  TYPES OF CORRELATION FUNCTIONS 

Correlation 

Type 
𝓡𝒌(𝜽𝒌, 𝒙𝒊𝒌, 𝒙𝒋𝒌) 

Exponential 𝑒𝑥𝑝(−𝜃𝑘|𝑥𝑗𝑘 − 𝑥𝑖𝑘|) 

Gaussian 𝑒𝑥𝑝 (−𝜃𝑗|𝑥𝑗𝑘 − 𝑥𝑖𝑘|
2

) 

Exponential - 

Gaussian 
𝑒𝑥𝑝 (−𝜃𝑗|𝑥𝑗𝑘 − 𝑥𝑖𝑘|

𝜃𝑛+1
) ,     0 < 𝜃𝑛+1 ≤ 2 

 

From n observations  𝒀 = (𝒚𝟏, … , 𝒚𝒏)𝑇 corresponding to 

design sites  𝑿 = (𝒙𝟏, … , 𝒙𝒏)𝑇 , Kriging uses Best Linear 

Unbiased Predictor (BLUP) criterion minimizing the Mean 

Squared Error (MSE) of the predictor. For a point 𝒙𝒏+𝟏, the 

Kriging predictor is: 

 
�̂�( 𝒙𝒏+𝟏) = 𝒇𝑇(𝒙𝒏+𝟏)𝒃 + 𝒓(𝒙𝒏+𝟏)𝑇𝑹−1(𝒀 − 𝑭𝒃) (17)  

where 𝒃 is the matrix of the regression coefficients, 𝑹 is the 

correlation matrix, 𝑭 = (𝒇(𝒙𝟏), ⋯ , 𝒇(𝒙𝒏))
𝑇

 and 𝒓 is the 

correlation function between  𝒙𝒏+𝟏 and design sites so that: 

 
𝒓(𝒙𝒏+𝟏) = [ℛ(𝜽, 𝒙𝟏,  𝒙𝒏+𝟏) ⋯  ℛ(𝜽, 𝒙𝒏,  𝒙𝒏+𝟏)]𝑇 (18)  

It can be proven that if  𝒙𝒏+𝟏 coincides with a design site, 

the predictor equals the observation. Thus, the Kriging 

predictor is an exact interpolator. Eventually, it is possible to 

calculate the variance of the prediction Σ2 at any point 𝒙: 

 

Σ2(𝒙) = 𝜎2 (1 − 𝒓𝑇𝑹−1𝒓 +
(1 − 𝟏𝑇𝑹−1𝒓)2

𝟏𝑇𝑹−1𝟏
) (19)  

Finally, the Kriging predictor has three main advantages: it 

is a BLUP, it is an exact interpolator on design sites and it is 

capable of estimating its own prediction variance. A Kriging 

toolbox named Design and Analysis of Computer Experiments 

(DACE) is available for Matlab© [11]. It includes an efficient 

algorithm for the estimation of Kriging hyperparameters 

𝜽, 𝒃 and 𝜎2. 

D. Kriging Model Validation 

The main drawback of Kriging is that if the construction 

step is not rigorous enough, the model can rapidly provide 

aberrant results. That is why some validation criteria must be 

used. For example, a criterion based on cross validation can be 

used [12]. The cross validation is based on the computation of 

the surrogate model prediction error 𝑒−𝑖 with: 

 
𝑒−𝑖 = 𝑓𝑖 − 𝑓−𝑖 (20)  

where 𝑓𝑖  is the exact output value of design point 𝑖 and 𝑓−𝑖  is 

the prediction given by the Kriging metamodel learnt without 

design point 𝑖 . The Cross validation Root Mean Squared 

Error 𝑅𝑀𝑆𝐸𝐶𝑉  is defined as follows: 

 

𝑅𝑀𝑆𝐸𝐶𝑉 = √∑
(𝑓𝑖 − 𝑓−𝑖)

2

𝑛

𝑛

𝑖=1

 (21)  

where n is the number of design points. The closer to zero the 

𝑅𝑀𝑆𝐸𝐶𝑉, the better the Kriging model.  

The cross validation curve is defined as the curve of 𝑓−𝑖  in 

function of 𝑓𝑖. The closer to the curve 𝑓−𝑖 =  𝑓𝑖 the scatterplot, 

the more efficient the Kriging model. 

IV. APPLICATION: SYSTEM MODELING 

A. System Presentation 

The studied system is a pumping unit of an aircraft engine 

fuel system [13]. This system is composed of a centrifugal low 

pressure pump and a gear high pressure pump. The location of 

these pumps in the fuel system is presented in figure 4. 

On figure 4, it can be noticed that five different valves are 

presented. Three of these valves are interesting piloted by the 

pressure difference ∆𝑃 = 𝑃𝐻𝑃 − 𝑃𝐿𝑃: 



 BSV: Burning Stage Valve to switch between 1 and 2 

injector lines. 

 TBV: Transient Bleed Valve to produce a discharge in 

the high-pressure compressor when needed. 

 HPSOV: High Pressure Shut Off Valve to maintain the 

pressurization of the system and turn on or shut off the 

fuel injection. 

 

Figure 4.  Aircraft Fuel System simplidfied Scheme with 𝑃𝐴/𝐶  aircraft 

pressure supply, 𝑃𝐿𝑃 and 𝑃𝐻𝑃 respectively low and high pressures of the 

system and 𝑄𝐼𝑛𝑗  injection flow. 

B. System Modeling 

Some related works on the subject have addressed the 

issue of modeling a gear pump and its degradation modes. For 

example, Casoli et al. [14] have proposed a method to model a 

gear pump with AMESim® and Fritz and Scott have developed 

a wear model [15]. In this paper, the model is built with the 

software AMESim®, based on the Bond Graph theory. The 

pump outlet flow is then expressed as: 

 
𝑄 = 𝛼 ∙ 𝜂𝑣𝑜𝑙 ∙ 𝑑𝑖𝑠 ∙ 𝜔 (22)  

where 𝑄 is the pump outlet flow, 𝑑𝑖𝑠 the pump displacement,  

𝜂𝑣𝑜𝑙 the volumetric efficiency, 𝜔 the pump rotation speed and 

𝛼 an empirical constant. The equation used to compute the 

volumetric efficiency is: 

 

𝜂𝑣𝑜𝑙 = 1 − {[1 − (𝛽 −
𝛾 ∙ ∆𝑃

𝜔
)] ∙ [1 + 𝛿 ∙

𝑇𝑓𝑢𝑒𝑙

𝜔
]} (23)  

where ∆𝑃 is the pressure drop between pump inlet and pump 

outlet, 𝑇𝑓𝑢𝑒𝑙  is the fluid temperature at the pump inlet and 

𝛽, 𝛾, 𝛿 are empirical constant values.  

The other components of the system are modeled from the 

following standard AMESim© libraries: hydraulic, hydraulic 

component design, 1-D mechanical. Interface Blocks are also 

used for running cosimulation with Matlab-Simulink©. 

C. System Analysis 

1) Model Parameters 

The modeling of the previously introduced system is based 

on 9 parameters divided into 3 context parameters and 6 

degradation parameters. One can notice that this problem is a 

quite simple one because these types of models are generally 

composed of tens or hundreds of parameters. 

2) Uncertainties quantification 

For each of the 3 context parameters, uncertainties must be 

quantified in order to be propagated into the model. In this 

application, without loss of generality, it is supposed that all 

the context parameters pdf follow a Gaussian law. The context 

parameters are the fuel temperature  𝑇𝑓𝑢𝑒𝑙 , the inlet fuel 

pressure 𝑃𝐴/𝐶  and the injection pressure 𝑃𝑖𝑛𝑗. The quantification 

is performed by analyzing experiment feedback of similar 

systems. The result is given in Equ.24. 

 

{

𝑇𝑓𝑢𝑒𝑙~𝒩(𝜇 = 14, 𝜎2 = 144)

𝑃𝐴/𝐶~𝒩(𝜇 = 2, 𝜎2 = 1𝑒−2)

𝑃𝑖𝑛𝑗~𝒩(𝜇 = 1, 𝜎2 = 1𝑒−4)

 (24)  

3) Degradation Modes 

Thanks to experience feedback and experts advices, six 

degradation modes where identified. These degradation modes 

can make the system non-compliant with its functional 

requirements and lead to flight cancellations. Among this 

modes, two of them were declared critical through a failure 

analysis: pump internal leakage and pump external leakage. 

Indeed, these modes have very important occurrence rates 

compare to others. 

To simulate the influence of all the potential faults, they are 

introduced into the AMESim® model. For example, internal 

leakage is modeled by a diaphragm with a variable section 

between pump inlet and pump outlet (Figure 5) and external 

leakage is modeled by a diaphragm between pump outlet and 

external tank at atmospheric pressure (Figure 5).  

 

Figure 5.  AMESim© modeling of degradation modes internal leakage (left) 
and external leakage (right) 

The Maximal Admissible Magnitude (MAM) of a 

degradation mode is defined as the magnitude for which the 

system reaches a failure state. The following table introduces 

all the degradation modes and their associated MAM.  

TABLE II.  DEGRADATION MODES OF THE PUMPING UNIT 

Degradation Mode Degradation Direction MAM* 

1. HP pump Internal 

Leakage diameter 
Diameter increase 1.5mm 

2.HP pump External 

Leakage diameter 
Diameter increase 1mm 

3.TBV Stiction Stiction Increase 15N 

4.TBV Internal Leakage 

diameter 
Diameter increase 0.05mm 



Degradation Mode Degradation Direction MAM* 

5.HPSOV Stiction Stiction Increase 20N 

6.HPSOV Internal Leakage 

diameter 
Diameter increase 0.1mm 

* Maximal Admissible Magnitude 

4) Health Indicators 

In order to monitor the system status, three different HI are 

defined. They correspond to the rotation speed of the pump at 

the opening of the valves i.e. the rotation speed for which 

hydraulic power is high enough to open respectively the BSV, 

the TBV and the HPSOV. They are named 𝑤𝐵𝑆𝑉, 𝑤𝑇𝐵𝑉 and 

𝑤𝐻𝑃𝑆𝑂𝑉 . The simulation time of one call of the model is 

about 𝑡𝑠𝑖𝑚 = 120𝑠 so it is too expensive to run a Monte-Carlo 

algorithm for uncertainties propagation. Indeed, it would need 

𝑛 Monte-Carlo simulations for each of the 𝑚 magnitudes of 

the 𝑑  degradation modes so if  (𝑛, 𝑚, 𝑑) = (2000,20,6) , it 

would represent 𝑛 ∗ 𝑑 ∗ 𝑚 ∗ 𝑡𝑠𝑖𝑚 = 333 𝑑𝑎𝑦 with a dual core, 

2.93 GHz CPU. The next section presents how Kriging can be 

used to decrease these computational time costs. 

D. Kriging Model 

The Kriging surrogate model gives the estimation of the 

values of wBSV, wTBV and wHPSOV in function of both the 

context parameters and the degradations so 𝒙 is replaced by 

(𝑤𝐵𝑆𝑉, 𝑤𝑇𝐵𝑉, 𝑤𝐻𝑃𝑆𝑂𝑉)𝑇 in Equ.15. The design sites are 

constructed via a Latin hypercube sampling with  𝑛 = 400 . 

Then, the Kriging model is built using a first degree 

polynomial regression model and an exponential correlation. 

Eventually, Monte-Carlo algorithms of 10000 runs are run for 

each triplet (HI 𝑖, mode 𝑗, magnitude 𝜔) with linearly growing 

magnitudes 𝜔.  

In order to validate the Kriging model, the Kriging 

prediction error 𝑒−𝑖  is computed for each design site  𝑖 . The 

cross validation curve for 𝑤𝐵𝑆𝑉  is shown in figure 6. The 

curve is rather close to the 𝑓−𝑖 =  𝑓𝑖  curve, which indicates that 

the Kriging model can be validated.  

 

Figure 6.  Cross-Validation curve for HI wBSV. 

E. Damage Model 

In this document, linear regression is used for damage 

models so  ℊ𝑘(𝜔) = (𝜔, 1)𝑇 . Without loss of generality, the 

Gaussian hypothesis is also made for HI so 𝑟 = 2. On figure 7, 

the distribution of wHPSOV (HI 3) for degradation mode 6 is 

shown for 10 linearly growing magnitudes.  

 

Figure 7.  Progression of the wHPSOV simulated distribution for linearly 

growing magnitudes of degradation mode 6 (HPSOV internal leakage) 

The associated damage model can be computed from the 

previous distributions by using Equ.4 and Equ.5 with 𝑟 = 2: 

 
𝑫𝟔

𝟑 = |2.1𝑒3 −8.54
970 20.7

| (25)  

The following figure 8 shows how the damage model of 

Equ.25 is computed for parameter 1. This figure shows that 

parameter 1 is relevant to represent the system health status 

because it evolution with the degradation mode magnitude has 

a linear trend. However, parameter 2 does not shows any trend 

and consequently it is not representative of the system health 

status. As the system is composed of 6 degradation modes and 

3 HI, 18 damage models are calculated. 

 
Figure 8.  Example of Damage Model Computation via linear regression of 

wHPSOV versus Magnitude for parameter 1 

V. APPLICATION: RESULTS 

A. Degradation Modes Signatures 

Thanks to the damage models, it is possible to compute the 

signatures of the degradation modes (c.f. Equ.8). The results 

for all the degradation modes are the following ones, 

with 𝑺𝒉𝑺𝒚 the simulated healthy syndrome: 

 
𝑺𝒉𝑺𝒚 =  |

714 61.7
903 20.9

1008 20.2
| (26)  
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𝑺𝒈(𝟏) =  |
181 −3.0
154 0.6
257 2.7

| , 𝑺𝒈(𝟐) =  |
83 −2.5
82 −0.2
82 2.1

| 

𝑺𝒈(𝟑) =  |
28 −0.9
19 0.7
20 −1.6

| , 𝑺𝒈(𝟒) =  |
7 −5.4

−28 −1.3
192 −1.6

| 

𝑺𝒈(𝟓) = |
−30 −2.8
12 4.4

−22 0.6
| , 𝑺𝒈(𝟔) =  |

−7 −6.2
39 −1.7
8 −2.4

| 

The bar plot of the first component of these syndromes (the 

mean) are presented in figure 9. The results given in this figure 

are obtained through simulations only but so it is necessary to 

replace them in a realistic framework. Thus, experts where 

asked to validate or invalidate these results by a physical 

approach. Their conclusions are the following:  

 Degradation modes 1 and 2 generate an increase of all 

the HI, which is physically explained by the fact that 

pump leakages create a loss of outlet fuel flow so a 

reduction of hydraulic power.  

 Degradation mode 4 generate a huge variation of HI 3 

which can be explained by the fact that because of its 

internal leakage, the TBV utilizes more flow and so the 

remaining flow is not sufficient to move the HPSOV. 

 The other variations are almost negligible and experts 

have not seen any inconsistency.  

 

Figure 9.  Degradation mode signatures for the 3 HI. 

B. Recalibrated Healthy Syndrome 

For this application, 195 datasets of HI measured on the 

real operational system are available. As they have been 

computed at the beginning of its operational life, it is supposed 

that they correspond to healthy behaviors. Figure 10 compares 

the measured and simulated healthy distribution of wBSV with 

their respective Gaussian fitting obtained by MLE. It can be 

noticed that despite their similarity, both the simulated mean 

and standard deviation are a little bit underestimated. The 

purpose of the syndrome recalibration is to fix this 

approximation. 

 
Figure 10.  Comparison between measured and simulated healthy distributions 

of HI wBSV with their gaussian fitting 

The syndrome recalibration is done by using Equ.10 and 

knowing the MhSy and the maximal admissible degradation, it 

is possible to compute the RfSy: 

𝑴𝒉𝑺𝒚 = |
750 79.9
945 15.2

1060 23.5
| 

𝑹𝒇𝑺𝒚(𝟏) = |
931 76.9

1099 15.8
1317 26.2

| , 𝑹𝒇𝑺𝒚(𝟐) = |
833 77.4

1027 15.0
1142 25.6

| 

𝑹𝒇𝑺𝒚(𝟑) = |
778 79
964 15.9

1080 21.9
| , 𝑹𝒇𝑺𝒚(𝟒) = |

757 74.5
917 13.9

1252 21.9
| 

𝑹𝒇𝑺𝒚(𝟓) = |
720 77.1
957 19.6

1038 24.1
| , 𝑹𝒇𝑺𝒚(𝟔) =  |

743 73.7
984 13.5

1068 21.1
| 

(27)  

C. Detection and Identification Performance 

In this section, it will be supposed that the specifications 

are the following ones: 

 

{

𝑇𝑃 > 80%

𝐹𝑃 < 5%

∀(𝑖, 𝑗) ∈ ‖1; 𝑑‖2, ∃𝑘 ∈ ‖1; 𝑟‖/ 𝐷𝑘(𝑖, 𝑗) > 0.8 𝑟𝑎𝑑

 (28)  

1) Detection KPI 

TP and FP are computed from MhSy and RfSy and their 

values are presented in table III for HI 1, 2 and 3. The results 

show that KPI of degradation modes 1, 2 and 6 are compliant 

with the specifications but HI are not sensitive enough to 

detect the others. However, as explained before, those 

degradation modes are not the critical ones because their 

occurrence rate is low. Eventually, the results traduce a good 

potential performances for detection. 

TABLE III.  DETECTION KPI – TP AND FP VALUES FOR BEST THRESHOLD 

DM Best Thresholds 
True Positive 

Rates 

False Positive 

Rates 

1 (810,986,1108) (𝟗𝟑, 𝟏𝟎𝟎, 𝟏𝟎𝟎) (𝟔, 𝟎, 𝟎) 
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DM Best Thresholds 
True Positive 

Rates 

False Positive 

Rates 

2 (765,952,1031) (76, 𝟗𝟖, 𝟗𝟖) (23, 𝟐, 𝟐) 

3 (701,922,978) (56,50,67) (43,27,30) 

4 (664,931,990) (𝟖𝟎, 𝟖𝟓, 70) (79,16,47) 

5 (735,920,998) (56,67,73) (39,30,33) 

6 (708,895,1092) (60,78, 𝟏𝟎𝟎) (55,27, 𝟎) 

 

2) Identification KPI 

Distinguishability vectors are computed for all the couples 

of degradation modes and the values in 𝑟𝑎𝑑 are presented in 

table IV. The results show that all the distinguishability 

vectors have at least one coefficient above the specification 

except for the couple (1; 2). However, as degradation modes 1 

and 2 are located on the same equipment, it does not affect the 

localization. Moreover, the main validation criterion is that the 

critical degradation modes are identifiable from the others in 

order not to pollute their detection. Finally, as this criterion is 

verified in our case, results can be considered satisfactory. 

TABLE IV.  IDENTIFICATION KPI – DISTINGUISHABILITY VALUES 

Degradation 

modes 
1 2 3 4 5 6 

1 |
0
0

| |
0.22
0.21

| |
0.30
𝟏. 𝟕𝟐

| |
𝟎. 𝟖𝟐
𝟏. 𝟎𝟖

| |
𝟐. 𝟑𝟎
𝟎. 𝟗𝟑

| |
𝟏. 𝟎𝟕
𝟏. 𝟏𝟔

| 

2 |
0.22
0.21

| |
0
0

| |
0.17
𝟏. 𝟕𝟔

| |
𝟏. 𝟎𝟒
𝟎. 𝟗𝟗

| |
𝟐. 𝟏𝟗
𝟏. 𝟏𝟐

| |
𝟎. 𝟗𝟕
𝟏. 𝟎𝟕

| 

3 |
0.30
𝟏. 𝟕𝟐

| |
0.17
𝟏. 𝟕𝟔

| |
0
0

| |
𝟏. 𝟎𝟗
𝟎. 𝟗𝟔

| |
𝟐. 𝟑𝟐
𝟏. 𝟏𝟎

| |
𝟏. 𝟏𝟏
𝟎. 𝟗𝟏

| 

4 |
𝟎. 𝟖𝟐
𝟏. 𝟎𝟖

| |
𝟏. 𝟎𝟒
𝟎. 𝟗𝟗

| |
𝟏. 𝟎𝟗
𝟎. 𝟗𝟔

| |
0
0

| |
𝟐. 𝟐𝟓
𝟏. 𝟐𝟗

| |
𝟏. 𝟓𝟐
0.08

| 

5 |
𝟐. 𝟑𝟎
𝟎. 𝟗𝟑

| |
𝟐. 𝟏𝟗
𝟏. 𝟏𝟐

| |
𝟐. 𝟑𝟐
𝟏. 𝟏𝟎

| |
𝟐. 𝟐𝟓
𝟏. 𝟐𝟗

| |
0
0

| |
𝟏. 𝟐𝟓
𝟏. 𝟑𝟑

| 

6 |
𝟏. 𝟎𝟕
𝟏. 𝟏𝟔

| |
𝟎. 𝟗𝟕
𝟏. 𝟎𝟕

| |
𝟏. 𝟏𝟏
𝟎. 𝟗𝟏

| |
𝟏. 𝟓𝟐
0.08

| |
𝟏. 𝟐𝟓
𝟏. 𝟑𝟑

| |
0
0

| 

CONCLUSION 

In this document, a hybrid approach for diagnostics based on 

the complementarity between model-based and data-driven 

technics has been introduced through some definitions and 

framework. Then, the principle of Kriging and its utility in 

time computational costs reduction was addressed. Eventually, 

the approach was tested on an aircraft engine pumping unit 

and had showed good results not only in computing the 

degradation modes signatures but also in evaluating detection 

and identification performances. However, this example was a 

simplified one and for future research, the main purpose is to 

extend the approach to the entire fuel system. The difficulty 

will then be to manage the large number of parameters and it 

will certainly be necessary to use some sensitivity analysis 

technics. In parallel, a further literature review on Kriging 

optimization and validation methods needs to be done in order 

to increase the quality of the models. Finally, Kriging was just 

one surrogate modeling method among others and it would be 

interesting to perform a comparative study of all this technics. 
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