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Abstract

In this paper, we study the conjunction of possibility measures when they are
interpreted as coherent upper probabilities, that is, as upper bounds for some
set of probability measures. We identify conditions under which the minimum
of two possibility measures remains a possibility measure. We provide graphical
way to check these conditions, by means of a zero-sum game formulation of the
problem. This also gives us a nice way to adjust the initial possibility measures
so their minimum is guaranteed to be a possibility measure. Finally, we identify
conditions under which the minimum of two possibility measures is a coherent
upper probability, or in other words, conditions under which the minimum of
two possibility measures is an exact upper bound for the intersection of the
credal sets of those two possibility measures.

Keywords: possibility measure, conjunction, imprecise probability, game
theory, natural extension, coherence

1. Introduction

1.1. Possibility Measures: Why (Not)

Imprecise probability models [36] are useful in situations where there is insuf-
ficient information to identify a single probability distribution. Many different
kinds of imprecise probability models have been studied in the literature [37].
It has been argued that closed convex sets of probability measures, also called
credal sets, provide a unifying framework for many—if not most—of these mod-
els [36, 24].

A downside of using credal sets in their full generality is that they can be
computationally quite demanding, particularly in situations that involve many
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random variables. Therefore, in practice, it is often desirable to work with sim-
pler models whose practicality compensate their limited expressiveness. Pos-
sibility measures [39, 15, 8, 10] are among the simplest of such models, and
present a number of distinct advantages:

• Possibility measures can be easily elicited from experts, either through
linguistic assessments [9] or through lower confidence bounds over nested
sets [29].

• Possibility distributions provide compact and easily interpretable graphi-
cal representations.

• In large models, when exact computations are costly, possibility measures
can be simulated straightforwardly through random sets [1] (for example
to propagate uncertainty through complex models [2]).

• Lower and upper expectations induced by possibility measures can be
computed exactly by Choquet integration [32, Section 7.8].

• When interpreted as sets of probability measures, possibility measures
have a limited number of extreme points [25, 22]. Many inference algo-
rithms, for instance many of those used in graphical models, employ ex-
treme point representations: using possibility measures in such algorithms
will reduce the computational effort required.

An obvious disadvantage of using a family of simpler models is that the fam-
ily may not be rich enough to allow certain standard operations. For instance,
multivariate joint models obtained from possibilistic marginals are usually not
possibility distributions [26], hence outer-approximating possibility measures
have been proposed [33, 13] to allow one to use the practical advantages of such
models.

1.2. Formulation of the problem

In this paper, we focus exclusively on the conjunction of two models, that is,
the intersection of two credal sets. The conjunction is of interest, for instance,
when possibility measures have been elicited from different experts, and we
want to know which probability measures are compatible with the assessments
of all experts simultaneously. As such, the conjunction is a combination rule
that aggregates pieces of information consisting of several inputs to the same
problem.

Many combination rules for imprecise probability models are discussed in
the literature; see for instance [6, 27, 18, 20, 4, 11]. In this paper, we define
the conjunction of two possibility measures as the upper envelope of the set
of probability measures that are compatible (i.e., dominated) by both. The
following questions arise:

• It may happen that there is no probability measure that is compatible
with both possibility measures, in which case the conjunction does not
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exist. In the language of imprecise probability theory, this means that the
conjunction incurs sure loss. When does this happen?

• Even when there is at least one probability measure that is compatible
with both possibility measures, the upper envelope may not be a possibil-
ity measure. In order words, it is not guaranteed that the conjunction on
possibility measures is closed [18]. When is the conjunction of two possi-
bility measures again a possibity measure? If it is not, can we effectively
approximate it by a possibility measure?

• Finally, if the conjunction is a possibility measure, can we express that
possibility measure directly in terms of the two possibility measures that
we are starting from, without going through their credal sets?

We will answer each of the questions above, using the notions of avoiding sure
loss, coherence and natural extensions from the behavioural theory of imprecise
probabilities [36]. The main contributions of this paper are:

• From a theoretical viewpoint, we provide sufficient and necessary condi-
tions for the intersection to be again a credal set that can be represented
by a possibility measure (Theorems 14 and 16).

• From a practical perspective, we derive from these conditions correction
strategies such that the intersection of the corrected models is an outer-
approximating possibility distribution (Lemma 21 and Theorem 22).

Interestingly, some of our results can be proven quite elegantly by means of
standard results from zero-sum game theory. This theory also leads us to an
elegant graphical method to check the conditions and to apply the correction
strategy.

1.3. Related literature

The literature on the conjunction of possibility measures is somewhat scarce.
However, there are quite a few related results that have been proven in the
context of evidence theory, which from a formal point of view includes possibility
theory as a particular case.

The compatibility of two possibility measures, meaning that the intersec-
tion of their associated sets of probabilities is non-empty, was characterised
by Dubois and Prade in [17]. Related work for belief functions was done by
Chateauneuf in [5].

With respect to the conjunction of two possibility measures again being a
possibility measure, a necessary condition is the coherence of the minimum of
these two possibility measures. This coherence was investigated by Zaffalon and
Miranda in [40]. We are not aware of any necessary and sufficient conditions
for the conjunction determining a possibility measures, and the only existing
results are counterexamples showing that this need not be the case: see [17],
and also [5] for the case of belief functions.
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A related problem that has received more attention is the connection between
conjunction operators of possibility theory and the conjunction operators of
evidence theory: for example Dubois and Prade [16] study how Dempster’s
rule relate to possibilistic conjunctive operators, and Destercke and Dubois [12]
relate belief function combinations to the minimum rule of possibility theory.

1.4. Structure of the paper

The paper is organised as follows. Section 2 presents the notation we use
and the problem we propose to tackle, namely the properties of the conjunction
of two possibility measures. We begin in Section 3 by providing conditions for
the intersection of the credal sets associated with two possibility measures to be
non-empty, which means that the conjunction of the possibility measures avoids
sure loss. Then we investigate in which cases this conjunction is a coherent
upper probability, meaning that it is the upper envelope of a credal set (namely,
the intersection of the two credal sets determined by the possibility measures).

As we shall see, the coherence of the conjunction of two possibility measures
does not guarantee it is a possibility measure itself. We deal with this problem
in Section 4, by studying under which conditions the upper probability resulting
from the minimum of two possibility measures is again a possibility measure.
We also provide a graphical way to check these conditions that we also use
to propose some correction strategy, as well as some illustrative and practical
examples.

When this conjunction avoids sure loss but is not coherent, we can always
consider its natural extension, that corresponds to taking the upper envelope
of the intersection of the credal sets, and that is the greatest coherent upper
probability that is dominated by the conjunction of the two possibility measures.
In Section 5, we consider the problem of establishing when this natural extension
is a possibility measure. Section 6 illustrates the usefulness of our results on
a medical diagnosis problem. We conclude the paper in Section 7 with some
additional comments and remarks.

2. Notation

2.1. Upper Probabilities, Conjunction, Possibility Measures

Consider a possibility space X . In this paper, we assume that X is finite.
℘(X ) denotes the power set (set of all subsets) of X . A functionQ : ℘(X )→ [0, 1]
is called a probability measure [21] whenever Q(A ∪ B) = Q(A) + Q(B) for all
A and B ⊆ X such that A ∩ B = ∅, and Q(X ) = 1. The set of all probability
measures is denoted by P.

A function P : ℘(X ) → [0, 1] is called an upper probability [34, 36]. We can
interpret P (A) behaviourally as a subject’s infimum acceptable selling price for
the gamble that pays 1 if A obtains, and 0 otherwise [30, 36]. The credal set M
induced by P is defined as the set of probability measures it dominates,

M := {Q : Q ∈ P ∧ (∀A ⊆ X )(Q(A) ≤ P (A))}. (1)
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We say that P avoids sure loss when its credal set is non-empty. In this case,
the natural extension E of P is defined as the upper envelope of its credal set,
that is

E(A) := max
Q∈M

Q(A) for every A ⊆ X . (2)

An upper probability is called coherent if it coincides with its natural extension,
that is, if P (A) = E(A) for all A ⊆ X . As a consequence, if P avoids sure
loss then its natural extension is the greatest coherent upper probability it
dominates. A coherent upper probability P is always sub-additive: P (A∪B) ≤
P (A) + P (B) for any disjoint subsets A and B of X .

The conjunction [35] of two upper probabilities P 1 and P 2 is defined as

P (A) := min{P 1(A), P 2(A)} for every A ⊆ X . (3)

It embodies the behavioural implications of both P 1 and P 2. Unfortunately,
even if both P 1 and P 2 are coherent, the conjunction P may not be coher-
ent. One can check that the credal set of the conjunction of P 1 and P 2 is the
intersection of the credal sets of P 1 and P 2 [35]:

M =M1 ∩M2. (4)

If M is non-empty, P can be made coherent through its natural extension.
In this paper, we will be interested in coherent upper probabilities of a

very specific form. A function π : X → [0, 1] is called a (normalized) possibility
distribution [39, 15, 8, 19] whenever

max
x∈X

π(x) = 1. (5)

A possibility distribution π induces a possibility measure Π: ℘(X )→ [0, 1] by

Π(A) := max
x∈A

π(x) for every A ⊆ X . (6)

A possibility measure is a coherent upper probability [37, p. 37].

2.2. Conjunction of Two Possibility Measures
Consider two possibility distributions π1 and π2 that induce possibility mea-

sures Π1 and Π2, with associated credal sets M1 and M2. As just mentioned,
the conjunction of these two possibility measures is the upper envelope of
M = M1 ∩ M2, and is denoted by E. Alternatively, E is the most conser-
vative (i.e. pointwise largest) coherent upper prevision which is dominated by
the upper probability P defined by

P (A) := min{Π1(A),Π2(A)} (7)

for all events A ⊆ X . Throughout the entire paper, we will use the symbols π1,
π2, Π1, Π2, M1, M2, M, P , and E, always as defined in this section.

Note that, in general P may not avoid sure loss (in which case the conjunction
does not exist), or may be incoherent (in which case P does not coincide with
E), and even when it is coherent, it may not be a possibility measure itself. In
this paper, we investigate in detail each of these cases, by providing necessary
and sufficient conditions for P to satisfy each of these properties.
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3. Avoiding sure loss and coherence

We begin by investigating under which conditions the upper probability
determined by the conjunction of two possibility measures avoids sure loss or is
coherent. These are the minimal behavioural conditions established by Walley
in [36].

3.1. When does P avoid sure loss?

It is not difficult to show that P does not avoid sure loss in general.

Example 1. Let X = {1, 2} and

1 2
π1 1 0.3
π2 0.5 1

Then any probability measure Q ∈ M1 ∩M2 must satisfy Q({1}) ≤ 0.5 and
Q({2}) ≤ 0.3. This is incompatible with 1 = Q({1, 2}) = Q({1}) +Q({2}), and
therefore M1 ∩M2 = ∅.

The following theorem, proven by Dubois and Prade [17, Lemma 5], gives
a necessary and sufficient condition for the upper probability P to avoid sure
loss:

Theorem 2. [17] P avoids sure loss if and only if for all A ⊆ X

1 ≤ Π1(A) + Π2(Ac). (8)

This result was also established for belief functions by Chateauneuf in [5],
who refers to the non-empty intersection of the credal sets as the compatibility
of their associated imprecise probability models; see also [7]. Other characteri-
sations of avoiding sure loss for the conjunction of possibility measures can be
found in [17, Propositions 6 and 7].

3.2. When is P coherent?

Recall that P is coherent if and only if it coincides with its natural extension
E, that is, if and only if it coincides with the upper envelope of its credal set
M, as in Eq. (2). The conjunction P can be incoherent even if it avoids sure
loss, as the following example shows:

Example 3. Let X = {1, 2, 3} and

1 2 3
π1 1 0.3 0.5
π2 0.5 1 0.7
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Then every probability measure Q ∈ M = M1 ∩ M2 must satisfy Q(A) ≤
P (A) = min{Π1(A),Π2(A)} for all A ⊆ X . In particular,

Q({1}) ≤ 0.5, Q({2}) ≤ 0.3, Q({3}) ≤ 0.5, (9)

Q({1, 2}) ≤ 1, Q({1, 3}) ≤ 0.7, Q({2, 3}) ≤ 0.5. (10)

Since Q({1}) ≤ 0.5 and Q({2}) ≤ 0.3 imply that Q({1, 2}) ≤ 0.8, but on the
other hand P ({1, 2}) = 1, it follows that P is incoherent. Still, P avoids sure
loss becauseM contains the probability measure Q with Q({1}) = 0.5, Q({2}) =
0.3, and Q({3}) = 0.2.

Given a credal setM, the upper envelope of the set of expectation operators
with respect to the elements of M is called a coherent upper prevision. The
conjunction of two coherent upper previsions with respective credal sets M1

and M2 is coherent if and only if M1 ∪M2 is convex [40, Theorem 6]. From
the proof of [40, Theorem 6, (a)⇒(b)⇒(c)], one can easily see that convexity of
M1 ∪M2 is still sufficient (but not necessary) for the conjunction of two upper
probabilities on events to be coherent. This leads immediately to the following
sufficient condition for the coherence of P :

Proposition 4. P is coherent if M1 ∪M2 is convex.

The convexity of M1 ∪ M2 can be checked in polynomial time [3]. The
following example shows that convexity of M1 ∪M2 is not necessary for P to
be coherent. It simultaneously shows that P does not need to be a possibility
measure, even if it is coherent.

Example 5. Let X = {1, 2, 3} and

1 2 3
π1 1 0.5 0.5
π2 0.5 1 0

Then P is the probability measure Q with probability mass function Q({1}) =
Q({2}) = 0.5, Q({3}) = 0. This is not a possibility measure, but it is a coherent
upper probability (because it is trivially the upper envelope of itself).

Also, M1 ∪M2 is not convex. Using vector notation for probability mass
functions, we have that

(0.5, 0.25, 0.25) ∈M1 and (0.25, 0.75, 0) ∈M2 (11)

but their average (0.375, 0.5, 0.125) does not belong to M1 ∪M2, because

Q({2, 3}) = 0.625 > 0.5 = Π1({2, 3}) and Q({3}) = 0.125 > 0 = Π2({3}).
(12)

Indeed, that Q(A) > Πi(A) for some event A implies that Q 6∈ Mi.

Regarding [40, Theorem 6], let P 1 and P 2 denote the upper envelopes of the
sets of expectation operators with respect to the credal setsM1 andM2 in this
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example. Then the conjunction min{P 1, P 2} is not equal to the expectation
operator associated with (0.5, 0.5, 0) = M1 ∩ M2. To see this, consider the
gamble f given by f(1) = 1, f(2) = 2, and f(3) = 3. For this gamble, Q(f) =
1.5 < 2 = min{P 1(f), P 2(f)}.

Next we show that the minimum P of two possibility measures can be a
coherent upper probability that is not even 2-alternating (and thus not a pos-
sibility measure, either). Recall that P is 2-alternating if P (A) + P (B) ≤
P (A ∪B) + P (A ∩B) for any A,B ⊆ X .

Example 6. Let X = {1, 2, 3, 4} and

1 2 3 4
π1 0.3 0.4 0.6 1
π2 0.3 0.6 0.4 1

It can be shown by linear programming that P is coherent. However, it is not
2-alternating: for A = {1, 2} and B = {1, 3}, it holds that

P (A ∪B) + P (A ∩B) = P ({1, 2, 3}) + P ({1}) = 0.6 + 0.3 = 0.9 (13)

> P (A) + P (B) = P ({1, 2}) + P ({1, 3}) = 0.8. (14)

The following result is rather surprising: we can show that the conjunction
P of two possibility measures is 2-alternating when M1 ∪ M2 is convex; it
strengthens Proposition 4.

Proposition 7. P is 2-alternating if M1 ∪M2 is convex.

Proof. By [34, Corollary 6.4], to show that P is 2-alternating, it suffices to
establish that for every A ⊆ B ⊆ X there is a Q ∈ M such that Q(A) = P (A)
and Q(B) = P (B).

Consider A ⊆ B ⊆ X . Because Π1 is a possibility measure and therefore 2-
alternating, there is a Q1 ∈M1 such that Q1(A) = Π1(A) and Q1(B) = Π1(B).
Similarly, there is a Q2 ∈ M2 such that Q2(A) = Π2(A) and Q2(B) = Π2(B).
Now, sinceM1 ∪M2 is convex, it follows from [40, Theorem 6] that there is an
α ∈ [0, 1] such that Q := αQ1 + (1− α)Q2 belongs toM1 ∩M2 =M, and as a
consequence Q is dominated by P :

Q(A) ≤ P (A) Q(B) ≤ P (B). (15)

But, by construction of Q, we also have that that

Q(A) = αQ1(A) + (1− α)Q2(A)

≥ min{Q1(A), Q2(A)} = min{Π1(A),Π2(A)} = P (A) (16)

Q(B) = αQ1(B) + (1− α)Q2(B)

≥ min{Q1(B), Q2(B)} = min{Π1(B),Π2(B)} = P (B). (17)

Concluding, Q(A) = P (A) and Q(B) = P (B), so P is 2-alternating.
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To see that the convexity of M1 ∪ M2 does not guarantee that P is a
possibility measure, consider the following example:

Example 8. Let X = {1, 2} and

1 2
π1 0.5 1
π2 1 0.5

Then P is the probability measure determined by the probability mass function
(0.5, 0.5), which is obviously not a possibility measure. However, M1 is the set
of all probability measures Q for which Q({x1}) ≤ 0.5, and M2 is the set of all
probability measures Q for which Q({x1}) ≥ 0.5, so M1 ∪M2 is the set of all
probability measures on X , which is convex.

From the proof of Proposition 7, we see that the convexity of M1 ∪M2 is
actually a really strong requirement. Specifically, it requires that, for all A ⊆ B,

Π1(A) < Π2(A) =⇒ Π1(B) ≤ Π2(B) (18)

Π1(A) > Π2(A) =⇒ Π1(B) ≥ Π2(B) (19)

Π1(B) < Π2(B) =⇒ Π1(A) ≤ Π2(A) (20)

Π1(B) > Π2(B) =⇒ Π1(A) ≥ Π2(A) (21)

Indeed, if M1 ∪ M2 is convex, following the proof of Proposition 7, taking
Eqs. (16) and (17) and noting that Qi(A) = Πi(A) and Qi(B) = Πi(B), we
know that there is an α ∈ [0, 1] such that

αΠ1(A) + (1− α)Π2(A) = min{Π1(A),Π2(A)} (22)

αΠ1(B) + (1− α)Π2(B) = min{Π1(B),Π2(B)} (23)

So, if Π1(A) < Π2(A), then it must be that α = 1 by the first equality, and
therefore also Π1(B) ≤ Π2(B) by the second equality. The other cases follow
similarly.

These implications give us a simple way to check for typical violations of
convexity of M1 ∪M2, through the following corollary.

Corollary 9. If M1 ∪M2 is convex, then for all subsets A, B, and C of X
such that Π1(A) < Π2(A), Π1(B) > Π2(B), and C ⊇ A ∪ B, we have that
Π1(C) = Π2(C).

In a way, Example 8 is thus showing a very peculiar situation (corresponding
to A = {x1}, B = {x2}, and C = {x1, x2} in Corollary 9).

One of the advantages of possibility measures over other imprecise probabil-
ity models is their computational simplicity, that follows from Eq. (6): possibil-
ity measures are uniquely determined by their restriction to singletons, called
their possibility distributions. Moreover, possibility distributions connect pos-
sibility measures with fuzzy sets [39]. The minimum of two possibility distribu-
tions was defined by Zadeh as one instance of fuzzy set intersection. However,
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the connection between imprecise probabilities and fuzzy sets by means of possi-
bility measures does not hold under the conjunction operator we are considering
in this paper, in the sense that, as we have seen in Example 6, coherent con-
junctions of possibility measures need not be determined by their restrictions
to singletons. One might wonder if these restrictions suffice to characterise the
coherence of P . Clearly, a necessary condition for the coherence of P is that for
every x ∈ X there is some Q ∈M1∩M2 such that Q({x}) = P ({x}). However,
this condition is not sufficient, as the following example shows.

Example 10. Let X = {1, 2, 3} and

1 2 3
π1 0.8 0.2 1
π2 0.2 0.9 1

Then (0, 0, 1) belongs to M1 ∩M2, so P avoids sure loss. However, it is not
coherent because P ({1, 2}) = 0.8 > P ({1}) + P ({2}) = 0.4.

One can easily check that both (0.2, 0.2, 0.6) and (0, 0, 1) are in M1 ∩M2,
and that (0.2, 0.2, 0.6) achieves the upper bound for {1} and {2}, and (0, 0, 1)
achieves the upper bound for {3}. We have thereby shown that P ({x}) =
maxQ∈M1∩M2 Q({x}) for all x ∈ X .

The following graph summarises the implications between conditions estab-
lished in this section:

P possibility

M1 ∪M2 convex P 2-alternating P coherent

∀x ∈ X :
P ({x}) = max

Q∈M
Q({x})

The examples in this section show that the converses of these implications
do not hold in general. To see that there is no implication between the convexity
of M1 ∪M2 and P being a possibility measure, consider Example 8 above as
well as Example 11 later on.

4. When is P a possibility measure?

Next, we are going to study under which conditions the conjunction P of two
possibility measures is again a possibility measure. We shall begin by providing
a simple sufficient (yet not necessary) condition, followed by more advanced
necessary and sufficient conditions. One of them will establish a link with game
theory, along with a corresponding method for graphical verification.

10



4.1. Sufficient conditions

Clearly, P is a possibility measure (and therefore also coherent) when π1(x) ≤
π2(x) for all x ∈ X , or equivalently, when Π1(A) ≤ Π2(A) for all A ∈ X , since
then M(P ) = M1 ∩ M2 = M1. This condition means that the possibility
measure Π1 is more specific [38, 14] than Π2. However, this is not the only case
in which the conjunction of possibility measures is again a possibility measure,
as the following example shows.

Example 11. Let X = {1, 2, 3} and

1 2 3
π1 1 0.5 0.7
π2 1 0.6 0.6

Then

P ({1}) = 1, P ({2}) = 0.5, P ({3}) = 0.6

P ({1, 2}) = 1, P ({1, 3}) = 1, P ({2, 3}) = 0.6.

Thus, P is a possibility measure, even though π1(2) < π2(2) and π1(3) > π2(3).
We can also note that, in this case,M1∪M2 is not convex: Π1({2}) < Π2({2}),
Π1({3}) > Π2({3}), and yet Π1({2, 3}) = 0.7 6= 0.6 = Π2({2, 3}); now use
Corollary 9.

In the example, the possibility distributions π1 and π2 follow the same order,
in the sense that πi(2) ≤ πi(3) ≤ πi(1) for both i = 1 and i = 2. This ordering
condition turns out to be sufficient for the conjunction of the two possibility
measures to be again a possibility measure:

Theorem 12. P is a possibility measure whenever there is an ordering x1, . . . ,
xn of the elements of X such that for both i = 1 and i = 2 we have that

πi(x1) ≤ πi(x2) ≤ · · · ≤ πi(xn). (24)

Proof. Consider A ⊆ X and let j(A) := max{j ∈ {1, . . . , n} : xj ∈ A}. Then,
by Eq. (24), Πi(A) = πi(xj(A)), and so

P (A) = min{Π1(A),Π2(A)} = min{π1(xj(A)), π2(xj(A))} (25)

= P ({xj(A)}) = max
xi∈A

P ({xi}) (26)

where the last equality follows from

P ({x1}) ≤ P ({x2}) ≤ · · · ≤ P ({xn}), (27)

which also follows from Eq. (24). Thus, P is a possibility measure.

Equivalently, this means that P is a possibility measure when π1 and π2
are comonotone functions. To see that this sufficient condition is not necessary,
simply note that it may not hold when π1 ≤ π2:
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Example 13. Let X = {1, 2, 3} and

1 2 3
π1 1 0.9 0.8
π2 1 0.5 0.6

Then Π2 ≤ Π1, so P = min{Π1,Π2} = Π2 is a possibility measure. However,
π1 and π2 are not comonotone because π1(2) > π1(3) and π2(2) < π2(3).

4.2. Sufficient and necessary conditions

Next we give a necessary and sufficient condition for P to be a possibility
measure. It will allow us to make a link with game theory.

Theorem 14. P is a possibility measure Π if and only if

min

{
max
x∈A

π1(x),max
x∈A

π2(x)

}
= max

x∈A
min{π1(x), π2(x)} (28)

for all non-empty A ⊆ X . In such a case, E coincides with P , and whence, E
is a possibility measure as well.

Proof. Note that the left hand side is P (A).
“if”. If the equality holds, then P is a possibility measure, and therefore is

coherent. Whence, E = P , and so E is a possibility measure too.
“only if”. On the one hand, by the definition of P ,

P (A) = min{Π1(A),Π2(A)} = min

{
max
x∈A

π1(x),max
x∈A

π2(x)

}
(29)

On the other hand, if P is a possibility measure, its possibility distribution must
be π(x) = P ({x}) = min{π1(x), π2(x)}, and so,

P (A) = max
x∈A

min{π1(x), π2(x)}.

Combining both equalities, we arrive at the desired equality.

Theorem 14 has a very nice game-theoretic interpretation. Consider a zero-
sum game with two players, where player 1 can choose α from {1, 2} and player
2 can choose β from {1, . . . , n}, with the following payoffs to player 1:

β = 1 . . . β = n
α = 1 a11 . . . a1n
α = 2 a21 . . . a2n

This table with payoffs to player 1 is called the payoff matrix. For example, if
(α, β) = (2, 3), then player 1 gains a23 and player 2 loses a23. A pair (α, β) is
called pure strategy.

A pure strategy (α̂, β̂) is said to be in equilibrium if it does not benefit either
player to change his choice if the other does not change his choice [23, p. 62–64]:

aα̂β̂ = max
α

aαβ̂ = min
β
aα̂β (30)
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Theorem 15. P is a possibility measure Π if and only if for all non-empty
A ⊆ X , the zero-sum game with choices α ∈ {1, 2} and β ∈ A, and payoffs
aαβ := −πα(β), has a pure equilibrium strategy.

Proof. “if”. If the zero-sum game associated with A ⊆ X has a pure equilibrium
strategy (α̂, β̂), then [23, p. 67]

aα̂β̂ = max
α

min
β
aαβ = min

β
max
α

aαβ . (31)

But aαβ := −πα(β), so this is precisely Equation (28).
“only if”. If P is a possibility measure, then Equation (28) can be rewritten

as
max
α

min
β
aαβ = min

β
max
α

aαβ . (32)

This means that the zero-game has a pure equilibrium strategy, for example

α̂ := argmax
α

min
β
aαβ β̂ := argmin

β
aα̂β (33)

Although Theorem 15 is in essence nothing more but a rephrasing of The-
orem 14, it highlights an interesting fact: we can use any method for solving
2 × n zero-sum games in order to determine whether our conjunction P is a
possibility measure.

The traditional way of finding pure equilibrium strategies goes by removing
dominated options from the game, until only a single strategy remains. For
2 × n games, this is a particularly simple process: it suffices first to remove
columns that are not optimal for player 2, and then to check whether, in the
payoff matrix that remains, one of the rows dominates the other. For example,
consider the following 2× 4 game with the following payoff to player 1:

β = 1 β = 2 β = 3 β = 4
α = 1 3 2 2 4
α = 2 0 3 1 0

We can remove the column β = 2 because its payoff is higher than the payoff
of column β = 3 regardless of α—remember that the column player wants to
minimize the payoff. We can also remove the column β = 4 because its payoff is
higher than the payoff of column β = 1 regardless of α. No further columns can
be removed. Now, in the remaining payoff matrix, the row α = 2 can be removed
because its payoff is lower than the payoff of row α = 1—remember that the
row player wants to maximize the payoff. So, the row player will play α = 1. In
the remaining row α = 1, clearly β = 3 achieves the minimum payoff for player
2. This game therefore has a pure equilibrium strategy, namely (α̂, β̂) = (1, 3).

The two sufficient conditions provided in Section 4.1 follow immediately from
Theorem 15. Indeed, let A = {a1, a2, . . . , am} ⊆ X . By Theorem 15, we need
to consider the payoff matrix

13



β = 1 . . . β = k . . . β = m
α = 1 −π1(a1) . . . −π1(ak) . . . −π1(am)
α = 2 −π2(a1) . . . −π2(ak) . . . −π2(am)

• If π1(x) ≤ π2(x) for all x ∈ X , then clearly −π1(x) ≥ −π2(x) for every
x ∈ A, regardless of A. Therefore the first row of the payoff matrix
will dominate the second row. As player 1 aims to maximize his payoff,
α = 1 will achieve his optimal strategy, regardless of what player 2 does.
Consequently, the second row can be eliminated, and the pure equilibrium
is reached for α = 1 and β = argmink∈{1,...,m}{−π1(ak)}.

• If there is an ordering x1, . . . , xn of the elements of X such that πi(xj) ≤
πi(xj+1) for all i ∈ {1, 2} and j ∈ {1, . . . , n − 1} then, without loss
of generality, we may assume that the elements a1, . . . , am of A are
ordered reversely, that is, −πi(ak) ≤ −πi(ak+1) for all i ∈ {1, 2} and
k ∈ {1, . . . ,m − 1}. But then the first column is dominated by all other
columns. As player 2 aims to minimize his payoff, β = 1 will achieve
his optimal strategy, regardless of what player 1 does. Consequently, all
columns other than the first can be eliminated, and the pure equilibrium
strategy is reached for α = argmaxi∈{1,2}{−πi(a1)} and β = 1.

It is important to note that not every 2 × n game has a pure equilibrium.
For example, consider the 2×2 zero-sum game with the following payoff matrix:

β = 1 β = 2
α = 1 1 0
α = 2 0 1

Luce and Raiffa [23, Appendices 3 and 4] discuss two very nice graphical
ways of representing and solving 2 × n zero-sum games. Both methods are
particularly suited also to determine whether there are pure equilibrium points.
Without going into too much detail, their first method makes it easy to identify
whether player 1 has a pure equilibrium strategy, whilst their second method
makes it easy to identify whether player 2 has a pure equilibrium strategy.
Because player 2 must have a pure equilibrium strategy whenever player 1 has
a pure one, the first method is most straightforward for our purpose.

First, we draw all lines fβ(p) := pa1β + (1 − p)a2β , for p ∈ [0, 1] and all
β ∈ A. We then determine the lower envelope fA(p) of these lines:

fA(p) := min
β∈A

fβ(p). (34)

Note that fA will be a concave function. If fA is monotone (i.e. has its maximum
at p = 0 or p = 1), then there is a pure equilibrium point.

A further substantial gain can be made by recognising that the monotonicity
of a concave function fA(p) between p = 0 and p = 1 is uniquely determined by
f ′A(0) and f ′A(1): f is monotone if and only if f ′A(0)f ′A(1) ≥ 0. Because fA(p) is
piece-wise linear, it suffices therefore to look at the left-most line and right-most
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line only: the lower envelope is monotone if and only if these lines are sloped
in the same direction. Consequently, for application to Theorem 15, it suffices
to look at pairs of lines. In fact, it suffices to look at pairs of intersecting lines,
because if the lines do not intersect, then the lower envelope is linear and so
guaranteed to be monotone.

We have thus reached the following rather surprising result, for which we
also give a simple proof that does not rely on zero-sum games:

Theorem 16. P is a possibility measure if and only if

min
i∈{1,2}

(
max
j∈{1,2}

πi(xj)

)
= max
j∈{1,2}

(
min
i∈{1,2}

πi(xj)

)
(35)

for all {x1, x2} ⊆ X . In such a case, E coincides with P , and whence, E is a
possibility measure as well.

Proof. First, note that Eq. (35) is equivalent to saying that

P ({x1, x2}) = max{P ({x1}), P ({x2})} (36)

for every {x1, x2} ⊆ X . We show that this is indeed equivalent to P being a
possibility measure

‘if’. Consider any non-empty A ⊆ X . Let

x1 := argmax
x∈A

π1(x), x2 := argmax
x∈A

π2(x). (37)

Since Π1 and Π2 are possibility measures, it immediately follows that

Π1(A) = Π1({x1}) = Π1({x1, x2}), (38)

Π2(A) = Π2({x2}) = Π2({x1, x2}). (39)

Consequently,

P (A) = min{Π1(A),Π2(A)} (40)

= min{Π1({x1, x2}),Π2({x1, x2})} (41)

= P ({x1, x2}) (42)

and now applying Eq. (35),

= max{P ({x1}), P ({x2}) (43)

≤ max
x∈A

P ({x}) (44)

The converse inequality follows by monotonicity of P—indeed, both Π1 and
Π2 are monotone, so their minimum must be monotone too. Specifically, for
every x ∈ A we have that Π1(A) ≥ π1(x) and Π2(A) ≥ π2(x), so

P (A) = min{Π1(A),Π2(A)} ≥ min{π1(x), π2(x)} = P ({x}) (45)
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and therefore P (A) ≥ maxx∈A P ({x}). Thus, P (A) = maxx∈A P ({x}) and as a
consequence it is a possibility measure.

‘only if’. If P is a possibility measure then P (A) = maxx∈A P ({x}) for
all non-empty A ⊆ X , and in particular also for all A = {x1, x2}. Eq. (36)
follows.

4.3. Examples

The verification of Theorem 15 entails looking at every pair of lines fβ and
fγ , and checking:

• whether fβ and fγ intersect for some 0 < p < 1, that is, whether fβ(p) =
fγ(p) for some 0 < p < 1;

• if so, whether fβ and fγ have the same slope.

If for all intersecting pairs, both lines have the same slope, then the conditions
of Theorem 15 are satisfied, and the conjunction will be a possibility measure.

Let us first provide an example, inspired by Sandri et al. [29], where the
conditions hold.

Example 17. Two economists provide their opinion about the value (X =
{1, . . . , 9}) of a future stock market:

1 2 3 4 5 6 7 8 9
π1 1 0.95 0.95 0.8 0.7 0.2 0.3 0.1 0.05
π2 1 0.8 0.6 0.7 0.6 0.6 0.3 0.4 0.1

which are pictured as fβ for β ∈ {1, . . . , 9} in Figure 1. We actually pictured
−fβ, to make it easier to relate the lines to the possibility distributions. It can
be checked that the conditions required by Theorem 15 hold for every pair. This
means that the merged opinion P of the two economists can be represented as a
possibility distribution. Figure 1 makes verification even easier: there are only
three intersecting pairs, namely (f3, f4), (f6, f7), and (f7, f8), and in each pair,
both lines have the same slope. Consequently, P is a possibility measure induced
by the possibility distribution

1 2 3 4 5 6 7 8 9
π 1 0.8 0.6 0.7 0.6 0.2 0.3 0.1 0.05

When π1 and π2 do not satisfy the conditions of Theorem 15, our graphical
verification technique also allows us to heuristically adjust π1 and π2 into new
possibility distributions that do satisfy the conditions of Theorem 15. The next
example illustrates this heuristic procedure.

Example 18. Two economists provide the following opinions:

1 2 3 4 5 6 7 8
π1 1 0.9 0.7 0.6 0.5 0.4 0.3 0.1
π2 0.8 0.2 1 0.6 0.1 0.2 0.3 0.9
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Figure 1: Example 17 game-theoretic figure.

The left hand side of Figure 2 depicts our graphical method. Many pairs of
intersecting lines have opposite slopes, for instance (f8, f2). Therefore, the con-
ditions of Theorem 15 are not satisfied. Interestingly, there is no x ∈ X such
that π1(x) = π2(x) = 1—this is a necessary condition for P to be a possibility
measure; see proof of Lemma 21(c) further on.

A possible adjustment that allows to satisfy the conditions of Theorem 15,
can be done for example by modifying f1, f2 and f8, so that f1 and f2 become
positively slopped, and so that f8 no longer intersects with f5—of course, conser-
vative adjustments should only be done by moving lines upwards. The right hand
side of Figure 2 shows the adjusted lines dashed. They result in the following
adjusted possibility distributions:

1 2 3 4 5 6 7 8
π′1 1 0.9 0.7 0.6 0.5 0.4 0.3 0.5
π′2 1 0.9 1 0.6 0.1 0.2 0.3 0.9

The resulting adjusted conjunction is:

1 2 3 4 5 6 7 8
π′ 1 0.9 0.7 0.6 0.1 0.2 0.3 0.5

It is clear that any upward adjustment implies a loss of information. In
general, there is no unique adjustment minimizing this loss. In any case, upward
adjustment ensures that the obtained result will be consistent with the initial
information, as it will give an outer approximation.

If there is an element x such that π1(x) = π2(x) = 1, then adjustments can
also be done downwards, in which case the obtained approximation would be
an inner approximation.

17



π1

0

1

π2

0

1
1

2
3

4

5
6

7

8

p
p = 1 p = 0

π′1

0

1

π′2

0

1
1′

2′

3

4

5
6

7

8′

p
p = 1 p = 0

Figure 2: Example 18 game-theoretic figure and adjustment (in dashed).

5. When is E a possibility measure?

The above condition for P to be a possibility measure is obviously sufficient
for E to be a possibility measure. However, the condition is not necessary, as
shown by the next example:

Example 19. Let

1 2 3
π1 1 1 0
π2 1 0 1

The credal set of the conjunction is the singletonM = {Q} for which Q({1}) = 1
(and zero elsewhere), because this is the only probability measure that satisfies
Q({x}) ≤ P ({x}) for all x. Whence, the natural extension E of P is obviously
a possibility measure.

Nevertheless, P is not a possibility measure. Indeed,

min
i∈{1,2}

(
max
j∈{2,3}

πi(j)

)
= max
j∈{2,3}

(
min
i∈{1,2}

πi(j)

)
(46)

as the left hand side is one, and the right hand side is zero. This is because P
is not a coherent upper probability, since P ({2, 3}) = 1 > P ({2}) + P ({3}).

Indeed, when P is coherent then it coincides with E, and therefore in that
case E is a possibility measure if and only if P is. Below, we state a number
of necessary conditions for E to be a possibility measure. So far, we failed to
identify a condition that is both sufficient and necessary.
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Lemma 20. If E is a possibility measure Π, then there is an x ∈ X such that
π(x) = π1(x) = π2(x) = 1.

Proof. If E is a possibility measure, then E({x}) = π(x) = 1 for at least one
x ∈ X . For any such x,

1 = E({x}) ≤ min{π1(x), π2(x)}, (47)

whence, it can only be that π1(x) = π2(x) = 1 for such x.

Of course, if E is a possibility measure and P is not coherent, then E and
P will not coincide on all events. We shall show next that they are always
guaranteed to coincide on the singletons. In order to see this, note that if P is
a possibility measure, then its possibility distribution is given by

π(x) := min{π1(x), π2(x)} = P ({x}). (48)

We denote the possibility measure determined by this distribution by

Π(A) := max
x∈A

π(x). (49)

We can establish the following.

Lemma 21. The following statements hold.

(a) P ≥ Π.

(b) Π is normed if and only if there is an x ∈ X such that P ({x}) = 1. In
that case, P avoids sure loss and P ≥ E ≥ Π.

(c) P is a possibility measure if and only if P = Π.

(d) E is a possibility measure if and only if E = Π.

Proof. (a) Consider any A ⊆ X . Observe that, for any x ∈ A,

max
x′∈A

π1(x′) ≥ π1(x) ≥ π(x), (50)

max
x′∈A

π2(x′) ≥ π2(x) ≥ π(x). (51)

Whence,

P (A) = min

{
max
x′∈A

π1(x′),max
x′∈A

π2(x′)

}
≥ π(x) (52)

for all x ∈ A. We immediately arrive at the desired inequality.

(b) Π is normed if and only if there is some x ∈ X such that π(x) = P ({x}) =
1. In that case, the degenerate probability measure on x belongs toM1 ∩
M2, and as a consequence P avoids sure loss. Moreover, Π is then a
coherent upper probability that is dominated by P , whence Π must also
be dominated by the natural extension E of P , because E is the point-wise
largest coherent upper probability that is dominated by P [36, 3.1.2(e)].
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(c) If P is a possibility measure, then P ({x}) = 1 for some x ∈ X . Conse-
quently, by (b)

P (A) ≥ E(A) ≥ Π(A) for all A ⊆ X . (53)

Because P ({x}) = min{π1(x), π2(x)} = Π({x}) for all x ∈ X , it follows
that also

P ({x}) = E({x}) = Π({x}) for all x ∈ X . (54)

Because both P and Π are possibility measures, they are uniquely de-
termined by their restriction to singletons, and therefore P = Π. The
converse implication is trivial.

(d) Similarly, if E is a possibility measure, then E({x}) = 1 for some x ∈ X .
Because P ≥ E, it can only be that also P ({x}) = 1 for that same x.
Consequently, by (b), Eq. (53) must hold here as well. Again, because
P ({x}) = min{π1(x), π2(x)} = Π({x}) for all x ∈ X , it follows that
Eq. (54) holds here too. Because both E and Π are possibility measures,
they are uniquely determined by their restriction to singletons, and there-
fore E = Π. (Note that P does not always coincide with Π in this case
because P may not be a possibility measure; see Example 19.) Again, the
converse implication is trivial.

To see that Π need not be normed for P to avoid sure loss (or even to be
coherent), it suffices to consider Example 5. However, for P to be a possibility
measure, Π need to be normed, as we can deduce from Lemma 21(c).

Lemma 21(a) also indicates that taking the minimum between two possibility
distributions π1 and π2, which is the most conservative conjunctive operator in
possibility theory, will always provide an inner approximation of P when P is not
a possibility measure. In a way, our heuristic method for adjusting possibility
distributions to ensure that the conjunction is a possibility measure provides
an even more conservative conjunctive operator, which in addition also ensures
coherence unlike the plain minimum operator.

The next result shows that Example 19 hinges on π1 and π2 not being strictly
positive.

Theorem 22. Let π1 and π2 be two strictly positive possibility distributions.
Then E is a possibility measure if and only if P is a possibility measure.

Proof. ‘if’. If P is a possibility measure, then P is coherent, and therefore
coincides with its natural extension. So, E will be a possibility measure as well.

‘only if’. If E is a possibility measure then, by Lemma 21(d), E = Π, with
π and Π defined as in Eqs. (48) and (49). In particular, there is some x∗ ∈ X
such that E({x∗}) = P ({x∗}) = π1(x∗) = π2(x∗) = 1.

Assume ex-absurdo that P is not a possibility measure. By Theorem 16,
there must be {x1, x2} ⊆ X such that

min
i∈{1,2}

(
max
j∈{1,2}

πi(xj)

)
6= max
j∈{1,2}

(
min
i∈{1,2}

πi(xj)

)
(55)
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This inequality can only hold if the matrix[
π1(x1) π1(x2)
π2(x1) π2(x2)

]
(56)

has neither dominating rows nor dominating columns, or in other words, we
must have either

π1(x1) < π1(x2)
∧ ∨

π2(x1) > π2(x2)
or

π1(x1) > π1(x2)
∨ ∧

π2(x1) < π2(x2)
(57)

Without loss of generality, we can assume that the first situation holds, as we
can always swap x1 and x2. From these strict inequalities, it follows that

max{π1(x1), π2(x2)} = max
j∈{1,2}

(
min
i∈{1,2}

πi(xj)

)
= max{E({x1}), E({x2})},

(58)

where last equality follows from Lemma 21(d). So, if we can show that

E({x1, x2}) > max{π1(x1), π2(x2)}, (59)

then we have established a contradiction. By Eqs. (1) and (2), it suffices to
show that there is a Q ≤ P such that

Q({x1, x2}) > max{π1(x1), π2(x2)}. (60)

Now, a probability measureQ which is zero everywhere except on {x1, x2, x∗}
satisfies Q ≤ P if and only if all of the following inequalities are satisfied:

Q({x1}) ≤ π1(x1) (61)

Q({x2}) ≤ π2(x2) (62)

Q({x1}) +Q({x2}) ≤ min{π1(x2), π2(x1)} (63)

Indeed, consider any A ⊆ X .

(a) If A ∩ {x1, x2, x∗} = ∅ then Q(A) = 0, and no constraints are required.

(b) If x∗ ∈ A ∩ {x1, x2, x∗} then P (A) = 1, and no constraints are required.

(c) If A∩{x1, x2, x∗} = {x1} then Q(A) = Q({x1}). Clearly, Q({x1}) ≤ P (A)
for all such A if and only if

Q({x1}) ≤ P ({x1}) = min{π1(x1), π2(x1)} = π1(x1). (64)

This is precisely Eq. (61).

(d) If A∩{x1, x2, x∗} = {x2} then Q(A) = Q({x2}). Clearly, Q({x2}) ≤ P (A)
for all such A if and only if

Q({x2}) ≤ P ({x2}) = min{π1(x2), π2(x2)} = π2(x2). (65)

This is precisely Eq. (62).
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(e) If A∩{x1, x2, x∗} = {x1, x2} then we obtain Q(A) = Q({x1, x2}). Clearly,
Q({x1, x2}) ≤ P (A) for all such A if and only if

Q({x1, x2}) ≤ P ({x1, x2}) = min{Π1({x1, x2}),Π2({x1, x2})} (66)

= min{π1(x2), π2(x1)} (67)

where the last equality follows from Eq. (57) (left case). This is precisely
Eq. (63).

So, we are done if we can construct a probability measure Q on {x1, x2, x∗}
which simultaneously satisfies Eqs. (60), (61), (62), and (63).

Also note that we always have x∗ 6= x1 and x∗ 6= x2 (and obviously also
x1 6= x2), because Eq. (57) (left case) implies that π1(x1) < 1 and π2(x2) < 1,
so {x1, x2, x∗} always contains exactly three elements.

We consider two cases.
1. If π1(x1) + π2(x2) ≤ min{π1(x2), π2(x1)}, then the probability measure

Q with

Q({x1}) := π1(x1), Q({x2}) := π2(x2), Q({x∗}) := 1− (π1(x1) + π2(x2))
(68)

clearly satisfies Eqs. (61), (62), and (63). We also have that

Q({x1, x2}) = Q({x1}) +Q({x2}) = π1(x1) + π2(x2) > max{π1(x1), π2(x2)}
(69)

because both π1(x1) and π2(x2) are strictly positive by assumption, so Eq. (60)
is satisfied as well, finishing the proof for this case.

2. If π1(x1) + π2(x2) > min{π1(x2), π2(x1)}, then the probability measure
Q with

Q({x1}) = π1(x1), (70)

Q({x2}) = min{π1(x2), π2(x1)} − π1(x1), (71)

Q({x∗}) = 1− (min{π1(x2), π2(x1)}) (72)

clearly satisfies Eqs. (61), (62), and (63). We also have that

Q({x1, x2}) = min{π1(x2), π2(x1)} > max{π1(x1), π2(x2)} (73)

where the strict inequality follows from Eq. (57) (left case), so Eq. (60) is sat-
isfied as well, finishing the proof for this case.

6. Exampe: a simple medical diagnosis problem

To conclude this paper, we illustrate our results on a medical diagnosis
problem, inspired by Palacios et al. [28].

Consider X = {d, h, n} where d, h, and n stand for dyslexic, hyperactive
and no problem, respectively. As is explained by Palacios et al. [28], it may
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be difficult for physicians to recognize between dyslexia and hyperactivity of
children, yet it is important to provide reliable information.

Let us now assume that the available information is expressed by means of
possibility distributions: these may be the result of a classification process [28]
or of an elicitation procedure. We wish to provide a joint summary of these
distributions which is still representable as a possibility distribution, for instance
because we want to use it in methods tailored for possibility distributions, or
because it is easier to present possibility distributions to physicians.

Example 23. Two physicians provide the following possibility distributions:

d h n
π1 1 0.5 0.2
π2 1 0.3 0.4

The two physicians actually agree that dyslexia is quite possible, but they are
not in agreement on the possibility of the other two options.

The conjunction P := min{Π1,Π2} avoids sure loss: for example, the proba-
bility measure Q with Q({d}) = 1 is dominated by P . It can be verified that P is
coherent. Interestingly, the condition of Proposition 4 is not satisfied: no con-
vex combination of the probability measures determined by the mass functions
(0.5, 0.3, 0.2) ∈M1 and (0.6, 0, 0.4) ∈M2 belongs to M1 ∪M2.

The natural extension E of P , which is the upper envelope of the credal set
M1 ∩M2, coincides with P in this example, because P happens to be coherent:

E({d}) = 1 E({h}) = 0.3 E({n}) = 0.2 (74)

E({h, n}) = 0.4 E({d, h}) = E({d, n}) = E({d, h, n}) = 1. (75)

However, E is not a possibility measure because

E({h, n}) = 0.4 > max{E({h}, E({n})} = 0.3. (76)

The graphical procedure summarized at the beginning of Section 4.3 suggests
a possible correction of π2 for the conjunction to become a possibility measure:

d h n
π′2 1 0.4 0.4

By Theorem 12, the conjunction of π1 and π′2 is then a possibility measure with
possibility distribution

d h n
π 1 0.4 0.2

which is still quite informative.
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7. Conclusions

In this paper, we have characterized in different ways the conjunction of two
possibility measures. In particular, we have addressed the following questions:

1. When does the conjunction avoid sure loss?

2. When is the conjunction coherent?

3. When is the conjunction again a possibility measure?

4. When is the natural extension of the conjunction again a possibility mea-
sure?

For each of these, we have provided both sufficient and necessary conditions.
We demonstrated through many examples that these conditions remain quite
restrictive; this seems to be the price to pay for working with possibility distri-
butions.

From a practical point, one result that we find particularly interesting is the
game-theoretic characterization of the conditions under which the conjunction
is again a possibility measure. Indeed, this characterization offers a very simple
and convenient graphical verification method. It can also be used in practice
to heuristically adjust possibility distributions to ensure that their conjunction
remains a possibility distribution.

It is not too difficult to extend some of our results to the conjunction of more
than two possibility measures, by noting that the conjunction can be taken in a
pairwise sequential manner. Note nevertheless that these pairwise conjunctions
being possibility measures is sufficient, but not necessary, for the conjunction of
all the possibility measures to be a possibility measure. For some other results,
such as Theorem 16, some adjustments should be made.

As for future lines of research, we would like to point out a few. It would
be interesting to study under what conditions possibility measures are closed
under other combination rules, such as those discussed in [17, 27, 31]. We
could also study if the results can be extended to infinite possibility spaces;
although clearly the game-theoretic interpretation may prove problematic in
this respect. Finally, many other imprecise probability models, such as belief
functions, probability boxes, and so on, might benefit from similar studies.
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