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Abstract— This paper focuses on the monitoring of the fuel 

system of a turbofan which is the core organ of an aircraft engine 

control system. The paper provides a method for real time on-

board monitoring and on-ground diagnosis of one of its 

subsystems: the hydromechanical actuation loop. First, a system 

analysis is performed to highlight the main degradation modes 

and potential failures. Then, an approach for a real-time 

extraction of salient features named indicators is addressed. On-

ground diagnosis is performed through a learning algorithm and 

a classification method. Parameterization of the on-ground part 

needs a reference healthy state of the indicators and the 

signatures of the degradations. The healthy distribution of the 

indicators is measured on field data whereas a physical model of 

the system is utilized to simulate degradations, quantify 

indicators sensibility and construct the signatures. Eventually, 

algorithms are deployed and statistical validation is performed 

by the computation of key performance indicators (KPI).  

 

Keywords— Health Monitoring, Diagnosis, Hydromechanical 

Systems, Actuation Loop, Servovalve, Cylinder, Classification 

 

I. INTRODUCTION 

In aeronautics, the severity of operational availability 

requirements combined with the increasing complexity of 

systems gives interest to prognostics and health management 

(PHM). Standards for PHM according to IEEE are presented 

in [1]. For aircraft engine manufacturers, PHM is an 

opportunity to monitor the state of health of the turbofan, to 

provide a diagnosis support in maintenance and to limit delays 

and cancellations.  

 

A good state-of-the-art of the main axes of research in 

PHM can be found in [2] and some of the methods have 

already been applied in particular in the field of electronics, 

for example to monitor the remaining useful lifetime of 

batteries [3]. In France, some PhD works such as [4] or [5] 

have addressed the issue of modelling a multi-levels 

architecture for a complex system’s monitoring process or 

formalizing the prognostics process [6]. 

 

In the field of predictive monitoring applied to aeronautics, 

research is mainly focused on the development of algorithmic 

methods for diagnosis and prognostics. Some good reviews on 

the subject can be found in [7] for the diagnosis and [8] for 

prognostics.  

However, academic research is often detached from the 

industrial needs on the following points: (1) health monitoring 

is currently restricted to captor faults, vibration analysis and 

structural surveillance but health assessment of control 

systems is rarely addressed; (2) papers commonly make the 

hypothesis that every variable is measured so indicators are 

easily constructible but actually, the position and the number 

of sensors are defined and cannot be changed; (3) the 

extraction of indicators must be performed on-board and the 

issues related to the real time in-situ computation is almost 

never addressed and (4) physical models are necessary to 

quantify the impacts of degradation and their probable 

evolution. 

 

This paper is part of a larger project which aims at 

providing an integrated method for developing a PHM system 

with emphasis on the indicators construction adapted to in-

flight computation requirements and the use of physical 

models to simulate the degradation impacts. The targeted 

system for the application is the fuel system of a turbofan, the 

main organ of the engine control system. This paper focuses 

on the diagnosis of the following subsystem: an actuation loop 

dedicated to the position control of a variable geometry. The 

study will be articulated around five points: System Analysis, 

Indicators, Degradations Modelling, Indicator Transformation 

Laws Computation and Statistical Validation of Performances. 

 

II. SYSTEM ANALYSIS 

In order to monitor a system, the first step is to determine 

its degradation modes and it can be achieved through 

expertise, experience feedback or FMEMA. This study will 

focus on the mechanical degradations of the system and 

electrical ones will not be treated.  

The system is a closed loop composed of three main 

components: A controller, a servovalve and a cylinder. The 

position of the cylinder is measured by a linear variable 

differential transformer (LVDT), as shown in Fig. 1. 



 

A. Degradation modes of a servovalve 

In this application, the studied servovalve type is two-stage 

flapper-nozzle. In this type of servovalve, the power 

transmission chain is the following one:   

1. A control current is send to a torque motor  

2. The current is converted to a displacement of the 

flapper through an electromagnetic effect  

3. The displacement of the flapper changes the position of 

the second stage spool via a hydraulic control  

4. The position of the spool changes the distribution of 

the flows. A flapper-nozzle servovalve configuration is 

shown in Fig. 2.  

 

Fig. 2: Electrohydraulic flapper-nozzle servovalve configuration 

The following list of the degradation modes selected for the 

servovalve is inspired by [9]:   

1)  Increased contamination of the filters: As dust and 

debris accumulate in the servovalve, filters gradually lose 

their efficiency and the hydraulic resistance increases. The 

result is a slower response of the servovalve. 

2)  Drift of the null bias current: As the torque motor ages 

and loses his magnetic properties, the null bias current of the 

servovalve, namely the current for which the flows are equal 

in control ports 1 and 2, can drift from its nominal value.  

3)  Increased backlash: With the progressive wear of the 

internal feedback spring, the hysteresis of the servovalve 

increases. 

4)  Increase of the friction force between spool and sleeve: 

This phenomenon is due to the cumulative effects of 

continuous movement of the spool and contamination of the 

hydraulic fluid because the debris induces a silting effect. 

5)  Increase in the radial clearance between spool and 

sleeve: Because of the contamination, abrasion of the corners 

of the spool lands resulting in an increase of internal leakage.  

B. Degradation modes of a cylinder 

The cylinder considered in this application is a double-

acting hydraulic cylinder with a cooling diaphragm between 

the two sides. The hydraulic fluid used is fuel. 

The following list of the degradation modes selected for the 

hydraulic cylinder is inspired by [10]: 

1)  Internal leakage between the two sides: As the seal 

ages, dust and debris accumulate between the seal and the 

sleeve resulting in an abrasive effect degrading the cylinder 

body. 

2)  Clogging of the cooling diaphragm: With the increase 

of the temperature, a coking of the fuel can occur, resulting in 

the clogging of the diaphragm. 

C. Other potential degradation modes 

The list of degradation modes presented above is not 

exhaustive and many other phenomenons can occur such as a 

damage of the kinematic chain downstream of the cylinder or 

the burst of a pipe but the choice was made to focus only on 

the servovalve and cylinder’s degradations. 

III. INDICATORS  

A. Flow Gain curve of a Servovalve 

Among the different measures characterizing a servovalve, 

the flow gain curve is one of the most significative because it 

displays both static and dynamic features as shown in Fig. 3.  

 
 

 

The extraction of this curve requires that the servovalve is 

equipped with flowmeters but in our application, only the 

position of the cylinder is measured. However, the cylinder’s 

velocity 𝑉𝑐𝑦𝑙  and the servovalve output flows in each control 

port 𝑄𝑆𝑉_ℎ𝑒𝑎𝑑  and 𝑄𝑆𝑉_𝑟𝑜𝑑 can be linked via the simplified 

equation: 

 
𝑉𝑐𝑦𝑙 = {

(𝑄𝑆𝑉_ℎ𝑒𝑎𝑑 −𝑄𝑐𝑜𝑜𝑙𝑖𝑛𝑔)  𝑆ℎ𝑒𝑎𝑑 ⁄ during shaft outlet

−(𝑄𝑆𝑉_𝑟𝑜𝑑 − 𝑄𝑐𝑜𝑜𝑙𝑖𝑛𝑔)  𝑆𝑟𝑜𝑑  ⁄ during shaft inlet
  (1)  

Flow Gain 

0 

Overlap 

Hysteresis 

Null bias 

Controller Servovalve Cylinder 

LVDT Captor 

Fig. 1: Schematic of the hydromechanical actuation loop 

Control Current 

Fig. 3: Flow Gain curve and main features 



Where 𝑄𝑐𝑜𝑜𝑙𝑖𝑛𝑔is the cooling flow between the two sides of 

the cylinder and 𝑆ℎ𝑒𝑎𝑑 and 𝑆𝑟𝑜𝑑  are respectively the cross-

sectional area of the head and the rod sides. 

B. Velocity Gain of a hydromechanical loop 

In order to get around the lack of flowmeters to monitor the 

servovalve only, the idea is to monitor the whole loop by 

following salient features on the Velocity Gain curve. 

This curve can be obtained only with the measures of both 

the control current 𝐼𝑐𝑜𝑛𝑡𝑟𝑜𝑙  and the cylinder’s velocity 𝑉𝑐𝑦𝑙. The 

value of  𝑉𝑐𝑦𝑙  is computed by derivation of the cylinder’s 

position 𝑋𝑐𝑦𝑙. 

Blue points in Fig. 4 are the result of an extraction of the 

velocity gain curve performed during an entire flight. Because 

of the hysteresis of the servovalve, the dispersion of the points 

is substantial and therefore a smoothing algorithm based on 

local means is applied to the data. 
 

 

Fig. 4: In-Flight extracted curve before and after smoothing 

C. Indicators Construction 

From the extracted curve, we define many indicators 

related to the targeted degradation. Those indicators are listed 

in Table I and their graphical equivalent is shown in Fig. 5.  

TABLE I 
INDICATORS EXTRACTED FROM THE CURVE 

Names  Targeted degradations 
Long Short 

Slope change #1 

abscissa 
𝑋1 Degradations impacting the horizontal 

position of the curve 

 Increase of the radial clearance 

between spool and sleeve 

Slope change #1 
ordinate 

𝑌1 Degradations impacting the vertical 
position of the curve 

 Diaphragm clogging, cylinder 
internal leakage  

Slope change #2 

abscissa 
𝑋2 Idem 𝑋1 

Slope change #2 
ordinate 

𝑌2 Idem 𝑌1 

Null Bias Current 

𝐼𝑛𝑏 =
𝑋1 +𝑋2
2

  

𝐼𝑛𝑏 Degradations impacting the value of 

the Null Bias 

 Null Bias current shift 

Idle Current of the 
Loop (Current for 

null velocity)  

𝐼0 Degradations impacting the static 
behaviour of the loop 

 All the degradations 

Standard Deviation 
(hysteresis) at idle 

current  

𝐻𝑦𝑠0 Degradations impacting the hysteresis 

 Increased Backlash 

Velocity Gain for 

Shaft Inlet 
𝐺𝑖𝑛 Degradations impacting the global 

dynamic behaviour of the loop 

 Increased Backlash, Contamination 

of the filters, Increased friction force 

Velocity Gain for 

Shaft Outlet 
𝐺𝑜𝑢𝑡 Idem 𝐺𝑖𝑛 

Velocity Gain for 
Null Region 

𝐺𝑛𝑢𝑙𝑙 Idem 𝐺𝑖𝑛 

 

 

Fig. 5: Graphical representation of the indicators 

 

IV. DEGRADATIONS MODELLING 

A. Model and Sub-models Construction 

A physical model of the hydromechanical system has been 

developed in Matlab-Simulink
®
 in order to simulate its 

behaviour in presence of some degradation and to quantify 

their impacts. This model is composed of three sub-models: 

Servovalve, cylinder and controller. The granularity of the 

sub-models must be important enough to simulate all the 

degradations discussed in the system analysis. For example, 

the sub-model of the servovalve, the most complex one, must 

include the modelling of the two-stages, the filters and the 

feedback spring. A good method for modelling servovalves is 

given in [11]. 

There are two ways degradations can be modelled: additive 

and multiplicative. The former consists in adding a value to 

some parameters and the latter consists in a multiplication of 

some parameters as shown in Fig. 6. In Fig. 6, 𝑌𝑢 and 𝑈 are 

healthy values of variables, 𝑓 is the degradation intensity and 

𝑌 is the degraded value of variables.  
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Velocity Gain For the Shaft Inlet

Null Region Velocity Gain

Velocity Gain For the Shaft Outlet
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Fig. 6: Additive and Multiplicative modelling of degradations 
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TABLE III 
MODELLING OF DEGRADATIONS 

Degradation Modelling 

Increased 
contamination of 

the filters 

Multiplicative:  

To simulate a decrease of the efficiency, the 

flow is multiplied by a scalar in the range [0,1]  

Drift of the null 

bias current 

Additive:  

A value corresponding to the opposite of the 

drift is added to the control current. 

Increased 

Backlash 

Multiplicative: 

Modification of the transfer function governing 

the position of the spool in the second stage.  

Increase of the 
friction force  

Additive: 

Increase of the coefficient of friction between 

spool and sleeve. 

Increase in the 
radial clearance  

Additive: 

Decrease of the restriction coefficient at the 
corners of the spool lands victims of abrasion. 

Internal leakage 
between the two 

sides 

Additive: 

Increase of the restriction coefficient of the 
cooling flow  

Clogging of the 
cooling 

diaphragm 

Additive: 

Decrease of the restriction coefficient of the 

cooling flow 

 

B. Recalibration of the model 

The main hypothesis of this method is that operational data 

are available. Thus, it is supposed that the distribution of the 

indicators corresponding to a healthy state is well known. 

For each simulation, the goal is to compute the velocity 

gain of the system by simulating the velocity of the cylinder 

for a gradually increasing control current from lower 

saturation boundary to upper saturation boundary. 

Before simulating the degraded states, it is necessary to 

simulate and recalibrate the model parameters against 

operational data for the reference healthy state. Fig. 7 shows 

both extracted and estimated velocity gain curves for the 

healthy state. The estimated one is obtained from a model 

configured with averaged parameters given by constructors. 

The result after recalibration on parameters is also given in 

Fig. 7, and it can be noted that a difference remains between 

the curves around the idle current of the loop. The model used 

in this application is not enough accurate to explain this local 

deviation. 

 

Fig. 7: Extracted against Estimated Velocity Gain of the healthy state 

C. Simulation of the degradations 

For this paper, the focus will be on only two degradations 

namely the drift of the null bias current of the servovalve and 

the internal leakage between the two sides of the cylinder. 

Results of the simulation on the recalibrated model with 

those two degradations are given in Fig. 8.  

 

 

Fig. 8: (a) Left: effect of a null bias drift. (b) Right: effect of an internal 
leakage in the cylinder 

 

V. INDICATORS TRANSFORMATION LAW COMPUTATION 

A. Construction of the laws 

In this part, a design of experiment is generated to organize 

the simulations of the behaviour of the system in presence of 

degradations. For each case, simulations are run for gradually 

increasing intensities of degradation. Eventually, the results 

are summarized in the form of indicators transformation laws 

(ITL).  

With 𝐼𝑛𝑑𝑖  representing the 𝑖𝑡ℎ indicator in a healthy state, 

𝐼𝑛𝑑𝑖
𝑑𝑒𝑔

 the 𝑖𝑡ℎ indicator in presence of the degradation 𝑑𝑒𝑔, 

and 𝐼𝑛𝑡𝑑𝑒𝑔  the intensity of the degradation 𝑑𝑒𝑔,  the ITL 

named 𝐹𝑖
𝑑𝑒𝑔

 corresponding to the 𝑖𝑡ℎ indicator and the 

degradation 𝑑𝑒𝑔 can be defined as follows: 

 
𝐼𝑛𝑡𝑑𝑒𝑔

𝐹𝑖
𝑑𝑒𝑔

→  ∆𝐼𝑖
𝑑𝑒𝑔

= 𝐴𝑖
𝑑𝑒𝑔
 𝐼𝑛𝑡𝑑𝑒𝑔 (2)  

where 𝐴𝑖
𝑑𝑒𝑔
 is the coefficient of the linear regression of 

∆𝐼𝑖
𝑑𝑒𝑔
 with respect to 𝐼𝑛𝑡𝑑𝑒𝑔. ∆𝐼𝑖

𝑑𝑒𝑔 is the change in the value of 

the indicator and can be also expressed this way: 

 
∆𝐼𝑖
𝑑𝑒𝑔

=  𝐼𝑛𝑑𝑖
𝑑𝑒𝑔
− 𝐼𝑛𝑑𝑖   (3)  

Thus, 𝐹𝑖
𝑑𝑒𝑔

 provides the change in the indicator’s value for a 

given intensity of degradation.  

 

B. Utilization of the laws 

Once computed, an ITL makes it possible to generate an 

estimated value of indicators for a degraded state from a 

healthy value computed from operational data according to the 

following equation: 

 
𝐼𝑖
𝑑𝑒𝑔

= 𝐼𝑖
ℎ𝑒𝑎𝑙𝑡ℎ𝑦

+ ∆𝐼𝑖
𝑑𝑒𝑔 (4)  

In this application, 7 degradations and 10 indicators are 

considered, which means that 70 ITL must be computed. For 

instance, the law giving the value of 𝑋1 for the degradation 

drift of the null bias current is: 

 
𝐼𝑋1
𝑁𝐵 𝑑𝑟𝑖𝑓𝑡

= 𝐼𝑋1
ℎ𝑒𝑎𝑙𝑡ℎ𝑦

+ 𝐴𝑋1
𝑁𝐵 𝑑𝑟𝑖𝑓𝑡

 𝐼𝑛𝑡𝑁𝐵 𝑑𝑟𝑖𝑓𝑡 (5)  

10 12 14 16 18 20 22
-15

-10

-5

0

5

10

15

Control Current (mA)

C
y
lin

d
e
r'
s
 V

e
lo

c
it
y
 (

m
m

/s
)

 

 

Extracted Velocity Gain Curve from Datas
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Simulated Velocity Gain Curve for Healthy State

Simulated Velocity Gain Curve for a Drift of the Null Bias
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Where 𝐼𝑋1
ℎ𝑒𝑎𝑙𝑡ℎ𝑦

 is computed by averaging the extracted 

value of 𝑋1 for a given number of flights for which the system 

is considered flawless. 

 

VI. STATISTICAL VALIDATION OF PERFORMANCES 

A. Key Performance Indicators 

For this application, both fault detection and diagnosis are 

addressed. A presentation and definition of Key Performance 

Indicators (KPI) is given in Table III. 

 TABLE IIIII 

KEY PERFORMANCE INDICATORS  

KPI Definition 

False Positive 

Rate 

Proportion of False Positive (false alarm) 

among all the states where a fault is detected 
(see Fig. 9) 

False Negative 

Rate 

Proportion of False Negative (undetected faults) 

among all the states where no fault is detected 

(see Fig. 9) 

False 

Classification 
Rate 

Proportion of False Classification among all 

classifications 

 

Robustness Capacity of the monitoring system to be still 

efficient when some parameters drift from their 
nominal values. 

 

 
 

 

B. Method for fault detection and diagnosis 

A more precise presentation of the method presented below 

can be found in [12]. 

 

1) Indicators Model Learning:   

The first step is to learn a Gaussian model of the indicators 

distribution in a reference state, typically a healthy state. The 

model is learned from extracted indicators on a given number 

of flights and is presented as follows: 

 
𝑀𝑜𝑑𝑒𝑙(𝑖) = (

𝜇𝑖
ℎ𝑒𝑎𝑙𝑡ℎ𝑦

𝜎𝑖
ℎ𝑒𝑎𝑙𝑡ℎ𝑦) (6)  

where 𝜇𝑖
ℎ𝑒𝑎𝑙𝑡ℎ𝑦

 is the mean of the indicators and 𝜎𝑖
ℎ𝑒𝑎𝑙𝑡ℎ𝑦

 their 

standard deviation.  

 

2) Fault Detection:   

It is based on an abnormality score named 𝑍𝑠𝑐𝑜𝑟𝑒. For the 

indicator 𝑖, 𝑍𝑠𝑐𝑜𝑟𝑒,𝑖  is defined as follows: 

 
𝑍𝑠𝑐𝑜𝑟𝑒,𝑖 =

𝐼𝑖 − 𝜇𝑖
ℎ𝑒𝑎𝑙𝑡ℎ𝑦

𝜎
𝑖
ℎ𝑒𝑎𝑙𝑡ℎ𝑦  (7)  

where 𝐼𝑖is the currently measured value of indicator. 

 

Then a global abnormality score of the system 𝐺𝑙𝑜𝑏𝑎𝑙_𝑍𝑠𝑐𝑜𝑟𝑒  

is computed from 𝑍𝑠𝑐𝑜𝑟𝑒,𝑖  with 𝑖 ∈ [1; 10] via the Mahalanobis 

distance [13].  

Indicators are extracted on-board and  𝐺𝑙𝑜𝑏𝑎𝑙_𝑍𝑠𝑐𝑜𝑟𝑒 is 

computed on-ground at each flight. The parameterization of 

the fault detection consists in defining a relevant threshold 

value  𝑇ℎ𝑟  and if the value of 𝐺𝑙𝑜𝑏𝑎𝑙_𝑍𝑠𝑐𝑜𝑟𝑒  crosses  𝑇ℎ𝑟 , it 

means that a fault has been detected. 

 

3) Diagnosis: 

Diagnosis is performed via a classification of signatures. A 

signature is a vector of indicators. For this application, a 

signature is a vector appending 10 indicators extracted from 

flight data: 

 
𝑆𝑖𝑔𝑛 = (𝑍𝑠𝑐𝑜𝑟𝑒,𝑋1 , 𝑍𝑠𝑐𝑜𝑟𝑒,𝑌1 ,… , 𝑍𝑠𝑐𝑜𝑟𝑒,𝐺𝑛𝑢𝑙𝑙)

𝑇
 (8)  

If the system is healthy, 𝑆𝑖𝑔𝑛 is a zero vector of size 10. 

Assuming that the maximal intensities of the degradations 

are known, it is possible to determine the signatures of the 

degradations  𝑆𝑖𝑔𝑛𝑟𝑒𝑓,𝑑𝑒𝑔 associated. 

 
𝑆𝑖𝑔𝑛𝑟𝑒𝑓,𝑑𝑒𝑔 = (

𝐼𝑋1
𝑑𝑒𝑔
− 𝜇𝑋1

ℎ𝑒𝑎𝑙𝑡ℎ𝑦

𝜎𝑋1
ℎ𝑒𝑎𝑙𝑡ℎ𝑦 , … ,

𝐼𝐺𝑛𝑢𝑙𝑙
𝑑𝑒𝑔

− 𝜇𝐺𝑛𝑢𝑙𝑙
ℎ𝑒𝑎𝑙𝑡ℎ𝑦

𝜎𝐺𝑛𝑢𝑙𝑙
ℎ𝑒𝑎𝑙𝑡ℎ𝑦 )

𝑇

 (9)  

 

When a fault is detected, the classification algorithm is run. 

This algorithm is based on a pattern recognition method which 

finds the reference signature that most closely matches the 

currently measured signature. A guilt probability is assigned 

to each component of the system.  

C. Statistical Validation 

1) Matrix of the signatures 

To perform fault detection and diagnosis, it is essential to 

determine the matrix of the signatures. It shows the signature 

corresponding to the maximal intensity of the degradations. A 

part of this matrix, taking into account only two degradations 

is given in Table IV. 

TABLE IV 

MATRIX OF THE SIGNATURES  

Degradation Influences (𝒁𝒔𝒄𝒐𝒓𝒆𝒔) 

𝑋1 𝑌1 𝑋2 𝑌2 𝐼𝑛𝑏  𝐼0 𝐻𝑦𝑠0 𝐺𝑖𝑛 𝐺𝑜𝑢𝑡 𝐺𝑛𝑢𝑙𝑙 

Drift of the null 

bias current 
24 0 26 0 28 24 0 0 0 0 

Internal leakage 

between the two 

sides 

0 4 0 11 0 1 0 0 0 0 

 

2) Performances of fault detection 

Once the matrix of the signatures is available, a detection 

threshold  𝑇ℎ𝑟 on the global score 𝐺𝑙𝑜𝑏𝑎𝑙_𝑍𝑠𝑐𝑜𝑟𝑒 must be 

defined. 
The value of this threshold must be low enough to ensure 

detection of all the different degradation, even those not 
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Fig. 9 : Condition Assessment Matrix 



provided by the system analysis and high enough to ensure a 

low rate of false alarms. To set this value in an optimal way, it 

is essential to take into account the standard deviation of 

the 𝐺𝑙𝑜𝑏𝑎𝑙_𝑍𝑠𝑐𝑜𝑟𝑒. 

First, the computation of the maximum likelihood function 

of  𝐺𝑙𝑜𝑏𝑎𝑙_𝑍𝑠𝑐𝑜𝑟𝑒−ℎ𝑒𝑎𝑙𝑡ℎ𝑦 is performed to set a first value of 𝑇ℎ𝑟, 
as shown in Fig. 10. In this paper, the likelihood function is a 

Gaussian and its parameters are the mean 𝜇ℎ𝑒𝑎𝑙𝑡ℎ𝑦  and the 

standard deviation  𝜎ℎ𝑒𝑎𝑙𝑡ℎ𝑦 . Typically, the chosen value for 

𝑇ℎ𝑟 is: 

 𝑇ℎ𝑟 = 𝜇ℎ𝑒𝑎𝑙𝑡ℎ𝑦 + 𝐴. 𝜎ℎ𝑒𝑎𝑙𝑡ℎ𝑦    (10)  

At first approach, the chosen value for 𝐴 is 𝐴 = 2 because 

it ensures only 5% of false detection. However, this value can 

potentially limit the false negative rate, so it is necessary to 

check if the degradations are still detectable.    

To ensure the performances, the distributions of 
𝐺𝑙𝑜𝑏𝑎𝑙_𝑍𝑠𝑐𝑜𝑟𝑒−ℎ𝑒𝑎𝑙𝑡ℎ𝑦,𝐺𝑙𝑜𝑏𝑎𝑙_𝑍𝑠𝑐𝑜𝑟𝑒−𝑙𝑒𝑎𝑘 and 𝐺𝑙𝑜𝑏𝑎𝑙_𝑍𝑠𝑐𝑜𝑟𝑒−𝑑𝑟𝑖𝑓𝑡  
are compared as presented in Fig. 10. 

Performances for different values of 𝐴  are proposed in 

Table V. 

 

 

Fig. 10 : Distribution of Global_scores and likelihood functions 

TABLE V 

FAULT DETECTION PERFORMANCES  

𝐴 

Null Bias Drift Internal Leakage 

False 

Positive Rate 

False Negative 

Rate 

False 

Positive Rate 

False Negative 

Rate 

0 0% 0% 50% 0% 

1 0% 0% 16% 0% 

2 0% 0% 3% 0% 

3 0% 0% 0.3% 2% 

5 0% 0% 0% 6% 

 

3) Performances of diagnosis 

The classification algorithm gives, for each component of 

the system, a probability of guilt proportional to the 

collinearity between the current signature and the referenced 

signatures. The diagnosis performances depend on the 

intensity of the degradations. Results are shown in Table VI. 

 

TABLE VI 
DIAGNOSIS PERFORMANCES  

Effective 

Degradation 

Percentage of 

max intensity 
(From ITL) 

Probability of 

guilt of Drift 

Probability of 

guilt of Leak 

Drift 25% 0.94 0.06 

Drift 50% 0.94 0.06 

Drift 100% 0.94 0.06 

Leak 25% 0.37 0.63 

Leak 50% 0.13 0.87 

Leak 100% 0.11 0.89 

 

VII. CONCLUSIONS 

This paper provides a methodology to perform fault 

detection and diagnosis on a hydromechanical actuation loop. 

A first part details how to construct relevant indicators to 

perform on-board extraction of indicators and a second part 

how to achieve and validate fault detection and diagnosis on-

ground. It must be noted that further works will follow, 

dealing with the management of uncertainties, the architecture 

of monitoring for a wider system and also prognostics. 
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