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ABSTRACT
The scheduling of parallel real-time tasks on multiprocessor
systems is more complicated than the one of independent
sequential tasks, specially for the Directed Acyclic Graph
(DAG) model. The complexity is due to the structure of
DAG tasks and the precedence constraints between their
subtasks. The trivial DAG scheduling approach is to directly
apply common real-time scheduling algorithms on DAGs de-
spite their lack of compatibility with the parallel model.
Another scheduling approach, which is called the stretch-
ing method, aims at transforming each parallel DAG task in
the set into a collection of independent sequential threads
that are easier to be scheduled.

In this paper, we are interested in analyzing global pre-
emptive scheduling of DAGs using both approaches by show-
ing that they are not comparable when associated with Dead-
line Monotonic (DM) and Earliest Deadline First (EDF)
scheduling algorithms. Then we use extensive simulations
to evaluate their schedulability performance. To this end,
we use our simulation tool YARTISS to generate random
DAG tasks with many parameter variations so as to guar-
antee reliable experimental results.1

Categories and Subject Descriptors
J.7 [Computers in Other Systems]: Real time
F.1.2 [Theory of Computation]: Computation by Ab-
stract Devices—Parallelism and concurrency
I.6.m [Simulation and Modeling]: Miscellaneous

General Terms
Experimentation

Keywords
Real-time systems, hard real-time scheduling, parallel tasks,
Directed Acyclic Graphs, global preemptive scheduling, DM
and EDF scheduling algorithms.

1. INTRODUCTION
Chip manufacturers are tending to build multi-processors

and multi-core processors as a solution to overcome the phys-
ical constrains of the manufacturing process, such as chip’s

1Copyright is held by the authors. This work is
based on an earlier work: RACS’14 Proceedings of
the 2014 ACM Research in Adaptive and Conver-
gent Systems, Copyright 2014 ACM 978-1-4503-3060-2.
http://dx.doi.org/10.1145/2663761.2664236

size and heating. Many practical examples of shifting to-
wards multiprocessors can be found nowadays, such as the
Intel Xeon processor with up to 18 cores and the 72-core
processor from Tilera. Because of that, parallel program-
ming has gained a higher importance although it has been
used for many years. The concept of parallel programming
is to write a code that can be executed simultaneously on
different processors. Usually these programs are harder to
be written than sequential ones, since it is necessary to keep
the parallel partitions independent in order to execute them
correctly on different processors at the same time.

From practical implementation’s point of view, there exist
certain libraries, APIs and models created specially for par-
allel programming like OpenMP[1] and POSIX threads[2].
In this paper, we are interested in a particular family of
parallelism called the inter-subtask parallelism, in which a
parallel task consists of a collection of subtasks under prece-
dence constraints. The most general model is the Directed
Acyclic Graph (DAG) model, which is our task model in this
paper.

In hard real-time systems, the correctness of results de-
pends on the respect of certain timing parameters assigned
to tasks. We consider that each task generates an unlim-
ited number of jobs (copies) based on its timing parameters.
A scheduler is responsible of choosing which job to execute
on which processor at all times. The problem of hard real-
time scheduling on uniprocessor and multiprocessor systems
have been studied thoroughly for many years, and many re-
searches and scheduling algorithms have been proposed for
such platforms [9].

The extension of real-time scheduling w.r.t. parallel de-
pendent tasks is not trivial. The real-time scheduler has to
take into consideration the internal dependencies of tasks
when it schedules them. For a given DAG task, the execu-
tion order of its subtasks is not known prior to the schedul-
ing process, i.e., a subtask can start its execution when all
of its predecessors have finished their own, and a subtask
can execute either sequentially or in parallel with its sib-
lings based on the decisions of the scheduler. To solve this
problem, there are two DAG scheduling approaches that are
presented in the state-of-the-art: the Direct scheduling and
the Model Transformation approaches. The Direct Schedul-
ing approach represents the parallel execution form of DAG
tasks in which the scheduling process is done based on the
internal dependencies of DAGs. The Model Transformation
approach aims at converting the dependent parallel model
of DAG tasks into independent sequential model so as to
simplify its scheduling. The latter approach represents the



sequential execution form of DAG tasks since it converts par-
allel tasks into sequential threads. Both approaches are used
to determine the execution order to subtasks and they are
associated with other real-time scheduling algorithms, such
as Earliest Deadline First (EDF) and Deadline Monotonic
(DM).

DAG scheduling approaches have been studied recently in
many researches and schedulability analyses were provided.
But they have never been compared to each other w.r.t.
schedulability performance. In this paper, we show that
both approaches are incomparable, i.e., there exist task sets
that are schedulable using one scheduling approach while
they are unschedulable when the other one is used, and vice
versa. Due to this incomparability, we analyze their perfor-
mance by performing extensive simulations. In this work, we
consider global preemptive scheduling of periodic implicit-
deadline DAGs on identical processors when EDF and DM
algorithms are used. To the best of our knowledge, there is
no similar analysis presented previously in the state-of-the-
art.

The remainder of this paper is organized as follows. Sec-
tion 2 presents related works w.r.t. to the problem of schedul-
ing real-time DAG tasks on multiprocessor systems. In Sec-
tion 3, we introduce our task model. In Section 4, we de-
scribe in details the two DAG scheduling approaches and we
prove their incomparability. Simulation results are provided
in Section 5 to evaluate the performance of these schedul-
ing algorithms with brief description of our simulation tool
YARTISS. Finally, Section 6 concludes this work.

2. RELATED WORK
The scheduling of dependent real-time tasks of different

models has been studied on both uniprocessor and multipro-
cessor systems. In uniprocessor systems which consists of a
single processing unit, a dependent parallel task is trans-
formed into a sequential chain, and subtasks are assigned
local timing parameters which are used in the scheduling
process (e.g., [15, 25, 30, 16, 28]). The DAG model on
uniprocessor systems was considered in [7]. The authors
proposed an algorithm to modify the timing parameters of
DAGs (by adding intermediate offsets and deadlines to sub-
tasks) in order to get rid of their internal dependencies.

In the case of multiprocessor systems, preemptive schedul-
ing of jobs with precedence constraints has been proved NP-
Hard in the strong sense in [29]. However, many researches
targeted the scheduling of parallel tasks of different mod-
els, as in [14, 10, 17, 11, 8]. Regarding the DAG model
and as mentioned above, there are two approaches for its
scheduling in hard real-time systems. The Direct Schedul-
ing was introduced in [3], in which a taskset of a single
sporadic DAG is scheduled on multiprocessor systems us-
ing EDF algorithm. The authors provided polynomial and
pseudo-polynomial schedulability tests for EDF scheduling
algorithm.

Later on, many works have considered the scheduling of
multiple DAG tasks on multiprocessor systems, e.g., [5, 20,
21]. In these researches, the scheduling analyses are per-
formed based on the general timing parameters of DAG
tasks, such as their total Worst-Case Execution Time (WCET),
deadline and critical path length. In [22], the internal de-
pendencies of DAGs and the execution order of their sub-
tasks were included in the analysis of global EDF scheduling.
A Subtask-Level scheduling of DAG tasks was proposed in

[24], in which scheduling decisions were taken based on the
local timing parameters of subtasks rather than the timing
parameters of DAGs.

The Model Transformation approach was introduced in
[18], in which a stretching algorithm of Fork-Join (FJ) task
model was proposed. The stretching algorithm avoided the
parallel structure of FJ tasks by executing them as sequen-
tially as possible. Then a DAG Stretching (DAG-Str) al-
gorithm was proposed in [23] to consider the general model
DAG tasks. In the stretching algorithms, the DAG tasks are
stretched up to their deadline and their dependent subtasks
are transformed into a set of independent sequential threads.
Intermediate offsets and deadlines are assigned to threads so
as to determine their execution interval. In this paper, we
analyze the schedulability performance of the DAG-Str al-
gorithm when compared to Direct Scheduling approach of
DAGs.

The Decomposition algorithm[26, 27] is another exam-
ple of the Model Transformation approach for DAG tasks.
It aims at distributing the slack time of each DAG task,
which is the difference between its relative deadline and its
minimum sequential execution time, on its subtasks. Ac-
cordingly, the subtasks are assigned intermediate offsets and
deadlines which guarantee their independent execution.

3. TASK MODEL
We consider a taskset τ of n periodic parallel real-time

Directed Acyclic Graph (DAG) tasks run on a system of
m identical processors. The taskset τ is represented by
{τ1, ..., τn}. Each DAG task τi, where 1 ≤ i ≤ n, is a
periodic implicit-deadline graph which consists of a set of
subtasks under precedence constraints. A DAG task τi is
characterized by (ni, {1 ≤ j ≤ ni|τi,j}, Gi, Di), where ni is
the number of its subtasks, the second parameter represents
the set of subtasks of τi, Gi is the set of directed relations be-
tween these subtasks and Di is τi’s relative deadline. Since
each DAG task has an implicit deadline, its period Ti (in-
terval time between its successive jobs) is the same as its
deadline Ti = Di.

Let τi,j denote the jth subtask of the set of subtasks form-
ing the DAG task τi, where 1 ≤ j ≤ ni. Each subtask τi,j is
a single-threaded sequential task which is characterized by
a WCET Ci,j . All subtasks respect the absolute deadline
and period of their respective DAG. The total WCET Ci

of DAG τi is defined as the sum of WCETs of its subtasks,
where Ci =

∑ni
j=1 Ci,j . Let Ui denote the utilization of τi

where Ui = Ci/Ti.
The directed relations Gi of DAG τi define the depen-

dencies between its subtasks. A directed relation between
subtasks τi,j and τi,k means that τi,j is a predecessor of τi,k,
and the latter subtask have to wait for all of its predecessors
to complete their execution before it can start its own. Sib-
ling subtasks refer to subtasks that have the same predeces-
sor subtask and they can execute independently in parallel.
Figure 1 shows an example of a DAG task τ1 which con-
sists of 7 subtasks. Precedence constraints are represented
by directed arrows between subtasks. A source subtask is
a subtask with no predecessors, e.g., subtasks τ1,1 and τ1,2.
Respectively, a sink subtask is the one without any succes-
sors such as τ1,7.

Based on the structure of DAG tasks, the critical path of
DAG τi is defined as the longest sequential execution path
in the DAG when it executes on a virtual platform com-
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Figure 1. An example of a DAG task τ1 which con-
sists of 7 subtasks.

posed of unlimited number of processors. Its length Li is
the minimum response time of the DAG. A subtask that is
part of the critical path is referred to as a critical subtask,
while non-critical subtasks are the remaining subtasks which
execute in parallel with the critical ones. A slack time of a
DAG τi is defined as the time difference between its relative
deadline Di and its critical path length Li.

A DAG task is said to be feasible if subtasks of each job
respect its absolute deadline. A taskset τ is deemed unfea-
sible when scheduled using any scheduling algorithm on m
unit-speed processors if, at least, one of the following condi-
tions is false:

∀τi ∈τ, Li ≤ Di

U(τ) =

n∑
i=1

Ui ≤ m

4. DAG SCHEDULING APPROACHES:
PARALLEL VS. STRETCHING

A real-time scheduler is responsible for choosing which job
to execute on which processor at all times. The priorities
of executed jobs are determined by using a scheduling al-
gorithm. A scheduling algorithm is referred to as global if
it allows job migrations between processors of the system,
and an algorithm is referred to as preemptive if it allows
higher priority jobs to interrupt the execution of lower prior-
ity ones. A taskset is said to be schedulable w.r.t. a specific
scheduling algorithm if all jobs in the set complete their ex-
ecution before their absolute deadlines when this scheduling
algorithm is used.

Definition 1. A scheduling algorithm is said to be opti-
mal if it is able to schedule all possible feasible task sets.

Despite that many optimal uniprocessor scheduling algo-
rithms lose their optimality when applied on multiproces-
sor systems, these algorithms are widely used in many re-
searches regarding the scheduling of parallel DAG tasks. In
this paper, we consider two global preemptive scheduling al-
gorithms, EDF from the fixed job priority assignment family
and DM from fixed task family. Regarding EDF, it assigns
priorities to jobs based on their absolute deadlines, i.e., the
job with the earliest absolute deadline is assigned the high-
est priority. While DM assigns priorities to tasks based on

their relative deadlines, in which the jobs with the earliest
relative deadline, are assigned the highest priority. Hence,
jobs of the same task are assigned the same priority.

In the case of independent sequential tasks, a schedul-
ing algorithm assigns priorities to jobs based on the tim-
ing parameters of tasks, such as their deadline, period and
slack time. However, the priority assignment of DAGs is
more challenging. When a DAG job is assigned a prior-
ity by a scheduling algorithm, all of its subtasks inherit the
same priority. Therefore, the scheduling algorithm has to
determine the execution order of sibling subtasks of a DAG
task, which are assigned the same priority and they exe-
cute independently. Hence, it is important to specify the
default execution order of subtasks of DAGs before apply-
ing any scheduling algorithm by using the DAG scheduling
approaches. In this section, we describe in details the Di-
rect Scheduling approach (parallel execution form) and the
DAG-Str algorithm (sequential execution form). Then we
prove that both approaches are not comparable by provid-
ing scheduling examples.

4.1 Direct Scheduling Approach (Parallel
Structure)

The Direct Scheduling approach defines the default par-
allel structure of DAG tasks. It supports the inter-subtask
parallelism of DAGs in which subtasks are assumed to exe-
cute as soon as possible when they are activated. According
to this approach, a scheduling algorithm does not permit
there to be any time at which a processor is idle and there
is a subtask ready to execute. Hence, if there are idle pro-
cessors in the system, all ready sibling subtasks of a DAG
task are allowed to execute in parallel.

According to the Direct Scheduling approach, each sub-
task τi,j ∈ τi is characterized by an earliest offset Oi,j and
a relative deadline Di,j . Both timing parameters determine
maximum execution interval of the subtask and are calcu-
lated based on the precedence constraints of their DAG. The
offset Oi,j refers to the earliest activation time of any job of
subtask τi,j when its DAG τi executes on unlimited number
of processors. Hence, predecessor subtasks of τi,j execute
without any delay or interruption. If a DAG task is acti-
vated at time t, then subtask τi,j cannot be activated before
time instant t+Oi,j .

Similarly, a relative deadline Di,j refers to the latest finish
time of subtask τi,j that guarantees no deadline miss of the
DAG. If DAG task τi is released at time t and subtask τi,j
fails in finishing its execution at most at t + Di,j , then the
remaining time before the deadline of the DAG at t + Di

is not enough for the successors of τi,j to execute, even if
unlimited number of processors is considered in the system2.

Figure 2 shows an example of the parallel structure of
DAG task τ1 from Figure 1. We assume that DAG task τ1
has a deadline equal to 10 and it consists of 7 subtasks. As
shown in Figure 2, source subtasks {τ1,1, τ1,2, τ1,3, τ1,5} are
activated at time t = 0 and they are assumed to execute in
parallel. Subtask τ1,4 is a successor of subtasks τ1,1 and τ1,2
and it has to wait for them both to finish execution before
it starts its own, hence, its offset O1,4 is equal to 3. Its
successor subtasks τ1,6 and τ1,7 have offset equal to 4. When
we consider that DAG task τ1 has a deadline at t = 10, then
sink subtasks τ1,6 and τ1,7 have to finish their execution at

2In both computations, we consider that subtask jobs exe-
cute up to their worst-case execution time.
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Figure 2. An example of parallel scheduling method
of DAG task from Figure 1

this time instant, and D1,6 = D1,7 = 10. However, subtask
τ1,4 has to finish its execution no later than t = 8, so as
to leave enough time for its successors to execute. Hence,
the local deadline D1,4 of subtask τ1,4 is equal to 5, and its
maximum execution interval is equal to [t+O1,4, t+D1,4).

In general, Direct Scheduling approach maintains the gen-
eral characteristics of DAG tasks. Real-time algorithms take
scheduling decisions that are compatible with the parallel
structure of DAGs and their internal dependencies. How-
ever, the main disadvantage of this approach is that higher
priority DAGs can be greedy by occupying multiple proces-
sors of the system for the execution of their parallel subtasks,
while delaying the execution of lower priority subtasks. This
scenario may cause deadline miss in the set.

4.2 DAG Stretching Approach (Sequential
Structure)

By using the Model Transformation approach, the schedul-
ing problem of DAG tasks is simplified by avoiding their
parallel structure. For example, the DAG Stretching (DAG-
Str) algorithm converts each DAG task into a sequence of
segments, each consists of independent sequential threads.
Briefly, the concept of the DAG-Str algorithm is that the
slack time of stretched DAG is filled by non-critical sub-
tasks, and the critical path of the DAG is stretched up to
its deadline. The algorithm forces certain subtasks of the
DAG to execute sequentially to form a master thread whose
utilization is equal to 1. The remaining threads are assigned
intermediate offsets and deadlines so as to execute indepen-
dently. In order to maintain the precedence constraints of
stretched DAGs and to avoid that threads of the same sub-
tasks execute in parallel, the generated threads are assigned
intermediate offsets and deadlines. In the scheduling process
after applying the stretching algorithm, the fully stretched
master threads can be assigned dedicated processors since
their utilization is equal to 1, and the independent threads
can be scheduled using any multiprocessor scheduling algo-
rithm.

Figure 3 shows an example of the DAG-Str algorithm
when applied on DAG task τ1 from Figure 1. The criti-
cal path of the DAG consists of subtasks τ1,1, τ1,4 and τ1,6.
In order to fill the slack time of the DAG, whose length is
equal to 4, parts of subtask τ1,2 and subtask τ1,7 are forced to
execute sequentially within the critical path. After stretch-
ing, DAG task τ1 is transformed into 5 sequential segments,
where segment S1,1 contains two independent threads, and
each one of segments S1,2 and S1,4 contains one indepen-
dent thread. Intermediate offsets (respectively intermediate
deadlines) of threads are represented by upward pointing ar-
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Figure 3. Example of stretching scheduling method
for DAGs.

rows (respectively downward pointing arrows) on Figure 3.
Further details about the DAG-Str algorithm can be found
in [23].

The Model Transformation approach simplifies the schedul-
ing of DAG tasks by assigning intermediate offsets and dead-
lines to resulting threads, which are used by the schedul-
ing algorithm. The internal dependencies of DAG tasks are
eliminated at the expense of generality loss of model char-
acteristics. In other words, the form of DAG tasks is altered
because of the stretching algorithm, e.g., subtask τ1,2 from
Figure 3 has to execute within the master thread and not in
parallel even if there are available processors in the system.

4.3 Incomparability of Scheduling Approach-
es

In this section, we analyze the schedulability of parallel
and stretching approaches of DAGs. We discuss the case of
global preemptive scheduling when EDF and DM algorithms
are used. In related researches, schedulability analyses of
scheduling approaches were provided separately, and the re-
sults were never compared with each other. In this paper,
we aim at analyzing the performance of these approaches
w.r.t. schedulability of DAG sets.

In comparing DAG sets that are scheduled by two differ-
ent approaches A and B, there are three possibilities: (i)
A dominates B if all schedulable DAG sets according to B
belong to the set of schedulable DAG sets according to A,
(ii) A is equivalent to B if they schedule the exact same
DAG sets and (iii) A and B are incomparable if there ex-
ist DAG sets that are schedulable according to A that are
unschedulable according to B and vice versa.

By using two scheduling examples, we show that both
DAG approaches are not comparable when associated with
global preemptive EDF and DM algorithms. Then we eval-
uate their schedulability performance by extensive simula-
tions. The incomparability of these scheduling approaches
means that both approaches are acceptable for DAG schedul-
ing and no one dominates the other w.r.t. DAG schedula-
bility. To this end, we provide two examples to show the
scheduling of a given DAG set on multiprocessor system us-
ing a global preemptive scheduling algorithm. In Example 1,
we show that the DAG set is schedulable when the DAG-Str
algorithm is used, while Direct Scheduling approach leads to
a deadline miss. Then we show in Example 2 that Direct ap-
proach successfully schedules a DAG set which is unschedu-
lable when DAG-Str algorithm is used. In both examples,
we consider that EDF and DM algorithms are associated
with the DAG scheduling approaches to assign priorities to
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their jobs.

Example 1: DAG-Str algorithm can outperform
Direct Scheduling (Figure 4)

Task Set: In this example, we consider a DAG set τ
that consists of two periodic implicit-deadline DAG tasks,
where τ = {τ1, τ2}. DAG τ1 has 5 subtasks with a total
WCET equal to 8 and a deadline equal to 6. The timing
parameters of subtasks and the structure of DAG τ1 are
shown in Inset 4(a). It has a critical path length equal to
4 and a slack time equal to 2. Inset 4(a) shows the parallel
form of τ1 in which subtasks τ1,2, τ1,3 and τ1,4 execute in
parallel. Inset 4(b) shows the sequential structure of DAG
τ1 when DAG-Str algorithm is applied. The critical path
of the DAG ({τ1,1, τ1,2, τ1,5}) is stretched up to its deadline
by forcing subtask τ1,3 to execute sequentially after subtask
τ1,2. Subtask τ1,4 executes in parallel with an offset equal
to 1 and a local relative deadline equal to 4.

DAG task τ2 is shown in Inset 4(c). It consists of a single
subtask τ2,1 which has a WCET equal to 6 and a deadline
equal to 7. Since DAG τ2 is a sequential task, there is no dif-
ference between its parallel and sequential execution forms.
The utilization of the DAG set U(τ) is equal to 8

6
+ 6

7
= 2.19

which means that it needs to execute on a platform of at
least 3 unit-speed processors. In this example, we consider
a platform of 3 processors.

Priority Assignment: If DM scheduling algorithm
is considered, then jobs of DAG τ1 are assigned a higher
priority than jobs of DAG τ2 because τ1 has a shorter relative
deadline. In the case of EDF, if we consider a synchronous
scenario in which both DAGs are released at time t = 0, then
the first job of task τ1 has an absolute deadline at t = 6 while
the first job of τ2 has an absolute deadline at t = 7. Hence,

EDF assigns the first job of τ1 a higher priority than the job
of τ2. According to this priority assignment, active jobs in
the time interval [0, 7) have the same priorities according to
EDF and DM algorithms.

Direct Scheduling Approach: The considered schedu-
ling is done based on the parallel execution form of DAGs
while considering the priority assignment of EDF and DM.
As shown in Inset 4(d), the first job of τ1 executes without
being interrupted since it has the highest priority. Its par-
allel subtasks {τ1,2, τ1,3, τ1,4} occupy the 3 processors of the
system for 2 time units in time interval [1, 3). As a result,
the execution of the first job of τ2 is interrupted and it is
delayed for 2 time units. Since its slack is equal to 1 time
unit, a deadline miss occurs.

Model Transformation Approach: Inset 4(e) shows
the scheduling of the same DAG set when the DAG-Str al-
gorithm is used. Based on the structure of stretched DAG τ1
from Inset 4(b), each job needs 2 processors so as to execute
successfully at all times, because the stretching algorithm
forces subtask τ1,4 to execute sequentially within the criti-
cal path. For any given scheduling algorithm, the DAG set
is schedulable on 3 processors, because DAG task τ1 occu-
pies 2 processors and the remaining processor is dedicated
to the sequential DAG task τ2.

Conclusion: In the case of preemptive EDF and DM
scheduling algorithms, there exists a DAG set that is schedu-
lable on a multiprocessor system when the DAG-Str algo-
rithm from the Model Transformation approach is used,
while Direct Scheduling approach fails to schedule the same
set.

Example 2: Direct Scheduling can outperform
DAG-Str algorithm (Figure 5) Task Set: In this ex-
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Figure 5. An example of DAG scheduling incomparability in favor of Direct Scheduling when compared to
DAG-Str algorithm.

ample, we consider a DAG set τ that consists of two periodic
implicit-deadline DAG tasks {τ1, τ2}. DAG task τ1 has a
deadline equal to 6, and it consists of 8 subtasks and a total
WCET equal to 10. The WCET of subtasks and the internal
structure of the DAG are shown in Inset 5(a). The critical
path length of DAG τ1 is equal to 6 which is the same as its
relative deadline. Thus, the DAG has no slack time and it
cannot be stretched. In order to avoid a deadline miss, its
subtasks have to execute without any delay or interruption.
DAG task τ2 consists of 3 subtasks, in which subtask τ2,1 is
the source subtask of the DAG and subtasks {τ2,2, τ2,3} are
its successors, as shown in Inset 5(b). The default execution
behavior of these subtasks is that both subtasks τ2,2 and τ2,3
execute in parallel. However, since DAG task τ2 has a slack
time equal to 1 time unit and its utilization is less than 1,
then DAG-Str algorithm transforms DAG τ2 into a sequen-
tial task in which all of its subtasks execute sequentially.
The stretched form of DAG τ2 is shown in Inset 5(c).

The total utilization U(τ) of the DAG set is equal to
( 10

6
+ 1) = 2.66. Hence, the task set requires an execution

platform of at least 3 processors to be feasible.
Priority Assignment: If DM scheduling algorithm is

used, then jobs of DAG τ2 are assigned a higher priority than
jobs of DAG τ1 because τ2 has a shorter relative deadline.
In the case of EDF, if we consider a synchronous scenario in
which DAGs are released at time t = 0, then the first job of
task τ2 has an absolute deadline at t = 3 while the first job
of τ1 has an absolute deadline at t = 6. As a result, EDF
assigns the job from DAG τ2 a higher priority. Regarding
the second job of DAG τ2, its absolute deadline is equal to
the deadline of the first job of DAG τ1, hence, priorities are
assigned arbitrarily. In this example, we consider that the

DAG with the shortest relative deadline is assigned higher
priority as a tie breaking rule. According to this priority
assignment, DAG jobs have the same priorities according to
EDF and DM scheduling algorithms.

Direct Scheduling Approach: In Inset 5(d), we show
the global preemptive scheduling of the DAG set on a sys-
tem of 3 identical processors using the Direct Scheduling
approach. First DAG jobs are activated at time t = 0 and
the job of DAG τ2 has the highest priority. Subtask τ2,1 exe-
cutes in interval [0, 1) and its successors τ2,2 and τ2,3 execute
in parallel and occupy two processors of the system in [1, 2).
Similarly, the second job of DAG τ2 executes in parallel with
τ1 in time interval [3, 5). According to this scheduling, the
first job of DAG task τ1 executes without interruption and
all of its subtasks execute without any delay. As Figure 5(d),
the synchronous DAG set is schedulable using DM and EDF
scheduling algorithms.

Model Transformation Approach: When DAG-Str
algorithm is used, subtasks of DAG τ2 are forced to execute
sequentially as a sequential thread even if there are available
processors in the system for subtasks to execute in parallel.
The first job of τ2 has a higher priority according to DM
and EDF, then it occupies a single processor by itself in
time interval [0, 3), as shown in Inset 5(e). As a result,
subtasks of the first job of DAG τ1 are blocked during this
time interval and one of them (subtask τ1,3 in the example)
is delayed for 1 time unit and is forced to execute in time
interval [3, 4) instead of [2, 3). DAG task τ1 has no slack
time, then a deadline miss happens as shown in the figure.

Conclusion: In the case of preemptive EDF and DM
scheduling algorithms, there exists a DAG set that is schedu-
lable on a multiprocessor system when Direct Scheduling



approach is used, while it is unschedulable when the DAG
stretching algorithm is used. Based on Examples 1 and 2,
both scheduling approaches are not comparable and no one
dominates the other.

5. SIMULATION ANALYSIS
Based on the scheduling examples, we conclude that the

DAG scheduling approaches are not comparable, and it is
not clear which approach outperforms the other. In order to
evaluate their schedulability performance, we evaluate them
through extensive simulations of randomly-generated DAG
tasks on multiple processors. The use of simulation-based
evaluations is common in real-time analysis to give an in-
dication regarding the performance of proposed algorithms.
Simulation is used to check whether a set of tasks respects
its temporal constraints when a specific algorithm is used, or
to evaluate the efficiency of a new approach when compared
with other algorithms from the state-of-the-art.

In real-time systems, there are many simulation tools that
vary in their characteristics and features, e.g., MAST, Ched-
dar and FORTAS. However, many factors force researchers
to implement their own simulation tools without depending
on the existing ones, such as the lack of a standard simu-
lator, the difficulty of extending an existing tool to include
new features and models and the lack of documentation. In
our case, we implemented a new simulation tool which con-
tains the parallel dependent DAG model.

In this section, we present our simulation tool YARTISS [6],
which is a free open-source simulation tool written in Java
for real-time multiprocessor scheduling. We focused during
its design on providing a generic simulation tool and an easy-
to-use modular design in which new modules can be added
easily without the need to decompress, edit nor recompile
existing parts. We briefly describe the main features of
the simulator w.r.t. random generation of the DAG model.
Then we present the simulation results of DAG scheduling
approaches and we evaluate their performance when global
preemptive EDF and DM algorithms are used.

Task Model Generator
YARTISS offers an open architecture to facilitate the inte-
gration of different task models. Its current version contains
two models, the first one is the independent sequential task
model with energy parameters, in which a task is character-
ized by its WCET, its period and its relative deadline, in
addition to its worst case energy consumption. The second
model is the DAG model which belongs to the dependent
parallel category.

Performing large-scale scheduling simulations requires a
large data set of tasks. In order to avoid biased results and
to ensure credibility, the used task sets should be randomly
generated and their timing parameters should be varied suf-
ficiently. YARTISS provides the ability to choose a task set
generator which defines the various timing parameters of
tasks and whether they are periodic/sporadic and implicit/-
constrained/arbitrary deadline tasks. The default generator
in YARTISS is based on the UUniFast-Discard algorithm [4]
adapted to energy constraints and parallel tasks (utilization
is greater than 1) coupled with a hyper-period limitation
technique [13].

The UUnifast-Discard algorithm is used to uniformly dis-
tribute the system utilization on all tasks of the set with
a complexity of O(n), where n is the number of tasks in

Algorithm 1 The UUniFast-Discard Algorithm (from [4])

Require: U(τ), n
Ensure: vectU . An array of utilization of each task τi in

the set τ .
sumU = U(τ)
for i = 1 : n− 1 do

nextSumU = sumU × rand(1/(n−i))

vectU(i) = sumU − nextSumU
sumU = nextSumU

end for
vectU(n) = SumU

the set. As shown in Algorithm 1, the UUniFast-Discard al-
gorithm generates an array of n random task utilization, in
which each element represents a task utilization Ui of τi ∈ τ ,
where 0 < Ui < U(τ) for parallel tasks (Ui ≤ 1 for sequential
tasks) and

∑n
i=1 Ui ≤ U(τ).

For each task τi, its utilization, which is equal to Ui = Ci
Ti

,

is used to compute the remaining timing parameters. We
generate WCET and period values for each task based on
its utilization. It is known that a periodic task set repeats
its task arrival pattern after an interval called the hyper pe-
riod. In order to verify the schedulability of a task set, it is
necessary to determine the response time of each job on a
period of length that may be slightly greater than the hyper
period [19, 12]. The hyper period of a task set is calculated
as the Least Common Multiple (LCM) of periods of tasks in
the set. Hence, the value of LCM is affected by the increase
of task periods in the set. In order to limit the length of the
hyper period during task generation in YARTISS, we use
the hyper-period limitation technique from [13]. The idea
of the technique is to generate n periods {T1, T2, ..., Tn} for
each task in the set in a way to bound their resulting LCM.
The algorithm uses a matrix M representing primes and
their probabilistic distribution. A period is calculated as
the multiple of random number from each line in the ma-
trix. For example, if we consider a matrixM which consists
of 5 primes (2, 3, 5, 7, 11), its structure and probabilistic dis-
tribution are provided as follows:

M =


1 2 2 4 4 4 8 16 16
1 3 3 9 9 9 27
1 5 5 25 25 25
1 1 7 7 7 49
1 1 1 11 11


The largest period, that can be possibly generated from
M, is equal to (16 × 27 × 25 × 49 × 11 = 5821200), which
represents the largest hyper period of the task set. Hence,
by choosing the prime values of the matrix, we can limit
the maximum hyper period of the generated task set, and
respectively, the simulation interval.

Based on the UUniFast-Discard and the hyper-period lim-
itation algorithms, the utilization and period of each task
are derived. The deadline Di is derived based on the type
of generated task sets. In the case of implicit-deadlines, we
consider that Di = Ti. While the deadline of constrained-
deadline tasks is less than or equal to the period, where
Di ≤ Ti. Finally, there is no relation between the deadline
and the period in the case of arbitrary-deadline tasks.

For a DAG task τi, the total WCET Ci can be calculated
based on the utilization and period and it is strictly less than



the deadline (1 ≤ Ci ≤ Di). The inter-subtask parallelism
and the dependencies between the subtasks should be taken
into consideration in the generation process. The DAG gen-
erator uses the UUniFast-Discard algorithm to determine
the WCET of each subtask based on the total WCET of
the DAG. The following parameters are necessary for the
generation of subtasks and their precedence constraints:

• Maximum number of subtasks (MAX_SUBTASKS): it
is defined for each DAG set as an upper bound on the
number of subtasks in the DAG. This value is impor-
tant to determine the size of DAGs which affects the
probability of its inter-subtask parallelism. Generally,
DAG tasks, whose number of subtasks is large, tend
to have more internal parallelism and more precedence
constraints between their subtasks than smaller DAGs.

Additionally, the minimum number of subtasks (MIN_
SUBTASKS) is calculated so as to ensure a feasible gen-
eration of DAGs. Its value is calculated when we con-
sider that each subtask τi,j in DAG τi has a WCET
Ci,j equal to its relative deadline Di, which is the max-
imum execution time that can be assigned to any sub-
task so as to be feasible. Then, the MIN_SUBTASKS is

equal to

⌈
Ci

Di

⌉
. For each DAG task τi in the set, its

number of subtasks ni is equal to rand(MIN_SUBTASKS,
MAX_SUBTASKS). If random generation of subtask tim-
ing parameters leads to MIN_SUBTASKS greater than
MAX_SUBTASKS, then the generation process is repeated
until this relation becomes true.

• The WCET Ci,j of each subtask τi,j is calculated us-
ing the UUniFast-Discard algorithm, where the total
WCET Ci of the DAG and the number of subtasks ni

are its inputs. We bound the value of Ci,j of each sub-
task to ensure system feasibility by using the following
Cmax

i,j and Cmin
i,j bounds:

– Any sequential subtask of DAG τi cannot exceed
the deadline of the DAG. Hence, Cmax

i,j = Di.

– The minimum WCET Cmin
i,j is calculated when

each subtask τi,k in the DAG, which is not as-
signed a WCET yet, is considered to have a WCET
Ci,k equal to Cmax

i,k . This bound is necessary to
ensure the feasibility of generated subtasks. For
example, let us consider a DAG task τi with the
following timing parameters: a total WCET Ci =
6, a relative deadline Di = 4 and two subtasks
{τi,1, τi,2}. If subtask τi,1 is assigned a WCET
equal to Ci,1 = 1, then the remaining WCET
available for subtask τi,2 is equal to 5 which is
greater than the deadline of the DAG and the
subtask is not feasible on a unit-speed processor.
Hence, Cmin

i,1 has to be at least (6 − 4) = 2 time
units to ensure feasibility.

• The probability factor of directed relations ρ be-
tween subtasks, where 0 < ρ < 1. If ρ is close to
0, then the probability of creating a directed relation
between any two subtasks in the DAG is large. This
probability is reduced when ρ moves closer to 1. In
order to get rid of cyclic dependencies between sub-
tasks, we use a triangular matrix R whose entries of
ones and zeros are generated randomly based on the

Listing 1. An example of an XML file describing the
DAG Tasks
<?xml version=”1.0” encoding=”UTF−8”?>

. . .
<tasks nbTasks=”1” type=”Fixed Priority”>

<task dead l ine=”10” f i r s t R e l e a s e=”0”
nbSubtasks=”2” per iod=”10” p r i o r i t y=”1
” type=”graph” wcee=”0” wcet=”5”>

<subtask ch i l d r en=”1” dead l ine=”10”
f i r s t R e l e a s e=”0” index=”0”
l o c a lDead l i n e=”7” nbProc=”1” parents
=”” per iod=”10” p r i o r i t y=”1” type=”
subtask” wcet=”2”/>

<subtask ch i l d r en=”−1” dead l ine=”10”
f i r s t R e l e a s e=”2” index=”1”
l o c a lDead l i n e=”10” nbProc=”1”
parents=”0” per iod=”10” p r i o r i t y=”1”
type=”subtask” wcet=”3”/>

</task>
</tasks>

probability factor ρ. For each DAG task τi, R is a
square matrix of size ni and all of its entries under the
main diagonal are zeros. Also, we consider that the
main diagonal entries are zeros so that a subtask does
not have a precedence relation with itself. The remain-
ing entries represent the precedence relations between
subtasks and they are either zeros or ones. For DAG
τi, if entry Rj,k = 1, then we create a precedence rela-
tion from subtask τi,j to τi,k. If it is zero, then there is
no relation between these two subtasks. An example
of the triangular matrix R of a DAG τi of 4 subtasks
is considered as follows:

R =


τi,1 τi,2 τi,3 τi,4

τi,1 0 1 1 0
τi,2 0 0 0 1
τi,3 0 0 0 1
τi,4 0 0 0 0


In this example, subtask τi,1 has two successors τi,2
and τi,3 since R1,2 = R1,3 = 1, while there is no di-
rected relations between subtask τi,1 and subtask τi,4.
Similarly, subtask τi,4 is the successor of subtasks τi,2
and τi,3.

Using these parameters, DAG sets are generated randomly
and each DAG task is assigned a WCET, a period, a rela-
tive deadline and a set of random subtasks with precedence
constraints. In YARTISS, each DAG set is encoded in an
XML file so as to be used repeatedly in the simulation of dif-
ferent scheduling algorithms. An example of a DAG XML
file is shown in Listing 1, which represents a data set of a
single task set (tag <tasks>) which contains a single DAG
task (tag <task>). This DAG consists of two subtasks (tag
<subtask>), in which the first subtask is a parent of the sec-
ond one (represented by attributes parents and children).
The subtask tag has other attributes such the WCET, dead-
line, first release time so as to represent their timing param-
eters.

5.1 Simulation Results for EDF Scheduling
Algorithm



(a) DAG-Str algorithm, ρ = 0.1,
MAX_SUBTASKS = 5.

(b) Direct Sched. ρ = 0.1,
MAX_SUBTASKS = 5.

(c) All algorithms, ρ = 0.1,
MAX_SUBTASKS = 5.

(d) DAG-Str algorithm. m = 8. (e) Direct Sched. m = 8.

Figure 6. Simulation results of DAG scheduling approaches when EDF is used.

In this subsection, we present simulation results of DAG
scheduling approaches when associated with EDF algorithm.
These results are analyzed w.r.t. the number of processors
in the system, the variation of the size of DAGs and the
probability of internal dependencies.

The effect of the number of processors on DAG schedu-
lability
We simulate the DAG scheduling by using the two schedul-
ing approaches with EDF scheduling algorithm. We analyze
their schedulability performance w.r.t. the number of pro-
cessors in the system, and the other simulation parameters
(DAG size and parallelism probability) are fixed for each
simulation sets.

Figure 6 shows the simulation results of Direct Scheduling
and DAG-Str algorithm with EDF. The x-axis of each inset
in the Figure denotes the percentage of task set utilization
w.r.t. the number of processors in the system, while the y-
axis denotes the percentage of schedulable task sets. In the
simulations of Insets 6(a), 6(b) and 6(c), we consider that
the probability factor ρ is equal to 0.1 (high probability of
internal parallelism) and MAX_SUBTASKS is equal to 5.

In general, we notice that the performance of all DAG
scheduling approaches decreases when the number of pro-
cessors of the system is increased. However, the perfor-
mance of the DAG-Str algorithm is more affected by the
variation of number of processors than the Direct Schedul-
ing approache. Inset 6(a) shows the simulation results when
DAG-Str algorithm is used. For m = 2, we notice that
the schedulability percentage of stretched DAG sets is al-
most 100% for all sets whose utilization less than or equal
to 80%. Then the schedulability percentage drops to around
50% for utilization equal to 100%. However, the schedula-
bility performance degrades when the number of processors
is increased. When m = 16, less than 50% of task sets are
schedulable when their utilization is greater than 40% of

number of processors.
Direct Scheduling approach of DAGs behaves in the same

manner but with better schedulability, as shown in Inset
6(b). The simulation results show that this approach sched-
ules successfully more than 60% of DAG sets whose utiliza-
tion is no more than 80% of any number of processors. As
shown in Inset 6(c), the performance of all scheduling ap-
proaches is relatively similar when the number of processors
is small (although the DAG-Str algorithm has the best per-
formance). However, when we consider m = 16, there is
a big difference in performance between the DAG-Str algo-
rithm and the Direct Scheduling in favor of the latter.

In conclusion, when EDF is used to schedule DAG tasks
on execution platforms of large number of processors, it is
better to consider Direct Scheduling approaches rather than
DAG-Str algorithm. In other words, the parallel structure
of DAG tasks is more compatible with EDF scheduling al-
gorithm.

The effect of the size of DAGs on schedulability
Inset 6(d) (respectively Inset 6(e)) shows the simulation re-
sults of DAG-Str algorithm (respectively Direct Scheduling
approach) when the size of DAGs is varied. We consider
that MAX_SUBTASKS is equal to 5 (small DAGs) and 12 (large
DAGs) while the number of processors is equal to 8. In
these experiments, we analyze the simulation results w.r.t.
the maximum and minimum probability of internal paral-
lelism of DAG tasks (ρ = 0.9 and ρ = 0.1).

We notice that the effect of DAG size depends on the
considered scheduling approach. In the case of DAG-Str al-
gorithm, its schedulability performance decreases when the
size of DAGs is increased. As shown in Inset 6(d), the DAG-
Str algorithm schedules more DAG sets when their size is
small. When MAX_SUBTASKS is equal to 5, more than 30%
of DAG sets, whose utilization is not greater than 80%, are
schedulable (when ρ is either 0.1 or 0.9). The schedulabil-



ity percentage drops to around 10% of the same DAG sets
when MAX_SUBTASKS is equal to 12. Moreover, we notice that
the performance of DAG-Str algorithm is not affected much
by the level of internal parallelism of DAG tasks which is
represented by the probability factor ρ.

Similarly, Inset 6(e) shows the schedulability of Direct
Scheduling approach when the size of DAGs is varied. We
notice that its performance is affected by the probability of
internal parallelism. When ρ is equal to 0.9, the schedula-
bility performance remained the same even when the size of
DAGs is changed. However when ρ is equal to 0.1, Direct
approach schedules more DAG sets when MAX_SUBTASKS is
equal to 12. As a general remark, Direct Scheduling ap-
proach successfully schedules more than 40% of DAG sets
whose utilization is less than or equal to 80% of the number
of processors.

The effect of internal parallelism of DAGs on schedu-
lability
In this subsection, we analyze the effect of parallelism prob-
ability on the schedulability of DAGs using the different
scheduling approaches. We present simulation results af-
ter considering probability factor ρ equal to 0.1 (solid lines)
and 0.9 (dashed lines) in Insets 6(d) and 6(e). As explained
earlier, when ρ is close to zero, DAG tasks are more probable
to have many dependencies between their subtasks, while a
factor close to 1 means that subtasks tend to execute inde-
pendently within their DAGs. In this experiment set, we
choose execution platforms of number processors equal to 8
and MAX_SUBTASKS equal to 5 and 12.

Starting by the DAG-Str algorithm from Inset 6(d), we
notice that its performance is not affected by varying the
probability factor ρ. This can be explained by mentioning
that the DAG-Str algorithm avoids the internal structure
of DAG tasks and execute them as sequentially as possible.
Inset 6(e) shows the schedulability performance of Direct
Scheduling approach improves when the probability of inter-
nal dependencies increases. Around 40% of DAG tasks with
utilization less than 80% are schedulable when parallelism
parameter ρ is equal to 0.9. The percentage of schedulable
DAG sets raises up to more than 60% of schedulable DAG
tasks with the same utilization when ρ is equal to 0.1.

Conclusion:
Based on the provided simulation results, we conclude that
Direct Scheduling approach performs better than DAG-Str
algorithm when preemptive EDF algorithm is used.

5.2 Simulation Results for DM Scheduling
Algorithm

After analyzing the DAG schedulability performance of
EDF algorithm, which is from fixed job priority assignment
family, we consider another scheduling algorithm which is
from fixed task priority family. DM algorithm assigns prior-
ities to DAGs based on their relative deadlines. Similarly to
previous simulations, we present in this subsection perfor-
mance evaluations of scheduling approaches with DM. We
compare the performance of DAG-Str algorithm to the Di-
rect Scheduling approach while varying the number of pro-
cessors in the system, the size of DAG tasks and the prob-
ability of inter-subtask parallelism. The simulation results
are shown in Figure 7.

The effect of the number of processors on DAG schedu-
lability
Insets 7(a) and 7(b) show the simulation results which com-
pare the DAG-Str algorithm (solid lines) and Direct Schedul-
ing (dashes lines) w.r.t. the number of processors in the
systems. In these experiments, the size of DAGs is fixed
to MAX_SUBTASKS equal to 9, and the probability factor ρ
is equal to 0.1 (respectively 0.9) in Inset 7(a) (respectively
7(b)). In general, the schedulability performance of both
approaches decreases by the increase of number of proces-
sors in the system. We notice also that the schedulability
of both algorithms is almost identical when m = 2. How-
ever, DAG-Str algorithm performs better than the Direct
Scheduling when the execution platform consists of number
of processors m greater than 2. This indicates that DM is
more compatible with DAG-Str algorithm and it performs
better than EDF scheduling algorithm.

However, when ρ factor is equal to 0.1, the scheduling
approaches have better schedulability on large number of
processors when compared to the case where ρ is equal to
0.9.

Simulation analysis for Direct Scheduling
In the case of Direct Scheduling approach, the schedulabil-
ity performance is better for high probability of parallelism
(ρ = 0.1) rather than low probability, as shown in Inset
7(c). In these simulations, we consider that DAGs consist
MAX_SUBTASKS is equal to 12. When ρ is equal to 0.1, around
60% of DAG sets are schedulable with system utilization
equal to 80%. When ρ is equal to 0.9, the schedulability
percentage drops to less than 20% for the same DAG sets.

Simulation analysis for DAG-Str algorithm
As shown in Inset 7(d) and when the DAG-Str algorithm
is applied on DAGs of large sizes (where MAX_SUBTASKS is
equal to 12), the schedulability performance decreases by
the decrease of parallelism probability but in a rate less than
the Direct Scheduling approach.

When ρ is equal to 0.1, the schedulability performance is
more than 50% for system utilization equal to 80%. The
percentage drops to more than 20% when ρ is equal to 0.9
for the same DAG sets. From these results, we can notice
that the schedulability of DAG-Str algorithm is better than
Direct Scheduling in the case of low probability of internal
parallelism.

As a result and based on the provided simulation results,
we conclude that DAG-Str algorithm performs better than
Direct Scheduling approach when associated with global pre-
emptive DM algorithm.

6. CONCLUSION
In this paper, we described two main scheduling approaches

for global preemptive parallel real-time DAG tasks on multi-
processor systems. The Direct Scheduling approach, which
represents the parallel structure of DAGs, maintains the
inter-subtask parallelism of DAGs. While DAG-Str algo-
rithm from the Model Transformation approach transforms
DAG tasks into sequential independent model which is easier
to schedule. This approach represents the sequential struc-
ture of DAGs because it aims at eliminating their internal
dependencies. We proved using scheduling examples, that
these DAG scheduling approaches are not comparable and



(a) ρ = 0.1, MAX_SUBTASKS = 9. (b) ρ = 0.9, MAX_SUBTASKS = 9.

(c) Direct Sched. m = 16, MAX_SUBTASKS =
12.

(d) DAG-Str. m = 16, MAX_SUBTASKS = 12.

Figure 7. Simulation results of DAG scheduling approaches when DM is used.

no one of them dominates the other. The comparability
analysis was done while considering two global preemptive
scheduling algorithms, the Deadline Monotonic (DM) from
the fixed task priority assignment family and the Earliest
Deadline First (EDF) from the fixed job priority assignment
family.

Finally, we performed experimental analyses so as to eval-
uate the schedulability performance of DAGs. The simula-
tion results showed that DM algorithm is more adapted to
the DAG-Str algorithm and EDF scheduling algorithm per-
forms better when DAG tasks are scheduled using the Direct
approach.

In the future, we aim at providing more analysis regard-
ing the behavior of such algorithms on the scheduling ap-
proaches of DAG scheduling by providing theoretical anal-
ysis such as resource augmentation bounds. Moreover, we
aim at extending the analysis to consider other scheduling
algorithms that can be associated to DAG scheduling ap-
proaches, such as Least Laxity First.
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