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Abstract—This paper addresses the problem of stabilizing
and trajectory tracking control of a remotely operated vehicle
(ROV-Observer) in the vertical plane. The underwater vehicle
is not actuated in the pitch direction and cannot be locally
asymptotically stabilized by continuous feedbacks which are
functions of the state only. In the present note, exponential
convergence is obtained by considering time-varying feedbacks
which are only continuous. Furthermore, using the backstepping
technique and the tracking error dynamics, the system states are
stabilized by forcing the tracking errors to an arbitrarily small
neighborhood of zero.

I. INTRODUCTION

Autonomous and remotely operated marine vehicles are
becoming a key component in several aspects of maritime
industry and defense. The problem of stabilizing an underac-
tuated underwater at a desired trajectory is an important issue
in many offshore applications such as, for example, solving
trajectory tracking, path-following, path-tracking and stabiliza-
tion problems. Modern developments in the fields of control,
sensing, and communications have contributed to make very
complex and dedicated underwater robot systems a reality. This
kind of vehicle could be used in highly hazardous and unknown
environments. The autonomy and control of the robot is the
key factor to its mission success. In spite of highly coupled
and nonlinear the dynamics of underwater vehicle system in
nature decoupled, linear control system strategy is widely used
for practical applications. As autonomous underwater vehicle
needs intelligent control system, it is necessary to develop
control system that really takes into account the coupled and
nonlinear characteristics of the system. In addition, most of
the AUVs are underactuated [2], i.e., they have fewer actuated
inputs than the degrees of freedom, imposing non-integrable
acceleration constraints. The problem problem of designing a
stabilizing feedback controller for under-actuated systems is
challenging since the system is not able to be stabilized by a
smooth static state feedback law [15].

For controlling the motion of underwater vehicles, various
control strategies have been developed in years, such as
PID, LQG, SMC, neural network, fuzzy logic, SM fuzzy
logic controllers. An example for the application of PID
control to the underwater vehicles is presented in [16].
In [17], a discontinuous state feedback control law was
proposed by using σ-process to exponentially stabilize
the underactuated ship at the origin. The authors in [18]

developed a discontinuous time-varying feedback stabilizer
for a nonholonomic system and applied to underactuated
ships. As cited in [4], continuous time-invariant controller
was developed to achieve global exponential position tracking
for underactuated AUV. However, the orientation of the
AUV was not controlled. In [19] the problem of stabilization
of underactuated surface vessel with various disturbances
such as waves and wind is treated. To achieve semi-global
asymptotic tracking in the presence of uncertainty and
unknown disturbances, a non linear controller for a fully
actuated AUV using a robust integral of the design of the
error feedback term with a neural network is proposed in [9].
Based on Lyapunov’s direct method and passivity approach,
two constructive tracking solutions were proposed in [5] for
an underwater robot. In [3], a single controller was proposed
to solve both stabilization and tracking simultaneously. A new
type of control law is developed in [8] to steer an autonomous
underwater vehicle (AUV) along a desired path, it overcomes
stringent initial condition constraints that are present in a
number of path-following control strategies described in the
literature.

We study an ultraportable submarine vehicle, called ROV,
where it is expected for observation and exploration in subsea
historical sites. The ROV is procured by the Digital-Ocean 2
project from SUBSEA TECH society. In this paper, we propose
two controls input to resolve the stabilizing and tracking
problem of underactuated ROV moving in vertical plane. Our
contribution is to design methodology to construct a nonlinear
controller of underactuated ROV to stabilize the ROV kino-
dynamic model around a desired position and attitude. Further,
based on Lyapunov theory and backstepping techniques, the
proposed controller achieves global stability and convergence
of the position tracking error to a neighborhood of the origin
that can be made arbitrarily small.

The paper is organized as follows: The kinematic and
dynamic model of the ROV is addressed in section II. A
set of continuous time-varying control laws which locally
asymptotically and exponentially stabilizes the desired attitude
is proposed in Section III. In section IV, we present the result
for the tracking control problem. Finally, Simulation results
are presented in section V.



II. ROV MODEL DESCRIPTION

The ROV has a close frame structure is equipped with two
cameras which allow us the Tele-exploration in mixed-reality
sites (see Fig.1). This vehicle is actuated with two reversible
horizontal thrusters F1x and F2x for surge and yaw motion,
and a reversible vertical thruster F3z for heave motion. A
150 meters cable provides electric power to the thrusters and
enables communication between the vehicle sensors and the
surface equipment (see Fig.1).

Fig. 1. Body-fixed frame and earth-fixed reference frame for the ROV

A. ROV kinematics and dynamics

In this subsection, the kinematic and dynamic equations
of the motion of a ROV moving on the vertical plane are
described. Further details on the ROV’s dynamical modeling
are given in [1] . Using an inertial reference frame R and
a body-fixed frame Rv (Fig. 1). the kinematic equations of
motion of the center of mass G for the ROV on the vertical
XZ plane can be written as:

ẋ = cθu+ sθw ż = −sθu+ cθw θ̇ = q (1)

where cθ = cos θ, sθ = sin θ, x and z represent the inertial
coordinates of the center of the mass G and u, w are the
surge and heave velocities respectively, defined in the body-
fixed frame. The orientation of the vehicle is described by the
angle θ and q is its pitch(angular) velocity. The dynamic of
the ROV is expressed by the following differential equations:

mxu̇ = −mzwq − duu− (FW − FB)sθ + τu

mzẇ = mxuq − dww + (FW − FB)cθ + τw

Jy q̇ = −(mx −mz)wu− dqq + zgFBsθ

(2)

where

• mx = m−Xu̇, mz = m− Zẇ, Jy = Iyy −Mq̇

with - m represent the mass of the ROV
- (Xu̇, Zẇ) are the added mass in the surge and heave
directions, respectively.
- Mq̇ are the added inertia in the pitch direction.

• τu = F1x + F2x, τw = F3z are the imputes.
• (FB , FW ) are the buoyancy and gravity magnitudes.
• du = Xu −Xuu | u |, dw = Zw − Zww | w |

and dq =Mq −Mqq | q | are the drag parameters.

B. Coordinate transformations

We introduce the following coordinate transformation to the
vehicle:

z1 = xcθ − zsθ, z2 = xsθ + zcθ, z3 = θ

Using the above change of coordinates, the vehicle dynamics
in (1)-(2) can be rewritten as in the form of equations

ż1 = u− z2q ż2 = w + z1q ż3 = q (3)

It is assumed that the angle z3 is small enough in a neighbor-
hood of zero, then the dynamics of the ROV can be written

u̇ = −mz
mx

wq − du
mx

u− (FW−FB)
mx

z3 +
1

mx
τu

ẇ = mx
mz
uq − dw

mz
w + 1

mz
τw

q̇ = mz−mx
Jy

wu− dq
Jy
q +

zgFB
Jy

z3

(4)

where τw = τw + (FW − FB).
In the next section, we will consider the system (3)-(4) and
study its controllability and stabilizability proprieties.

III. CONTROLLABILITY AND STABILITY ANALYSIS

Before tackling the stabilization problem, it is essential to
study the controllability of the model (3)-(4).

A. Locally Controllability

In the following we show that the system (3)-(4) is Small
Time Locally Controllable (STLC) in the neighborhood of
the equilibrium. First, the equation (3)-(4) define a non linear
control system of the form

ξ̇ = g0(ξ) +

2∑
i=1

giτi (5)

where ξ = (z1, z2, z3, u, w, q)
T ∈ S ×R5 is the state, g0 and

gi are the drift and control vector

g0(ξ) =



u− z2q
w + z1q

q

−mz
mx
wq − du

mx
u− (FW−FB)

mx
z3

mx
mz
uq − dw

mz
w

mz−mx
Jy

wu− dq
Jy
q +

zgFB
Jy

z3


(6)

g1 =


0
0
0
1
mx
0
0

 , g2 =


0
0
0
0
1
mz
0

 (7)

Note that the set of equilibrium solutions corresponding to
τi = 0 is given by the equilibrium manifold

Me = {ξ ∈M |z3 = u = w = q = 0}

It is easily verified that the linearization of equations (3)-(4)
about the equilibrium has an uncontrollable eigenvalue at the
origin. This implies that a non linear analysis is necessary to



characterize the controllability and stabilizability proprieties of
the system [11]. As a result, from [15], we cannot stabilize the
system (3)-(4) by a continuous pure-state feedback. However
Coron’s theorem [13] proves that a time periodic continuous
feedback is sufficient to stabilize the system to a point.

Proposition 3.1: The ROV dynamics described by equation
(3)-(4) is small-time locally controllable at the origin.

Proof: Consider the system (5). Sins the vector fields

g1, g2, [g0, g1], [g0, g2], [g2, [g0, g1]], [[g0, g2], [g0, g1]]

span a six-dimensional space at any point ξ ∈ S × R5, the
strong accessibility Lie rank condition is satisfied at any point
and the system is small-time locally controllable at the origin
([10], [11], [14]).

B. stabilization of the ROV

The control objective is to find a feedback law that asymp-
totically stabilizes the origins of the ROV in the vertical plane.
We will show first, that it is not possible to stabilize the ROV
using a feedback law that is continuous and function of the
state only. This follows from results given by [15]. Thus, we
propose a continuous periodic time-varying feedback law that
stabilizes the ROV.

Theorem 3.2: Consider the following functions

ud = −k1z1 − k2z3+k3q√
|z3|+|q|

sin(t/ε)

wd = −k4z2 + 2
√
| z3 | + | q | sin(t/ε)

(8)

where k1, k2, k3 and k4 > 0. Furthermore, consider the fol-
lowing continuous periodic time-varying feedback law:

τu = −kumx(u− ud) + duu

τw = −kwmz(w − wd) + dww
(9)

Then there exists ε0 such that for any ε ∈ (0, ε0) and
for positive and sufficiently large parameters ku and kw the
feedback law (9) locally exponentially stabilizes the origin of
the system (4)-(3), with respect to the dilation

δrλ(ν, η, t) = (λu, λw, λ2q, λz1, λz2, λ
2z3, t)

Proof: The ROV model with τu and τw given by (1) can
be written (

ν̇
η̇

)
= f(ν, η, t) + g(ν, η, t) (10)

where ν = [u, w, q]T , η = [z1, z2, z3]T

f(ν, η, t) = [−ku(u+ k1z1 + k2z3+k3q√
|z3|+|q|

sin(t/ε)),

−kw(w + k4z2 − 2
√
| z3 | + | q | sin(t/ε)),

mz−mx
Jy

wu− dq
Jy
q +

zgFB
Jy

z3, u, w, q]
T

(11)
and the remaining terms

g(ν, η, t) = [−mz
mx
wq, mxmz uq, 0,−z2q, z1q, 0]T (12)

Consider the dilation δrλ, the functions τu and τw are homo-
geneous of degree strictly positive with respect to the dilation,
and continuous for (η, ν) 6= 0, they are also continuous at zero.
The vector field f is thus continuous. It is furthermore time-
periodic, f(0, 0, t) = 0 and f is homogeneous of degree zero
with respect to the dilation δrλ(ν, η, t). Furthermore, the vector
field g is continuous and defines a sum of homogeneous vector
fields of degree strictly positive with respect to δrλ(ν, η, t). It is
sufficient to show that the origin (η, ν) = (0, 0) of the system(

ν̇
η̇

)
= f(ν, η, t). (13)

is locally asymptotically stable.
To this purpose, let us consider the following reduced system
obtained from (13), by tacking u = ud and w = wd as new
control variables. We have obtained the following resulting
system:

q̇
ż1
ż2
ż3

 =


mz−mx
Jy

wdud − dq
Jy
q +

zgFB
Jy

z3
ud
wd
q

 (14)

Let (8) defines the control inputs to (14). Due to the periodic
time-variant control, the resulting system is a periodic time-
varying system, which can be written in the form,(

q̇
η̇

)
=h(q, η, t/ε)

=



mz−mx
Jy

(−k1z1 + k2z3+k3q√
|z3|+|q|

sin(t/ε))

(−k4z2 − 2
√
| z3 | + | q | sin(t/ε))

− dq
Jy
q +

zgFB
Jy

z3

−k1z1 + k2z3+k3q√
|z3|+|q|

sin(t/ε)

−k4z2 − 2
√
| z2 | + | q | sin(t/ε)

q


(15)

We approximate this system by an averaged-system which is
in particular autonomous (see [12]). The averaged system of
(15) is defined as (

q̇
η̇

)
= h0(q, η) (16)

where h0(q, η) = (1/Tt)
∫ Tt
0
h(q, η, t/ε)dt (Tt is the period).

The averaged system of (14) with controls given by (8) lead
to 

q̇
ż1
ż2
ż3

 =


k1k4

mz−mx
Jy

z1z2 + k′z3 + k′′q

−k1z1
−k4z2
q

 (17)



where k′ = −k2 +
zgFB
Jy

and k′′ = −k3 − dq
Jy
.

The linear part from (17) is given by
q̇
ż1
ż2
ż3

 =


0 0 k′′ k′

−k1 0 0 0
0 −k4 0 0
0 0 0 1


︸ ︷︷ ︸

=A


q
z1
z2
z3

 (18)

This permits to apply the Hurwitz’s criterion [7] and deduce
the (ki)i=1,2,3,4 gains. Then (q, z1, z2, z3) tends asymptotically
to zero. Now, the dynamic of u and w in (13) are given by

u̇ = −ku(u− ud)
ẇ = −kw(w − wd)

(19)

The functions ud and wd in (8) are continuous, time-periodic,
differentiable with respect to t, of class C1 on (R2 ×R2 −
{0, 0})×R and homogeneous of degree strictly positive with
respect to the dilation δrλ(ν, η, t) in (3.2).
Thus, adequate parameters ku and kw can be defined such
that the actual velocities u and w track the desired velocities
ud and wd. Consequently, for positive and sufficiently large
values of ku and kw, the origin of (10) is locally asymptotically
stable. Thus (η, ν) = (0, 0) is a locally exponentially stable
equilibrium of (5), with respect to the dilation δrλ(ν, η, t) in
(3.2).

C. Robustness study

To study the robustness problem of the proposed control
input, we consider the additive terms g̃. Note that the distur-
bance terms can be result from modeling errors or uncertainties
parameters. Generally, we do not know g̃, moreover we know
some information like the boundary of the additive term g̃.
Further, we consider a time varying disturbance is vanishing
additive perturbation (g̃(t, 0) = 0). Let us consider

ξ̇ = f(t, ξ) + g(t, ξ) + g̃(t, ξ) (20)

where ξ = (ν, η)T , f , g is defined in the previous section, and
g̃(t, ξ) is continuous function in t and locally Lipshitz in ξ.
Suppose that

‖g̃(t, ξ)‖ ≤ λ‖ξ‖ (21)

for all t ≥ 0 and ξ ∈ Ω (Ω is an open neighborhood
containing the origin) where k is non-negative constant. Using
the converse Lyapunov theorem [7], there exist a continuous
Lyapunov function V (t, ξ) that satisfies

i) c1‖ξ‖2 ≤ V (t, ξ) ≤ c2‖ξ‖2
ii) The derivative of V (t, ξ) along the nominal equation ξ̇ =

f(t, ξ) + g(t, ξ) satisfies

V̇ (t, ξ) =
∂V

∂t
+
∂V

∂ξ
f(t, ξ) +

∂V

∂ξ
g(t, ξ) ≤ −c3‖ξ‖2

iii) ‖∂V∂ξ ‖ ≤ c4‖ξ‖
where c1, c2, c3 and c4 are positives constants. The idea
consist to use V as a candidate Lyapunov function of the

additive perturbed system (20) and the time derivative of V
with respect to system (20)

V̇ (t, ξ) =
∂V

∂t
+
∂V

∂ξ
f(t, ξ) +

∂V

∂ξ
g(t, ξ) +

∂V

∂ξ
g̃(t, ξ)

≤ −c3‖ξ‖2 + ‖∂V
∂ξ
‖‖g̃(t, ξ)‖

≤ −c3‖ξ‖2 + λc4‖ξ‖2

≤ −(c3 − λc4)‖ξ‖2

Then if we choose λ < c3
c4

, the perturbed system is exponen-
tially stable.

IV. ROBUST TRACKING CONTROL

The section is divided into subsection; in the first one, we
will write the error dynamic model that present the difference
between the ROV model and the reference model, and in the
second subsection we will use the backstepping method that
provides a non linear control law that realizes the control
objective.

A. Error dynamics formulation

The aim here is to track the following reference variables:
xr, zr, θr, ur, wr, qr. To this end, we define the following
tracking errors: xe = x− xr, ze = z − zr, θe = θ − θr, ue =
u − u1r, we = w − wr, qe = q − qr and Xe = (xe , ze)

T .
According to (1) and the definition of the tracking errors we
obtain the error dynamics as the kinematic ones:

Ẋe =

(
cθ sθ
−sθ cθ

)
︸ ︷︷ ︸

Rθ

(
ue
we

)
︸ ︷︷ ︸

Ue

+

(
cθ−cθr sθ − sθr
−sθ + sθr cθ − cθr

)
︸ ︷︷ ︸

Rθr

(
ur
wr

)
︸ ︷︷ ︸

Ur

(22)

θ̇e =qe

and the dynamic ones:

mxu̇e =−mz(weqe + wrqe + qrwe + wrqr)− duue
−(FW − FB)s(θe + θr) + τu − u̇r + χu

mzẇe =mx(ueqe + urqe + qrue + urqr)− dwwe
+(FW − FB)c(θe + θr) + τw − ẇr + χw (23)

Jy q̇e =(mz −mx)(uewe + urwe + wrue + urwr)− dqqe
+zgFBs(θe + θr)− q̇r + χq

where χu, χw and χq show the three dimension disturbances,
assumed to be bounded.



B. Control design

The tracking control objective has been converted to a
stabilizing problem given by the system (22)-(23). Thus, we
make the following assumption.

Assumption 4.1: 1) Each of the time-varying terms has a
constant upper bound, for example (0 ≤‖ qr ‖≤ qr,max)

2) The pitch and heave velocity has lower and upper bounds,
‖ q ‖≤ umax and ‖ w ‖≤ wmax.

3) The uncontrolled velocity errors qe has upper bounds.

Proposition 4.2: With the proposed feedback controllers

τu =mx{τu +mz(weqe + wrqe + qrwe + wrqr) + duue

+(FW − FB)s(θe + θr) + u̇r − χu} (24)
τw =mz{τw −mx(ueqe + urqe + qrue + urqr) + dwwe

−(FW − FB)c(θe + θr) + ẇr − χw}

with

τu =− c1u(ue − αu)− c2u(ue − αu)3

+α̇u − xecθ + zesθ (25)

τw =− c1w(we − αw)− c2w(we − αw)3

+α̇q − xesθ − zecθ

where αw and αq will be specified later. Then, we prove that
the proposed control law (24) guaranteed the convergence of
the error tracking in the neighborhood of the origin.

Proof:
step 1) In order to stabilize the vector position (Xe, θe)

T ,
we assume ue, we and qe as virtual controls. We start by
defining the following Lyapunov function candidate:

V1 =
1

2
XT
e Xe +

1

2
θ2e (26)

The time derivative of V1 can be writhen as

V̇1 = XT
e (RθUe +RθrUr) + θeqe (27)

Then, the first part of the desired expressions for the virtual
controls is chosen as

Ue = (αu1, αw1)T = −RTθ KXe, αq = −k′θe (28)

where K = diag(k1+k2, k1+k2) and (k1, k2, k
′) are positives

constants. The time derivative of V1 becomes

V̇1 = −XT
e KXe − k′θ2e +XT

e δ (29)

where δ = [δ1, δ2]T ≡ RθrUr a bounded terms.
step 2) Since the components of the vector (Ue, qe)

T are not
true controls, we need to introduce new error variables $u, $w

and $q defined as:

$ = [$u, $w, $q]
T = [ue − α1u, we − α1w, qe − αq]T

Then, the inertial position (Xe, θe) and the error $q equations
are rewritten as

Ẋe =−KXe +Rθ$ + δ (30)

θ̇e =− k′θe (31)

$̇q =− mx −mz

Jy
(uewe + urwe + wrue + urwr)

+(k′ − dq
Jy

)qe +
zgFB
Jy

s(θe + θr)− q̇r + χq (32)

Before starting, we perform some manipulations on the pitch
error dynamic equations. Then $̇q can be expanded to:

$̇q =− mx −mz

Jy
wue −

mx −mz

Jy
urwe + %q (33)

where

%q =(k′ − dq
Jy

)qe +
zgFB

Jy
s(θe + θr) + urwr − q̇r + χq (34)

We now consider the stabilization of the subsystems that are
controlled by the assumed virtual controls ue and we

$̇q =− mx −mz

Jy
wue −

mx −mz

Jy
urwe + %q (35)

Here, we choose

ue =c1q
Jy

mx −mz
w$q ≡ αu2 (36)

we =c2q
Jy

mx −mz
ur$q ≡ αw2 (37)

where c1q and c2q are positive constants. Then, taking into
account (29) it is

αu =αu1 + αu2 (38)
αw =αw1 + αw2 (39)

So far, the controlled subsystem of the kinematics and the
errors $q is transformed as

Ẋe =−KXe +Rθ$ + δ (40)

θ̇e =− k′θe (41)

$̇q =− c1qw2$q − c2qu2r$q + %q (42)

In order to stabilize the above subsystem,we choose

V2 = V1 +
1

2
$2
q (43)

Taking into account (29), its time derivative becomes

V̇2 =−XT
e KXe − k′θ2e +XT

e δ

−(c1qw
2 + c2qu

2
r)$

2
q + %q$q (44)

step 3) In the following we would force $u and $w to zero,
so we consider the following Lyapunv function:

V3 = V2 +
1

2
$2
u +

1

2
$2
w (45)



The time derivative of V2 can be expressed as:

V̇3 =−XT
e KXe − k′θ2e +XT

e δ

+$u(τu − α̇u + xecθ − zesθ)
+$w(τw − α̇w + xesθ + zecθ)

−(c1qw
2 + c2qu

2
r)$

2
q + %q$q (46)

Using τu and τu given by the proposition, equation (46)
becomes:

V̇3 =−XT
e KXe − k′θ2e − c1u$2

u − c2u$4
u

−c1w$2
w − c2w$4

w − (c1qw
2 + c2qu

2
r)$

2
q

+XT
e δ + %q$q (47)

Note that although V̇3 is not necessarily always negative, this
will be sufficient to achieve practical stability.

Now, the last term with uncertain sign is examined using
a worst case analysis, i.e., considering that all of them are
positive. In the following analysis we use Youngs inequality,
the quantities (εi)i=1,2,3,4, are positive constants. For the first
three of the uncertain terms we have

(k′ − Mq

Jy
)qe$q ≤

1

4ε1
[k′ − Mq

Jy
]2|qe|2 + ε1|$q|2 (48)

−Mqq

Jy
q|q|$q ≤

Mqq

Jy
q2$q ≤

1

4ε2
|$q|2 + ε2

Mqq

Jy

2

|q|4 (49)

(
zgFB
Jy

s(θe + θr) + urwr − q̇r)$q ≤
1

4ε3
|$q|2 + ε3ξ

2 (50)

where we have ξ ≥ | zgFBJy
s(θe + θr) + urwr − q̇r|

χq$q ≤
1

4ε4
|χq|2 + ε4|$q|2 (51)

−XT
e KXe +XT

e δ =− k1x2e − k1z2e − k2(xe −
δ1

2k2
)2

−k2(ze −
δ2

2k2
)2 +

‖ δ ‖2

4k2
(52)

After tedious but straightforward algebraic manipulations
of the various terms in (48)-(52), and taking into account the
above assumptions, we end up with the following form of the
derivative of V3

V̇3 ≤− k1x2e − k1z2e − k2(xe −
δ1
2k2

)2 − k2(ze −
δ2
2k2

)2 − k′θ2e

−c1u$2
u − c2u$4

u − [c1qw
2 + c2qu

2
r − ε1 − ε4 −

1

4ε2
− 1

4ε3
]$2

q

−c1w$2
w − c2w$4

w +
1

4ε1
[k′ − Mq

Jy
]2q2e,max

+ε2
Mqq

Jy

2

q4max + ε3ξ
2 +

δ2max

4k2
+

1

4ε4
|χq|2 (53)

In Eq. (48) the term [c1qw
2 + c2qu

2
r − ε1 − ε4 − 1

4ε2
− 1

4ε3
]

must be positive. Setting ε = ε1+ε4+ 1
4ε2

+ 1
4ε3

> 0, it must be
c1qw

2 + c2qu
2
r > ε, which holds for large and positive c1q, c2q

and small ε.

Choosing the various gains in order for the coefficients of the
states of the error dynamics to be negative we rewrite Eq. (53)
as follows:

V̇3 ≤− k1x2e − k1z2e − k′θ2e − c1u$2
u − c1w$2

w − k3$2
q + µ

(54)

where

• k3 =c1qw
2
max + c2qu

2
r,max − ε (55)

• µ =
1

4ε1
[k′ − Mq

Jy
]2q2e,max + ε2

Mqq

Jy

2

q4max

+ε3ξ
2 +

δ2max

4k
+

1

4ε4
χ2
q (56)

Taking σ = min{k1, k
′
, k3, c1u, c1w}. Then

V̇3 ≤− 2σV3 + µ (57)

By using the comparison lemma [7], the previous equation
leads to:

V3(t) ≤V3(0)e−2σt +
µ

2σ
(58)

Now, if we define

ξ = [xe, ze, θe, $u, $w, $q]
T (59)

then, consideringn equation (45) it is 2V3 = ‖ξ‖2 we conclude

‖ξ(t)‖ ≤‖ξ2(0)‖e−σt +

√
µ

σ
(60)

Eq. (60) means that the states of the error dynamics remain
in a small, bounded set around zero, which can be reduced
using an appropriate combination of the controller gains. At
this result we arrived using (25) along with (20).

V. SIMULATION RESULTS

In this section, we give a numerical simulation to illustrate
our theoretical results. Before starting, we will present the
system parameter values (IS units) used for simulations. The
added masses and hydrodynamic coefficients calculated from
the CAD-geometry are presented in Table I.

TABLE I
RIGID BODY AND HYDRODYNAMIC PARAMETERS OF THE ROV

Parameter Symbol Value
mass (kg) m 10.84

moment of inertia (kg/m2) Iyy 0.216
Added mass in surge Xu̇ -1.0810
Added mass in heave Zẇ -0.3.848
Added inertia in pitch Mq̇ -0.0075

Surge linear drag Xu 2.1613
heave linear drag Zw 2.4674
Surge linear drag Mq 0.053

Surge quadratic drag Xuu 4.4674
heave quadratic drag Zww 5.989
Quadratic pitch drag Mqq 0.1011
Center of gravity G (xG, yG, zG) (0, 0,−0.16)

Center of buoyancy C (xB , yB , zB) (0, 0, 0)



• The feedback laws given by (9) make the origin of (1)-
(2) exponentially stable for small enough values of ε
and large enough values of ku and kw : The control
parameters were chosen as

k1 = k4 = 10, k2 = 2, k3 = ku = kw = 3, ε = 0.01

The initial vector of states of the ROV is taken as:

[u,w, q, θ, x, z]T (0) = [0.3, 0, 0, 0.2, 0.5,−0.5]T

Figure 2 shows the time evolution of the ROV state
variables and we can see that the inertial position converge
in a small neighborhood of zero. The linear and angular
velocities convergence are depicted in figures 3.
Figure 4 sketches the control forces τu, τw needed for
stabilization.
In figures 3, we can see that the inertial position and the
Euler angles converge in a small neighborhood of zero
which can be considered as a practical stability results

Fig. 2. Trajectory of the ROV in the vertical plane

Fig. 3. Sketch of the different states in the vertical plane

Fig. 4. Sketch of Feedback stabilizing controller in the vertical plane

• The reference trajectory in the vertical plane is described
by the following equations

xr = 10 sin(0.3t), zr = 0.3t, θr = 0.1 rad

The initial vector of states of the ROV is taken as:

[u,w, q, θ, x, z]T (0) = [0, 0, 0, 0.1,−1, 1]T

The simulations results were obtained with gain chosen
as: k1 = 0.5, k2 = 0.4, k′ = 0.5, c1u = c2u = 3,
c1w = c2w = 3, c1q = c2q = 1.
In figure 5, the reference and the resulting trajectory
of the CM of the vehicle in the inertial XZ plane
are displayed. The convergence of the errors in linear,
angular velocities and Euler angles are depicted in figure
6. Figure 7 sketches the control forces τu and τw needed
for tracking in the vertical plane.

Fig. 5. Actual and reference trajectory in vertical plane

Fig. 6. Sketch of the different tracking error in the vertical plane

Fig. 7. Feedback tracking controller in the vertical plane



VI. CONCLUSION

In this paper, the design control problem for underactuated
ROV on the vertical plane was addressed. In the first part, We
prove that the presented system in the paper is not stabiliz-
able by continuous pure state feedback law. The exponential
stabilization problem of the origin by means of smooth time-
variant feedback law has been proposed for the kino-dynamic
model. The averaging theory is used to prove the stabilizing
results. Secondly, given a reference trajectory to be followed
by the ROV and using these reference values, the dynamic
of the ROV was transformed to the error one. Backstepping
techniques is used to stabilize the above system and force the
tracking error to a neighborhood about zero that can be made
arbitrarily small. Computer simulations are showed very good
tracking performance and robustness of the proposed method
in the presence of parametric uncertainty or of trajectories that
are described by time-varying velocities.
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