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EXTREME POINTS OF THE CREDAL SETS GENERATED BY
COMPARATIVE PROBABILITIES

ENRIQUE MIRANDA AND SEBASTIEN DESTERCKE

ABSTRACT. When using convex probability sets (or, equivalently, lower
previsions) as uncertainty models, identifying extreme points can help
simplifying various computations or the use of some algorithms. In gen-
eral, sets induced by specific models such as possibility distributions, lin-
ear vacuous mixtures or 2-monotone measures may have extreme points
easier to compute than generic convex sets. In this paper, we study ex-
treme points of another specific model: comparative probability order-
ings between the singletons of a finite space. We characterise these ex-
treme points by mean of a graphical representation of the comparative
model, and use them to study the properties of the lower probability in-
duced by this set. By doing so, we show that 2-monotone capacities are
not informative enough to handle this type of comparisons without a loss
of information. In addition, we connect comparative probabilities with
other uncertainty models, such as imprecise probability masses.

Keywords: Comparative probabilities, credal sets, 2-monotone ca-
pacities, belief functions, extreme points, imprecise probability masses.

1. INTRODUCTION

In the last decades, there has been a growing interest in imprecise prob-
ability models as alternative models to probability in situations where the
available information is vague or scarce. This type of models include for
instance possibility measures [Dubois and Prade , 1988], belief functions
[Shafer , 1976], 2- and n-monotone capacities [Choquet , 1953, Denneberg
, 1994] and probability boxes [Destercke et al. , 2008, Ferson et al. , 2003].
All the examples above can be seen as particular cases of coherent lower
and upper previsions [Walley , 1991].

The adequacy of each of these models for a particular problem depends,
among other things, on the interpretation we are giving to our uncertainty.
In this paper, we consider a robust Bayesian interpretation [Berger , 1994,
Good , 1962]: we assume the existence of a precise, but unknown, probabil-
ity model, and work with the set of probability measures that are compatible
with the available information. This gives rise to a credal set, as considered
by Levi [1980].
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2 E. MIRANDA AND S. DESTERCKE

Here, we consider the case where the information is expressed by means
of a comparative probability model [de Finetti , 1931, Koopman , 1940a,b]:
we consider a finite possibility space X and assume that we are given
judgements of the type “the probability of A is at least as great as that of B”.
Comparative probabilities have been deemed of particular interest within
the context of subjective probability theory [Fine , 1973, 1979, Fishburn ,
1986, Suppes , 1974, Walley and Fine , 1979]; we also refer to [Capotorti
and Formisano , 2008, Christian et al. , 2007, Nehring , 2009] for some
recent work and to Walley [1991, Section 4.5] for a study from the point
of view of coherent lower previsions. One of their advantages is that they
seem well suited for modelling qualitative judgements (e.g., expert opin-
ions). Moreover, they have been shown to be more general than classifi-
catory probabilities [Walley and Fine , 1979], and they can also be used to
compare random quantities [Cohen , 1991].

In spite of this, there are only few works dealing with the numerical and
practical aspects of comparative probabilities [Regoli , 1996]. One reason
for this is that it is not easy to summarize the set of probabilities associated
with the comparative assessments, for instance by means of a lower and
an upper probability, and this renders it difficult to handle the information
about the probability of the events of interest. In this paper, we solve this
problem for the specific case of comparisons between the probabilities of
singletons. We do so by characterizing the comparative probability mod-
els by means of the extreme points of their associated sets of probabilities.
Characterizing such extreme points is instrumental in a number of appli-
cations of imprecise probabilities, including inferences for graphical [Cano
and Moral , 2000] and statistical models [Walley , 1991, Sec. 8.5], and
also to compute bounds of some functionals such as entropy [Abellán and
Moral , 2005]. It is a problem that has been studied for other types of
imprecise probability models, such as 2-monotone capacities [Chateauneuf
and Jaffray , 1989], possibility measures [Miranda et al. , 2003], probability
intervals [de Campos et al. , 1994] and belief functions [Dempster , 1967];
however, as we shall detail later, there is only one partial result for the case
we shall consider in this paper [Gulordava , 2010].

After giving some preliminary results in Section 2, we show in Section 3
that, when the comparison judgements are made on the probabilities of the
singletons, a graphical representation of these judgements makes it easy
to derive the extreme points of the associated credal sets. In Section 4,
we use this result to discuss some practical aspects of these models: we
establish tight lower and upper bounds of the number of extreme points;
investigate their relationship with other imprecise probability models; pro-
vide algorithms for the extraction of these extreme points; and discuss the
computation of conditional lower probabilities and the merging of multiple
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comparison judgments. Some additional remarks related to the practical use
of these models and their extensions are provided in Section 5.

2. PRELIMINARIES

Consider a finite space X = {x1, . . . ,xn}, modelling the set of outcomes
of some experiment. In this paper, we assume that our information about
these outcomes can be modelled by means of comparative probability or-
derings of the states, i.e., statements of the type “the probability of xi is
at least as great as that of x j”. Hence, we shall represent the available in-
formation by means of a subset L of {1, . . . ,n}×{1, . . . ,n} modelling the
(pre)order relation between the states.

The set of probability measures compatible with this information is given
by

(1) P(L ) = {P ∈ PX : ∀(i, j) ∈L ,P(xi)≥ P(x j)},

where PX denotes the set of all probability measures on X . This set is
called the natural extension of the ordering by Walley [1991, Section 4.5.1].
This can be equivalently stated by saying that we consider a preorder �
between the singletons and we want to characterise the set of probability
measures P that agree with this order, in the sense that

xi � x j⇒ P(xi)≥ P(x j).

For the purposes of this paper, it shall be useful to represent these assess-
ments by means of a graph G = (X ,L ) where the nodes are the elements
of X and we draw an edge between xi and x j when (i, j) ∈L .

Example 1. Consider the space X = {x1, . . . ,x5} and the assessments

L = {(1,3),(1,4),(2,5),(4,5)}.

The acyclic graph G associated with L is given by Figure 1.

x1

x3 x4

x2

x5

FIGURE 1. Graph G of Example 1.�
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Note that the credal set P(L ) determined by Eq. (1) is always non-
empty, because it includes for instance the uniform probability distribution.
Further, the set P(L ) coincides with the set P(C (L )) determined by
the transitive closure C (L ) of L , as the additional constraints of C (L )
are redundant with those of L : since any model in P(L ) (a probability
measure) is transitive, so should be the relationship � associated with L .

It is interesting to compare P(L ) with the set

P̃(L ) = {P ∈ PX : ∀(i, j) ∈L ,P(xi)> P(x j)},

i.e., with the credal set associated with strict probability comparisons, which
also appear sometimes in the literature [Fishburn , 1986]. Since P(L ) is
a convex polytope in Rn, it follows from basic convex analysis that P(L )

corresponds to the closure of P̃(L ) when the latter set is non-empty, and
this non-emptiness is easy to characterise.

Lemma 1. P̃(L ) 6= /0 if and only if its associated graph G̃ is acyclic.

Proof. “Only if”: G̃ cyclic means that there are at least two indices i, j such
that P(xi)> P(x j) and P(xi)< P(x j), leading to an inconsistency.

“If”: if G̃ is acyclic, then it can be associated with a preorder over the
probability masses P(xi). We can then take a linear extension of this pre-
order and associate it with a permutation σ of {1, . . . ,n} such that

P(xσ(1))< P(xσ(2))< .. . < P(xσ(n));

then, it is easy to see that there exists a probability satisfying all these con-
straints: we may for instance consider the probability measure associated
with the probability mass P(xσ(i)) = 1/n− (n− i)ε for i = 1, . . . ,n− 1 and
P(xσ(n)) = 1/n+ ε + . . .+(n−1)ε with ε ∈ (0, 1

n2 ). �

Indeed, a cyclic graph G̃ is incompatible with the irreflexive property
that strict comparative assessments must satisfy. Nevertheless, in this paper
we shall focus on non-strict comparative assessments, and for those the
associated graph G may possess cycles, as we shall discuss later.

Note also that we can straightforwardly connect our current model with
the axiomatic view of comparative probabilities [de Finetti , 1931]. From
L , we can obtain a probability ordering � over subsets of X such that
A � B whenever P(A) ≥ P(B) for all P ∈P(L ). Using [Walley , 1991,
Sec. 4.5.3.], this probability ordering satisfies a number of properties, in
particular all axioms required by de Finetti [1931] except for the one of
completeness. Hence, while we focus in this paper on the numerical aspects
associated with specific comparative probabilities, we are completely in-
line with the axiomatic view.



CREDAL SETS AND COMPARATIVE PROBABILITIES 5

3. EXTREME POINTS OF P(L )

In this section, we characterise the extreme points of the credal set P(L )
associated with a number of probability comparisons on the singletons.
Consider a finite space X = {x1, . . . ,xn} and a subset L of {1, . . . ,n}×
{1, . . . ,n}, and let P(L ) be the set it determines by means of Eq. (1).
Any of the probability measures in P(L ) is completely determined by
its probability mass, and as a consequence it can be seen as an element
of the n-dimensional Euclidean space (more specifically of the n− 1 unit
simplex). Then, P(L ) is a closed convex subset of Rn in the Euclidean
topology, which is equal to the closed convex hull of its set of extreme
points. That is, we can characterize the set of functions P : X → [0,1] such
that (i, j) ∈ L ⇒ P(xi) ≥ P(x j) and ∑x∈X P(x) = 1 by means of its ex-
treme points1. Recall that P is an extreme point of P(L ) when for every
P1,P2 ∈P(L ) and every α ∈ (0,1),

P = αP1 +(1−α)P2 ⇐⇒ P1 = P2 = P,

that is, when P cannot be expressed as the convex combination of two other
points of P(L ). We shall determine these extreme points by means of the
graphical representation we have established in Section 2. In order to do
this, we consider a number of lemmas:

Lemma 2. Any extreme point P of P(L ) corresponds to a uniform prob-
ability measure concentrated over some subset A⊆X .

Proof. The (linear) constraints determining P(L ) are:

C = {P(xi)≥ P(x j) ∀(i, j) ∈L }
B = {0≤ P(x)≤ 1 ∀x ∈X }
S = { ∑

x∈X
P(x) = 1}

Also recall that, in order to determine an extreme point P of P(L ), its
probability mass must saturate n = |X | linearly independent constraints
delimiting P(L ) [Bertsimas and Tsitsiklis , 1997, Section 2.2.], that is,
constraints in C ∪B∪S . Clearly, S is always saturated.

Now, let us show that in order to saturate n constraints, a probability
measure P ∈P(L ) must be uniform on some subset A ⊆X . Without
loss of generality, assume that there are ` elements P(x1), . . . ,P(x`) that are

1In this respect, the problem under study is somewhat related to that in random utility
representations, where a partial rank among the alternatives is established and the goal is
to infer from it the probability of each alternative being optimal. See Fishburn [1989],
Koopen [1995] and Marschak [1960] for some works in this field.
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non-null. This means that, unless `= 1, none of them saturates a constraint
in B. The result then follows taking into account that:

• as the n− ` probabilities P(x`+1), . . . ,P(xn) are zero, they saturate
n−` inequalities in B (that are, by definition, linearly independent,
as they bear on disjoint singletons);
• saturating inequalities in C can only be done by equating some

probabilities P(xi) = P(x j);
• any set of m equal probabilities will saturate at most m−1 linearly

independent inequalities in C , forming the chain

P(x1) = . . .= P(xm).

Note that, even if two null probabilities also saturate constraints in C , they
will only saturate linearly dependent constraints, because the restrictions
P(xi)−P(x j)≥ 0,P(xi)≥ 0 and P(x j)≥ 0 are linearly dependent: P(xi)−
P(x j) = 1 ·P(xi)+(−1) ·P(x j). Therefore we can omit those constraints in
C that are saturated by null probabilities. This means that, if the ` non-null
probabilities are not all equal, they saturate k < `− 1 linearly independent
inequalities in C ; hence, in that case the total number of linearly indepen-
dent inequalities in C ∪B∪S that are saturated is

k+n− `+1 < `−1+n− `+1 = n.

Therefore, a probability measure P that is not uniform on some subset A⊆
X cannot be an extreme point. �

For every subset A of X , we shall denote by PA the uniform probability
measure on A, which is determined by the values

(2) PA(xi) =

{
1
|A| if xi ∈ A

0 otherwise

for any i ∈ {1, . . . ,n}. Using the graph G , we can now characterize those
subsets A ⊆ X for which PA is an extreme point of P(L ). For every
x j ∈ X , we shall denote by H(x j) the set of ancestors of x j, i.e., those
nodes xi such that there is a directed path going from xi to x j in G . By an
abuse of notation, we shall also consider that x j is an ancestor of itself, i.e.,
we shall assume that x j ∈H(x j) for all j. Finally, for every A⊆X , we shall
denote H(A) := ∪x∈AH(x). Using the terminology from Cozman [2000],
we shall refer to H(A) as the top subnetwork of G generated by A. Our
next result shows that we can restrict our attention to uniform probability
measures on top subnetworks.

Lemma 3. If A 6= H(A), then PA is not an extreme point of P(L ).
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Proof. If A is a proper subset of H(A), then we can find xi,x j ∈X such
that (i, j) ∈L and xi ∈ H(A)\A, x j ∈ A. Since (i, j) ∈L , this means that
we have made the assessment P(xi) ≥ P(x j). On the other hand, given the
uniform probability distribution PA, it follows from Eq. (2) that

PA(xi) = 0 < PA(x j) =
1
|A|

.

Hence, PA does not belong to P(L ) and as a consequence it cannot be an
extreme point. �

Example 2. Consider Example 1 and the set A = {x2,x4}. As H(A) =
{x1,x2,x4} 6= A, the probability measure associated with the probability
mass P(x2) = P(x4) = 1/2 is not an extreme point. �

In order to simplify the notation, we shall consider the set

H := { /0 6= B⊆X : B = H(A) for some A}.
Lemma 3 implies that we can focus on the elements of H in order to iden-
tify the extreme points. Our next result shows that not all of those sets will
give rise to an extreme point of P(L ).

Lemma 4. Consider a set B ∈H . If there are B1,B2 ∈H such that B1∩
B2 = /0 and B1∪B2 = B, then PB is not an extreme point on P(L ).

Proof. First of all, let us show that for every B ∈H , PB belongs to P(L ).
Consider any (i, j) ∈L . There are two possibilities: if x j ∈ B, then since
B is a top subnetwork also xi belongs to B, whence PB(xi) = PB(x j) =

1
|B| .

On the other hand, if x j /∈ B, then PB(x j) = 0 ≤ PB(xi), and therefore the
constraint is also satisfied.

Now, if B is the disjoint union of B1 and B2, we can deduce from Eq. (2)
that

PB =
|B1|
|B|

PB1 +
|B2|
|B|

PB2;

since |B1|+ |B2|= |B|, we deduce that PB is a convex mixture of two differ-
ent probabilities in P(L ), and as a consequence it cannot be an extreme
point. �

Example 3. Consider Example 1 and the set B = {x1,x2,x4}. Then given
the sets B1 = {x1,x4}, B2 = {x2}, it holds that B,B1,B2 ∈H , B1∩B2 = /0
and B1 ∪B2 = B. From this we can derive that PB = 2/3PB1 + 1/3PB2 and
therefore it is not an extreme point of P(L ). �

The top subnetwork associated with B ∈H is not weakly connected2

if and only if we can decompose it in the manner depicted in Lemma 4,

2By weakly connected we mean that for every two nodes in the graph associated with
B there is an undirected path between them.
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by considering its weakly connected components (i.e., the maximal weakly
connected subsets). Thus, we can restrict our attention to weakly connected
top subnetworks of G . This leads to the main result in this section, where
we establish that any of these sets determines an extreme point of P(L ):

Theorem 1. The set of extreme points coincides with the set of probabilities
PB generated by sets B ∈H that cannot be decomposed as in Lemma 4.

Proof. From Lemmas 2 and 4 any extreme point of P(L ) corresponds
to a uniform distribution PB, where B ∈H cannot be decomposed as the
disjoint union of other elements of H . Let us prove that, conversely, given
a set B of this type the probability measure PB it determines is indeed an
extreme point.

Assume ex absurdo that this is not the case for some set B. This means
that there are m ≥ 2, B1, . . . ,Bm ∈H and α1, . . . ,αm > 0 s.t. ∑

m
i=1 αi = 1

and

(3) PB = α1PB1 + . . .+αmPBm.

It must be Bi ⊆ B for all i = 1, . . . ,m: otherwise, there would be some
node x j such that PBi(x j)> 0 = PB(x j), a contradiction with (3). We deduce
also that Bi must be a proper subset of B for all i = 1, . . . ,m, or we would
obtain that PB and PBi coincide.

Denote C = B\Bi. Then H(C)⊆ B, whence

B = Bi∪C ⊆ Bi∪H(C)⊆ B

and therefore B = Bi ∪H(C). Since H(C) ∈H , we deduce that it must
be H(C)∩Bi 6= /0, since otherwise B would be the disjoint union of two
elements of H , a contradiction with the assumptions we have made on B.
Therefore, there is some xk ∈C such that H(xk)∩Bi 6= /0. Given x j ∈ Bi∩
H(xk), we have that ( j,k) ∈ C (L ), and x j ∈ Bi,xk /∈ Bi. As a consequence,

PBi(x j)> PBi(xk) = 0,

whence
m

∑
`=1

α`(PB`
(x j)−PB`

(xk))> 0 = PB(x j)−PB(xk),

taking into account that PB`
(x j)−PB`

(xk)≥ 0 for every `= 1, . . . ,m because
PB`

belongs to P(L ). This is a contradiction. Hence, Eq. (3) does not hold
and therefore PB is an extreme point. �

Remark 1. An interesting related result has been established by Gulordava
[2010], in the context of credal classification. There, it is considered the

credal set determined by the comparisons of the probabilities of the states,
and it is computed the lower probability of the set A of elements with no
predecessor in G . In order to determine this lower probability, she provides
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results analogous to our Lemmas 2 and 3, and then in [Gulordava , 2010,
Theorem B.2.2] she establishes which elements in P(L ) attain the lower
probability of A.

Our previous result subsumes these results, in the sense that we give the
explicit form of the extreme points (from which we may determine also the
lower probability of any other set, as well as the lower prevision induced
by a comparative probability model). Note moreover that we have shown
that not all the uniform probability distributions PH(A) determine an extreme
point of P(L ). �

Example 4. The extreme points generated by Example 1 are summarized in
Table 1:

p
B x1 x2 x3 x4 x5
{x1} 1 0 0 0 0
{x2} 0 1 0 0 0
{x1,x3} 1/2 0 1/2 0 0
{x1,x4} 1/2 0 0 1/2 0

{x1,x2,x4,x5} 1/4 1/4 0 1/4 1/4

{x1,x3,x4} 1/3 0 1/3 1/3 0
{x1,x2,x3,x4,x5} 1/5 1/5 1/5 1/5 1/5

TABLE 1. Extreme points of Example 1. �

To conclude this section, we discuss briefly a couple of ways in which
the procedure above may be simplified. On the one hand, when the graph G
is not weakly connected, we can decompose it as a union of its weakly con-
nected components G1, . . . ,Gk. Each of these components Gi will be a graph
on the elements of a respective subset Xi of X , and the sets {X1, . . . ,Xk}
will form a partition of X . Then we can characterise the extreme points
associated with Gi in the form given by Theorem 1, and extend them from
Xi to X by assigning zero mass to the elements of X \Xi. The extreme
points associated with G will be the union of the sets of extreme points
obtained in this way. This is formalised in the following result:

Proposition 2. Let Pi ⊆ PXi be the set of extreme points associated with
the graph Gi by means of Theorem 1. Then the extreme points of P(L ) are
given by

∪k
i=1{exti(Pi) : Pi ∈Pi},
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where exti(Pi) is the element of PX given by

(4) exti(Pi)(x j) =

{
Pi(x j) if x j ∈Xi

0 otherwise.

Proof. It suffices to note that a subset of G can only be weakly connected
when it is included in one of the weakly connected components Gi. Then,
the set of weakly connected top subnetworks of G is given by the union
of the weakly connected top subnetworks of G1, . . . ,Gk. Each of these sub-
networks determines a probability measure in one of X1, . . . ,Xk that is in a
one-to-one correspondence with a probability measure on X , in the manner
depicted in Eq. (4). �

On the other hand, we can also assume without loss of generality that the
graph G associated with our set of assessments L is acyclic. When this is
not the case, we have some assumptions of equality P(xi) = P(x j) between
the probabilities of two elements xi,x j in our possibility space.

If we define the equivalence relationship

(5) xiRx j ⇐⇒ P(xi) = P(x j) ∀P ∈P(L ),

then we can consider a representative xi for each equivalence class, so that
we end up with a subset X

′
of X . If we denote ni = |[xi]R| the number

of elements in the equivalence class associated with xi, then it holds that
∑xi∈X ′ ni = n = |X |. Let

(6) L
′
:= {(i, j) ∈ C (L ) : xi,x j ∈X

′
},

be the set of comparative probability assessments on this subset of X , and
let G

′
be its associated (acyclic) graph.

Proposition 3. There is a one-to-one correspondence between the extreme
points of P(L ) and of P(L ′).

Proof. First of all, note that for any C⊆X whose associated graph is a top
subnetwork of G , it holds that C = ∪xi∈C[xi]R.

For any B⊆X
′
, we can define

exp(B) = ∪xi∈B[xi]R ⊆X .

Then the graph associated with a set B ⊆X
′

is a weakly connected top-
subnetwork of G

′
if and only if the graph associated with exp(B)⊆X is a

weakly connected top-subnetwork of G . Conversely, if C ⊆X determines
a weakly connected top subnetwork in G , then B := C∩X

′
determines a

weakly connected top subnetwork in G
′
, and moreover exp(B) =C.
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This shows that there is a one-to-one correspondence between the weakly
connected top subnetworks of G and those of G

′
, and as a consequence

between the extreme points of P(L ) and those of P(L ′). �

The following example illustrates this procedure:

Example 5. Consider the space X = {x1,x2,x3,x4}, and the assessments

L = {(1,2),(2,3),(2,1),(3,4)}.

x1

x3

x4

x2

G

x1

x3

x4

G
′

FIGURE 2. Graphs associated with L and L
′

We see that the associated graph (Figure 2) has a cycle between x1 and x2.
Hence, we can consider the alternative graph G

′
related to the space X

′
=

{x1,x3,x4} and the assessments L
′
= {(1,3),(3,4),(1,4)} determined by

Eq. (6) (note that the assessment (1,4) is actually redundant).
It follows from Theorem 1 that the extreme points of P(L

′
) are given

by Table 2:

p
B x1 x3 x4
{x1} 1 0 0
{x1,x3} 1/2 1/2 0
{x1,x3,x4} 1/3 1/3 1/3

TABLE 2. Extreme points of P(L
′
)
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and from this we deduce the extreme points of P(L ) given by Table 3.

p
exp(B) x1 x2 x3 x4
{x1,x2} 1/2 1/2 0 0
{x1,x2,x3} 1/3 1/3 1/3 0
{x1,x2,x3,x4} 1/4 1/4 1/4 1/4

TABLE 3. Extreme points of P(L )

Note that all these extreme points correspond again to uniform probabil-
ity distributions. �

Remark 2. The comments above imply that for every xi ∈X its associated
top subnetwork Bi = H({xi})∈H determines an extreme point of P(L ):
if it was the disjoint union of two top subnetworks C1,C2 then at least one
of them should include xi, and as a consequence also Bi, a contradiction.
When G is acyclic, all these top subnetworks are different. �

Remark 3. When G is weakly connected and acyclic, any top subnetwork
B ∈H associated with an extreme point in the manner detailed in The-
orem 1 is in correspondence with a set A of strongly disconnected3 but
weakly connected nodes in G , by means of the equality B = H(A): this
set is given by the nodes in B that have no successor in B, i.e., the leaves in
the associated sub-graph. That this set is non-empty follows from the fact
that G is acyclic, and then it is trivial that H(A) = B. To see that any ex-
treme point is associated with only one set of strongly disconnected nodes,
note that it is impossible for two distinct sets of strongly disconnected nodes
A,A′ to satisfy H(A) = H(A′) (and thus determine the same extreme point):
if xi ∈ A\A′, then since xi ∈H(A) = H(A′) there must be some x j ∈ A′ such
that xi ∈ H(x j); but x j ∈ H(A′) = H(A) implies that there is some xk ∈ A
such that x j ∈H(xk). Note that it cannot be xk = xi, because then we would
obtain that xi ∈ H(x j) and x j ∈ H(xi), meaning that there is a cycle involv-
ing xi,x j, a contradiction. On the other hand, if xi 6= x j then we obtain
that xi ∈ H(xk), which contradicts the assumption that the nodes in A are
strongly disconnected.

On the other hand, when G is a weakly connected and acyclic graph, there
is a one-to-one correspondence between sets of strongly disconnected nodes
and the antichains of the partial order induced by L , not counting /0 as an
antichain. This means that the number of antichains of G is an upper bound

3Two nodes in the graph are strongly disconnected if there is no directed path between
them.



CREDAL SETS AND COMPARATIVE PROBABILITIES 13

of the number of extreme points of P(L ). Note however, that not all sets
of strongly disconnected nodes give rise to an extreme point, because it is
also necessary that the associated top subnetwork is non-decomposable, as
we have established in Lemma 4. �

4. PRACTICAL ASPECTS

In this section, we explore various practical aspects (number and extrac-
tion of extreme points, n-monotonicity properties, conditioning, merging of
information) of comparative probability models on singletons.

4.1. Number of extreme points. Since extreme points correspond to uni-
form distributions over certain subsets A⊆X , we immediately see that an
upper bound of the number of extreme points is 2|X |−1. Note that this is
significantly lower than the maximal number of extreme points generated
by lower coherent probabilities, known to be |X |! [Wallner , 2007]. We
next show that this number of extreme points can be reduced even further:

Theorem 4. The maximal number of extreme points of P(L ) is 2(|X |−1).

Proof. Consider first of all the case where the graph G is weakly connected
and acyclic.

Remark 3 tells us that the number of extreme points of P(L ) corre-
sponding to a weakly connected and acyclic graph G is bounded above by
its number of antichains. Therefore, determining the maximal number of
antichains of G provides an upper bound on the number of extreme points.
Dilworth’s Theorem [Dilworth , 1950] tells us that for a finite partially or-
dered set whose maximal antichain has cardinality a, there exists a mini-
mum number a of disjoint chains of elements partitioning the set X . Every
antichain contains at most one element of these disjoint chains, and assum-
ing they have c1, . . . ,ca elements, the number of antichains (excluding the
empty set) is at most

(7) (c1 +1)(c2 +1) . . .(ca +1)−1

Taking this idea into account, we can also bound the number of antichains
by the number above as soon as there is a partition of ` disjoint chains
(even if ` may be different from a) of elements partitioning the set X , with
respective cardinalities c1, . . . ,c`. We shall use this to prove that the number
of antichains is bounded by 2|X |−1.

In this respect, we shall use that for every natural number k ≥ 3 it holds
that k+ 1 ≤ 2k−1, and for k = 1,2 it holds that k+ 1 ≤ 2k. There are two
possibilities:
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(a) Assume first of all that there is a partition of X made up of chains
of respective lengths c1, . . . ,c`, and that c j ≥ 3 for j = 1, . . . , i. Then
by Eq. (7) the maximal number of antichains is bounded by

(c1 +1)(c2 +1) . . .(c`+1)≤ 2∑
i
j=1 c j−1 ·2∑

`
j=i+1 c j ≤ 2(∑

`
j=1 c j)−1 = 2|X |−1,

taking into account that i≥ 1.
(b) If there is no chain with length greater than or equal to 3, then it is

possible to find a partition of X made up of chains of respective
lengths c1, . . . ,c`, and such that c j = 2 for j = 1, . . . , i and c j = 1 for
j = i+1, . . . , `. Note that it must be i≥ 1 because we are assuming
that the graph G is connected.

Eq. (7) gives us the upper bound 3i ·2|X |−2i−1 for the number of
antichains. However, since G is connected, given j ∈ {i+1, . . . , `}
the node in c j must be a successor of at least one of the top elements
of c1, . . . ,ci. Hence given any non-empty subset of {ci+1, . . . ,c`},
there is at least one selection of nodes in {c1, . . . ,ci} for which the
combination does not produce an antichain. This allows us to reduce
the number of antichains by 2|X |−2i− 1, meaning that the upper
bound can be refined into

3i ·2|X |−2i−1− (2|X |−2i−1) = (3i−1)2|X |−2i ≤ 2|X |−1,

taking into account that 3i−1≤ 22i−1 for any natural number i≥ 1.
To see that the bound given by the theorem above can indeed be reached,

consider the case where a single modal value is provided4, that is, of L =
{(1, j) : j = 2, . . . , |X |}. Figure 3 illustrates the situation for five elements.
In this case, the extreme points are obtained by the top subnetwork in-
duced by x1 and all non-empty subsets of {x2, . . . ,x|X |} (whose number
is 2|X |−1−1); that is there are 2|X |−1 extreme points.

x1

x2 x3 x4 x5

FIGURE 3. Graph G for x1 =modal value

Next, if G is weakly connected but has cycles, we consider the equiv-
alence relationship in Eq. (5), and let X ′ be a subset of X obtained by
considering one element from each equivalence class. If we let L ′ be
given by Eq. (6), then there is a one-to-one correspondence between the

4This is an instance of a naive tree.



CREDAL SETS AND COMPARATIVE PROBABILITIES 15

extreme points of P(L ) and those of P(L ′). Applying the first part of
the proof, we conclude that the number of extreme points is bounded by
2|X

′|−1 ≤ 2|X |−1.
Finally, if the graph G is not weakly connected, we can express it as the

union of its weakly connected components G1, . . . ,Gk, which determine a
partition {X1, . . . ,Xk}. The number of extreme points of P(L ) is equal
to the sum of the number of extreme points of P(Li) for i= 1, . . . ,k, where
P(Li) is the set of probability measures associated with Gi. Applying the
previous part, this number is bounded by

2|X1|−1 + · · ·+2|Xk|−1 ≤ 2∑
k
i=1 |Xi|−1 = 2|X |−1,

taking into account that the function f (x) = 2x is subadditive. �

Interestingly, the bound given in Theorem 4 is the same as the number of
extreme points of the set of probability measures dominated by a possibility
measure, as shown by Miranda et al. [2003, Section 5], and it is smaller
than the one (|X |!) for the number of extreme points associated with be-
lief functions [Dempster , 1967]. Our intuition for this is that possibility
measures also determine an order between the singletons, by means of their
associated possibility distributions.

On the other hand, the number of extreme points can be much lower. To
see this, consider the equivalence relationship given by Eq. (5), and let X ′

be a subset of X obtained by considering one element from each equivalent
class. The ideas in Remark 2 lead easily to the following result:

Proposition 5. The minimum number of extreme points of P(L ) is |X ′|.

Proof. Let L ′ be given by Eq. (6). Then we have seen that there is a one-
to-one correspondence between the extreme points of P(L ) and those of
P(L ′). On the other hand, by Remark 2 every xi ∈X ′ determines a dif-
ferent extreme point of P(L ′) by means of the top subnetwork it generates
in the graph G ′. Thus, there are at least |X ′| extreme points for any L . �

Two typical examples where this minimal number of extreme points is
reached is the case where L = /0, in which case the extreme points are
all Dirac measures, and the case where L forms a complete ordering of
singletons {x1, . . . ,xn} (treated by Kofler [1989, P. 26] and Walley [1991,
P. 195]).

Remark 4. In particular it follows from our results that if we consider a
comparative probability ordering between the singletons, the only case in
which the set P(L ) has only one element is when

{(1,2),(2,3), . . . ,(n−1,n),(n,1)} ⊆ C (L ),
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that is, when all the elements x1, . . . ,xn of X are believed to be equally
likely. In that case, the only agreeing probability measure is the uniform
one, given by P(x1) = P(x2) = · · ·= P(xn) =

1
n .

In any other case, there is not a unique probability compatible with the
assessments; in other words, a comparative probability model on the sin-
gletons is not complete, in the sense of de Finetti [1931] and Scott [1964],
unless the associated graph has a cycle involving all the nodes. �

4.2. Extraction Algorithm. Using the results of Section 3, we can pro-
pose a pseudo-algorithm to extract extreme points from a weakly-connected
acyclic graph G , summarised in Algorithm 1. It uses the fact that non-
decomposable top subnetworks are in correspondence with sets of strongly
disconnected nodes, as we have explained in Remark 3. Graphs with cycles
or that are not weakly connected can be handled by considering equivalence
classes or weakly-connected sub-graphs, as explained in Section 3 (Proposi-
tions 2 and 3). Finding such weakly connected components is a well-known
and easily solvable problem [Hopcroft and Tarjan , 1973].

Algorithm 1: Extreme point search
Input: Set L of comparisons inducing a weakly-connected acyclic

graph G
Output: Extreme points of P(L )

1 List← /0;
2 for i = 1, . . . ,n do
3 Build extreme points corresponding to H(xi);
4 List←{xi};
5 Candidate set← List ;
6 for i = 2, . . . ,n do
7 List← /0 ;
8 foreach set B in Candidate set do
9 for i = 1, . . . ,n do

10 if xi is strongly disconnected from the elements B and
H(B∪{xi}) corresponds to a new extreme point then

11 Add PH(B∪{xi}) to extreme points ;
12 List← B∪{xi} ;

13 Candidate set← List ;

Implementing Algorithm 1 mainly requires being able, for a given set B,
to check whether elements of B are strongly disconnected and to compute
H(B). An instrumental tool to do this is the matrix M corresponding to the
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transitive closure C (L ) ⊆ {1, . . . ,n}×{1, . . . ,n} of L , with M(i, j) = 1
iff (i, j) ∈ C (L ). M can be efficiently computed by applying Warshall’s
algorithm [Warshall , 1962] to the matrix L given by L(i, j) = 1 iff (i, j) ∈
L .

Once this is done, checking whether two elements xi,x j are strongly dis-
connected can be done in linear time. Checking that B is made of strongly
disconnected elements is equivalent to check whether all pairs of elements
xi,x j ∈ B are strongly disconnected, hence at most in quadratic time. As
H(B) = ∪x∈BH(x), computing H(B) is also linear. This means that the
complexity of the loop going from Line 10 to 13 in Algorithm 1 is qua-
dratic.

Algorithm 1 also tries to minimize the number of sets of nodes to check
by reducing the search to top subnetworks generated by sets of strongly
disconnected nodes, rather than making a naive search among all subsets
B ⊆X . However, the algorithm would still have to check, at worst, an
exponential number of sets. An interesting study would be to compare Al-
gorithm 1, which takes advantage of the particular structure of the model,
with classical vertex enumeration techniques [Avis and Fukuda , 1992] also
known to be polynomial for a fixed number of vertices.

4.3. n-monotonicity. Next, we investigate in more detail the set of prob-
abilities P(L ) from the point of view of the theory of coherent lower
previsions developed by Walley [1991]. Since the set P(L ) is a closed
convex set of probabilities, its lower envelope P on events, given by

(8) P(A) = min{P(A) : P ∈P(L )} ∀A⊆X

is a coherent lower probability. As such, it can be given a behavioural
interpretation in terms of acceptable betting rates.

Coherent lower probabilities include as particular cases most of the im-
precise probability models that we can find in the literature, such as 2-
monotone capacities, belief functions, or necessity measures; see Walley
[2000] for more details. In particular, a coherent lower probability is 2-

monotone when for any A,B⊆X we have

(9) P(A∪B)+P(A∩B)≥ P(A)+P(B).

It is called n-monotone when for any A1, . . . ,An ⊆X we have that

P(∪n
i=1Ai)≥ ∑

/0 6=I⊆{1,...,n}
(−1)|I|+1P(∩i∈IAi),

and if it is n-monotone for every n, then it is called a belief function [Shafer
, 1976], and it is determined by a Möbius inverse m : 2X → [0,1] by means
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of the formula

(10) P(A) = ∑
B⊆A

m(B) ∀A⊆X .

The mapping m is such that m( /0) = 0 and ∑E⊆X m(E) = 1, and it can
be seen as a probability mass defined over subsets. The sets B for which
m(B) > 0 are called the focal elements of the belief function P; when they
are nested, the belief function is minimum-preserving (i.e., it satisfies P(A∩
B) = min{P(A),P(B)} for every pair of subsets A,B), and it is called a
necessity measure.

Belief functions have been shown of interest in the context of evidential
reasoning, and also in connection with random sets [Dempster , 1967]. On
the other hand, 2-monotone capacities are also called convex functions or
Choquet capacities of order 2 [Choquet , 1953, Denneberg , 1994]. When
|X | ≤ 3, it was showed by Walley [1981] that a coherent lower probability
on 2X is always 2-monotone but not necessarily 3-monotone.

Interestingly, the particular coherent lower probabilities induced by a
comparative probability model on the singletons are always belief functions
(i.e., n-monotone for every n) when |X |= 3:

Proposition 6. If |X | = 3, then the lower probability induced by a com-
parative probability ordering on the singletons by means of (8) is a belief
function.

Proof. First of all, if the graph G associated with L is weakly connected
and acyclic, there are three possibilities (except for permutations of the
states):

• L = {(1,2),(2,3)}. From Theorem 1, we deduce that the extreme
points of P(L ) are determined by the set of probability masses
{(1,0,0),(0.5,0.5,0),(1

3 ,
1
3 ,

1
3)}. Then the lower probability associ-

ated with this credal set is the belief function with Möbius inverse

m({x1}) =
1
3
= m({x1,x2}), m({x1,x3}) =

1
6
= m({x1,x2,x3}).

• L = {(1,2),(1,3)}. Again by Theorem 1, the extreme points of
P(L ) are associated with the probability masses{

(1,0,0),(0.5,0.5,0),(0.5,0,0.5),(
1
3
,
1
3
,
1
3
)

}
.

Then the lower probability associated with this credal set is the be-
lief function with Möbius inverse

m({x1}) =
1
3
= m({x1,x2,x3}), m({x1,x2}) =

1
6
= m({x1,x3}).
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• L = {(1,3),(2,3)}. By Theorem 1, the extreme points of P(L )
are associated with the probability masses{

(1,0,0),(0,1,0),(
1
3
,
1
3
,
1
3
)

}
.

Then the lower probability associated with this credal set is the be-
lief function with Möbius inverse

m({x1,x2}) =
2
3
, m({x1,x2,x3}) =

1
3
.

On the other hand, if the graph G is acyclic but is not connected, there are
two possible scenarios (again, except for permutations of the states):

• L = /0. Then the extreme points of P(L ) are associated with the
probability masses

{(1,0,0),(0,1,0),(0,0,1)} .
The lower probability associated with this credal set is the belief
function with Möbius inverse

m({x1,x2,x3}) = 1.

• L = {(1,2)}. Then the extreme points of P(L ) are associated
with the probability masses

{(1,0,0),(0.5,0.5,0),(0,0,1)} .
Then the lower probability associated with this credal set is the be-
lief function with Möbius inverse

m({x1,x3}) = 0.5,m({x1,x2,x3}) = 0.5.

Finally, when the graph has cycles, there can be four possible cases:
• L = {(1,2),(2,3),(3,1)}. Then there is only one compatible prob-

ability measure (that is in particular a belief function): the one de-
termined by P(x1) = P(x2) = P(x3) =

1
3 .

• L = {(1,2),(2,1)}. In that case the extreme points of P(L ) are
associated with the probability masses

{(0.5,0.5,0),(0,0,1)} .
Then the lower probability associated with this credal set is the be-
lief function with Möbius inverse

m({x1,x3}) = m({x2,x3}) = 0.5.

• L = {(1,2),(2,1),(2,3)}. Then the extreme points of P(L ) are
associated with the probability masses{

(0.5,0.5,0),(
1
3
,
1
3
,
1
3
)

}
.
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Then the lower probability associated with this credal set is the be-
lief function with Möbius inverse

m({x1}) = m({x2}) =
1
3
,m({x1,x3}) = m({x2,x3}) =

1
6
.

• L = {(1,2),(2,1),(3,2)}. Then the extreme points of P(L ) are
associated with the probability masses{

(0,0,1),(
1
3
,
1
3
,
1
3
)

}
.

Then the lower probability associated with this credal set is the be-
lief function with Möbius inverse

m({x3}) =
1
3
,m({x1,x3}) = m({x2,x3}) =

1
3
. �

Note that the lower probability determined by (8) need not be a necessity
measure: as we can see in the proof of Proposition 6, in not all cases the
focal elements of the belief function are nested.

Next we show that Proposition 6 does not extend to the case when |X | ≥
4, because the coherent lower probabilities induced by comparative proba-
bility models need not even be 2-monotone.

Example 6. Consider the space X = {x1,x2,x3,x4} and the assessments
L ′ = {(1,2),(1,3),(2,4),(3,4)} represented by Figure 4.

x1

x2

x4

x3

FIGURE 4. Graph G of Example 6

From Theorem 1, the extreme points of P(L ) are the probability mea-
sures determined by the probability masses{

(
1
4
,
1
4
,
1
4
,
1
4
),(

1
2
,
1
2
,0,0),(

1
2
,0,

1
2
,0),(

1
3
,
1
3
,
1
3
,0),(1,0,0,0)

}
;

as a consequence, if we consider the events A = {x1,x3} and B = {x1,x4},
we see that

P(A∪B)+P(A∩B) = 1/2+ 1/4 < P(A)+P(B) = 1/2+ 1/3.

Hence, P violates the 2-monotonicity condition. �
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This implies that belief functions, which are in particular 2-monotone,
are not expressive enough to represent comparative probability models.

On the other hand, from a convex set of probability measures we can also
determine lower and upper expectation functionals. Similarly to Eq. (8), the
real-valued functional P given by

(11) P( f ) = min{P( f ) : P ∈P(L )}

for any function f : X → R is called a coherent lower prevision. Here,
we are also using P to denote the expectation functional associated with the
probability measure P, given by P( f ) = ∑x∈X f (x)p(x).

Coherent lower previsions can also be given a behavioural interpreta-
tion, in terms of acceptable buying prices. Within that context, the coherent
lower prevision P defined above corresponds to the natural extension of the
assessment that the functions {Ixi − Ix j : (i, j) ∈ L } are almost-desirable;
see Walley [1991, Section 3.7] for more details on the correspondence with
desirability.

Interestingly, although a coherent lower prevision always determines a
unique coherent lower probability (its restriction to events), a coherent lower
probability may have more than one extension to a coherent lower prevision,
and in this sense the latter can be seen as a more expressive model. This
is the reason why lower previsions are often preferred to lower probabili-
ties. Next, we investigate in more detail the properties of the coherent lower
previsions induced by a comparative probability model.

Similarly to Eq. (9), a coherent lower prevision is called 2-monotone
when for any f ,g : X → R,

P( f ∨g)+P( f ∧g)≥ P( f )+P(g),

where ∨ denotes the point-wise maximum and ∧ denotes the point-wise
minimum. 2-monotone lower previsions have been studied in detail by
de Cooman et al. [2008] and Walley [1981]. In particular, it was es-
tablished by de Cooman et al. [2008, Theorem 15] that the property of
2-monotonicity is equivalent to comonotone additivity, which means that

P( f +g) = P( f )+P(g) ∀ f ,g comonotone,

and where f and g are said to be comonotone when for every xi,x j ∈X it
holds that

( f (xi)− f (x j))(g(xi)−g(x j))≥ 0.

2-monotone lower previsions are interesting, because, unlike general coher-
ent lower previsions, they can be calculated as the Choquet integral with re-
spect to the lower probability that is their restriction to events (hence easing
computations). However, we can prove that if |X | ≥ 3 the coherent lower
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prevision associated with a comparative probability is not 2-monotone ex-
cept for trivial cases:

Theorem 7. Consider a space X with |X | ≥ 3, and let L be a number of
probability comparisons on the elements of X . Let P be the coherent lower
prevision determined by (11). Then:

P 2-monotone ⇔ either (i)L = /0 or (ii) (i, j) ∈ C (L ) ∀i, j ∈ {1, . . . ,n}.

Proof. First of all, if L = /0, then the lower prevision it induces is the vac-
uous one, given by P( f ) = min f for every gamble f , which is 2-monotone.
On the other hand, if (i, j) ∈ C (L ) for every i, j ∈ {1, . . . ,n} then the only
element of P(L ) is the uniform probability distribution, associated with
the probability mass p(x1) = p(x2) = · · · = p(xn) =

1
n , which is also 2-

monotone.
Let us show that in any other case P is not 2-monotone. Assume ex-

absurdo that it is. Then by de Cooman et al. [2008] it corresponds to
the Choquet integral with respect to its restriction to events, which is a 2-
monotone lower probability. Let Q denote this lower probability. Given
(i, j) in the non-empty set L , it should be

0≤ P(Ixi− Ix j) = (C)
∫

Ixi− Ix jdQ

= 1Q({xi})+1Q(X \{x j})−1 = Q({xi})−Q({x j}),

where Q is the upper probability that is conjugate to Q, and corresponds to
the upper envelope of the set P(L ).

Now, it follows from Theorem 1 that

Q({xi}) = min{PB({xi}) : B non-decomposable top subnetwork}.

This means in particular that Q({xi}) ∈ {0, 1
j : j ∈ 1, ..., |X |}. As a con-

sequence, if there is a top subnetwork B that does not include xi, neither
does any of the non-decomposable top subnetworks it includes, and we ob-
tain that Q({xi}) = PB({xi}) = 0. In particular, this happens when G is not
weakly connected: then given xk in a different weakly connected compo-
nent of G than xi, we have that Q({xi})≤ PH(xk)({xi}) = 0.

On the other hand, if G is weakly connected and xi belongs to all the non-
decomposable top subnetworks, then Q({xi}) = 1

|B| , where B is the largest
non-decomposable top subnetwork. This is given by X : it is obviously a
top subnetwork (generated by itself) and it is non-decomposable because
we are assuming that the graph G is weakly connected. Thus, in that case
Q({xi}) = PX ({xi}) = 1

n .
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P(x1)

P(x2) P(x3)

FIGURE 5. Remark 5 illustration for L = {(3,1),(2,1)}

We conclude that

Q({xi}) =

{
1
n if (i,k) ∈ C (L ) ∀k ∈ {1, . . . ,n}
0 otherwise.

Similarly, Q({x j}) = PH(x j)({x j}) = 1
|H(x j)| ≥

1
n , and from this we deduce

that a necessary condition for the 2-monotonicity of P is that

(12) (i, j) ∈L ⇒ (i,k),(k, j) ∈ C (L ) ∀k ∈ {1, . . . ,n},
taking into account that we should have H(x j) = X and that xi is a prede-
cessor of any node in G in order to get Q({xi}) = Q({x j}) = 1

n .
Let us now use this condition to show that if L is non-empty and P(L )

has more than one element, then its associated lower prevision is not 2-
monotone. Take (i, j) ∈ L . We reason ex-absurdo. Assume that the as-
sociated lower prevision P is 2-monotone, and that therefore Eq. (12) is
satisfied. Then it must be C (L )⊇ {(`, j),(`,k) : `,k ∈ {1, . . . ,n}\{ j}}.

On the other hand, for any k 6= j it must be ( j,k) /∈ C (L ), since other-
wise we would obtain C (L ) = {(`,k) : `,k∈ {1, . . . ,n}} and P(L ) would
have only one element, which is ruled out by assumption. From this we can
conclude that

(13) C (L ) = {(`, j),(`,k) : `,k ∈ {1, . . . ,n}\{ j}}.
But this is incompatible with Eq. (12): given k 6= i, j, the fact that (i,k) ∈

C (L ) implies that there is some ` 6= k such that (`,k) ∈ L , and then if
Eq. (12) held we should have ( j,k) ∈ C (L ), a contradiction with Eq. (13).
We conclude that Eq. (12) cannot hold and as a consequence that P is not
2-monotone. �

Remark 5. Using a geometrical approach, we can easily see that the co-
herent lower prevision associated with a comparative probability model is
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not 2-monotone when X has three elements and G is weakly connected
and acyclic5: P will be 2-monotone if and only if its associated credal set
{P : P ≥ P} coincides with the one determined by the restriction of P to
events, i.e., if it is the subset of the 2-unit simplex determined by the re-
strictions P(A) ∈ [P(A),P(A)] for every A ⊆X . Then it can be checked
that any of these restrictions is parallel to one of the sides of the simplex,
while the restrictions of the comparative probability model are of the type
p(xi)− p(x j) ≥ 0, and correspond to a bisector; and the intersections of
the subsets of the simplex determined by these bisectors will not determine
a credal set whose sides are parallel to the sides of the simplex, except in
the two particular cases considered in Theorem 7: when the credal set is
equal to P(L ) (meaning that L = /0) or when P(L ) has only one ele-
ment (meaning that C (L ) includes {(1,2),(2,3),(3,1)}). These two cases
cannot hold when the graph G is weakly connected and acyclic. A similar
reasoning may be done on higher dimensions. Figure 5 provides an illustra-
tion for the assessments L = {(3,1),(2,1)}, where it is easy to see that the
bisector lines delimiting of the probability set are not parallel to the triangle
sides.

We refer to [Fujishige , 1991, Kroupa , 2008, Shapley , 1971] for more
information on the geometric approach to credal sets. �

4.4. Conditioning. A classical operation when dealing with uncertainty is
that of conditioning. Here we will study the problem of computing lower
conditional probabilities P(A|B) from the credal set P(L ). Out of the
many possible notions we can consider in this case, we think that the most
intuitive under the robust Bayesian interpretation we are considering in this
paper is that of regular extension [Walley , 1991, Appendix J], that produces

(14) P(A|B) = inf
P∈P(L )

{P(A|B) : P(B)> 0},

where P(A|B) is obtained from P by means of Bayes’ rule. We refer to [de
Campos et al. , 1990, Fagin and Halpern , 1991b] and [Jaffray , 1992] for
some works on this conditioning rule.

In order to apply this definition, we need the existence of some proba-
bility measure P in P(L ) such that P(B) > 0 (or, in other words, that the
upper probability P(B) is positive); but this is no restriction in the case of
comparative probabilities, because there will always be an extreme point P
of P(L ) for which P(B) > 0: it suffices to consider PH(xi) with xi ∈ B.
On the contrary, the lower probability P(B) will be positive if and only if B
intersects all top subnetworks.

5We thank Erik Quaeghebeur for pointing this out to us.
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To reach the conditional lower probability P(A|B) given by Eq. (14), we
need to find the extreme point for which P(B) is positive and the fraction
P(A∩B)/P(B) minimal. Provided G is acyclic (graphs with cycles can be dealt
with by considering equivalence classes, as described at the end of Sec-
tion 3), this can be done easily by the procedure described in Algorithm 2.
Finding the value (14) comes down to finding the non-decomposable top
subnetwork D ∈H minimizing the value

(15)
PD(A∩B)

PD(B)
=
|D∩B∩A|
|D∩B|

.

Taking into account Remark 3, it holds that D = H(C), for some set C of
strongly disconnected nodes in G . Note that it is sufficient to focus on sets
C such that C ⊆ B\A or C ⊆ B∩A:

• as H(C)∩ B = H(H(C)∩ B)∩ B, it is sufficient to focus on sets
C ⊆ B;
• for any set C such that C∩ (B \A) 6= /0 and C∩B∩A 6= /0, we can

decrease the ratio |H(C)∩B∩A|/|H(C)∩B| by picking an element x ∈C∩
B∩A and considering the set C

′
= (C \{x})∪ (H({x})\{x}). Note

that C′ 6= /0 because it includes the set C \ {x}, which is itself non-
empty because it must have a non-empty intersection with B \ A.
Taking into account that x is strongly disconnected from C \ {x},
we obtain that H(C

′
) = H(C)\{x}. Then since x ∈ A∩B, both the

numerator and denominator are decreased by one, meaning that the
ratio (15) decreases. This means that focusing on subsets of B \A
and of B∩A is sufficient to retrieve the solution.

Algorithm 2: Conditional Probability computation
Input: Set L of comparisons
Output: Lower conditional probability P(A|B) with A⊂ B

1 Cond← 1 ;
2 foreach Non-empty set C ⊆ B\A or C ⊆ A∩B do
3 Value← |H(C)∩(A∩B)|/|H(C)∩B| ;
4 if Value < Cond then Cond← Value ;

5 Return Cond ;

Next, we will characterize the conditional set

(16) PB(L ) = {P(·|B) : P ∈P(L ),P(B)> 0}

obtained by the regular extension. Any of the elements of the set PB(L )
can equivalently be seen as a probability measure on P(B). Using this
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correspondence, we shall proceed to show that PB(L ) is again induced by
a comparative probability.

Given a set L of comparisons, we will denote by C (G ) the graph asso-
ciated with its transitive closure C (L ). We will denote by LB ⊆ B×B the
relation obtained from C (L ) by

(17) LB = {(i, j) : (i, j) ∈ C (L ),xi,x j ∈ B},

that is, LB is the relation C (L ) restricted to elements in B. We will denote
by GB the graph corresponding to LB. Figure 6 shows the graph obtained
by transitive closure for Example 1, as well as G{x1,x2,x5}.

x1

x3 x4

x2

x5

x1 x2

x5

FIGURE 6. Graphs C (G ) and G{x1,x2,x5} obtained from Example 1

Theorem 8. Consider a space X and let L be a set of probability com-
parisons. Consider a conditioning event B, and let LB be given by Eq. (17).
Then

PB(L ) = P(LB),

where P(LB) is the credal set associated with LB by (1) and PB(L ) is
given by Eq. (16).

Proof. Let us show the double inclusion between these two sets.
On the one hand, given xi,x j ∈ B such that (i, j) ∈ C (L ), it follows

from transitivity that P(xi) ≥ P(x j) for every P ∈P(L ). In particular, if
P ∈P(L ) satisfies P(B)> 0 then P(·|B) will satisfy

P({xi}|B)=
P({xi})

P(B)
≥

P({x j})
P(B)

=P({x j}|B) ∀xi,x j ∈B s.t. (i, j)∈C (L ),

and since P(B|B) = 1 we deduce that P(·|B) belongs to P(LB). Thus,
PB(L )⊆P(LB).

Conversely, consider P ∈P(LB) and let p′ : X → [0,1] be given by

p′(xi) :=

{
max{P({x j}) : x j ∈ B,(i, j) ∈ C (L )} if xi ∈ H(B)
0 otherwise.
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This function satisfies by construction that p′(xi)≥ p′(x j) for every (i, j) ∈
L . If we now consider the probability measure Q given by

Q(C) =
∑xi∈C p′(xi)

∑x j∈X p′(x j)
∀C ⊆X ,

it follows from the reasoning above that Q ∈P(L ). Moreover, by con-
struction we have that Q(·|B) = P. Thus, P(LB)⊆PB(L ) and from this
we deduce that the two sets are equal. �

Theorem 8 tells us that computing the conditional lower prevision ob-
tained through regular extension is easy for the specific model studied here.

4.5. Multiple source merging. When multiple sources provide different
comparisons, for instance when two different experts provide assessments
L1 and L2, it becomes necessary to merge them in a single representa-
tion. The two most common ways are the conjunction and disjunction
rules, which respectively come down to computing P(L1)∩P(L2) and
CH(P(L1)∪P(L2)) where CH denotes the convex hull (note that the
disjunction usually produces non-convex probability sets). Our next two
results demonstrate that simple operations on L1 and L2 can provide exact
or approximate results of these operations.

Proposition 9. The conjunctively merged set P(L1)∩P(L2) is such that

P(L1)∩P(L2) = P(L1∪L2)

with L1∪L2 = {(i, j) : (i, j) ∈L1 or (i, j) ∈L2}

Proof. It is sufficient to note that L1∪L2 is the set of all constraints induc-
ing P(L1) and P(L2). �

For the disjunction, the same strategy only gives us an approximation.

Proposition 10. The disjunctively merged set CH(P(L1)∪P(L2)) is
such that

(18) CH(P(L1)∪P(L2))⊆P(C (L1)∩C (L2)).

Proof. It suffices to note that P(Li) =P(C (Li))⊆P(C (L1)∩C (L2))
for i = 1,2. �

The inclusion in Eq. (18) can be strict, as our next example shows. In
fact, CH(P(L1)∪P(L2)) will usually not be representable by means of
comparative probabilities.

Example 7. Consider the possibility space X = {x1,x2,x3} and the assess-
ments L1 = {(1,2),(2,3)} and L2 = {(3,2),(2,1)}. We have C (L1)∩
C (L2) = /0, hence the induced probability set P(C (L1)∩C (L2)) is the
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set of all possible probability masses, while CH(P(L1)∪P(L2)) does
not include the Dirac measure P({x2}) = 1 (that is neither an extreme point
of P(L1) nor of P(L2)). �

It is interesting to note that, from Zaffalon and Miranda [2003, Theo-
rem 6] the union of two credal sets P(L1) and P(L2) is again a convex
set if and only if the lower envelope of the intersection P(L1)∩P(L2)
equals the maximum of the lower envelopes of P(L1) and P(L2).

5. EXAMPLES AND EXTENSIONS

In this section, we propose some particular examples of situations where
singleton comparisons can be used, and discuss some possible extensions.

5.1. Modal and least probable values. An immediate example is the case
where we know only the modal value of the underlying probability distribu-
tion. In this case, if xi is the modal value, the set of one-to-one comparisons
is given by L = {(i, j) : j ∈ {1, . . . ,n}, j 6= i} and the corresponding graph
is illustrated by Figure 3. Note that if an expert provides a set M of most
probable values, the corresponding comparative probability model would
be given by L = {(i, j) : xi ∈M,x j ∈X \M}.

Another example is when a least probable value is given, for example xi,
in which case L = {( j, i) : j ∈ {1, . . . ,n}, j 6= i} and the number of extreme
points is |X | (the uniform generated by H(xi) and the Dirac measure on
other points). See Figure 7 for an illustration. In the case where the known
least probable singletons belong to a set M, the corresponding model is
L = {( j, i) : xi ∈M,x j ∈X \M}.

x1

x2 x3 x4 x5

FIGURE 7. Graph G for x1 =least probable value

5.2. Imprecise mass functions. Comparative probability models can also
be related to the work on imprecise mass functions discussed for example
by Augustin [2005] and Denoeux [1999].

Recall that a belief function P on the power set of X is uniquely de-
termined by its associated Möbius inverse m, by means of Eq. (10). The
Möbius inverse m(A) of a set A represents the weight of the available evi-
dence supporting that the outcome of the experiment belongs to E. It holds
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that ∑A⊆X m(A) = 1, so we may regard m as the probability mass of some
probability measure on 22X

.
We can then use our results to build imprecise probability masses. If we

have assessments of the type m(Ai) ≥ m(A j), we may consider the set of
functions compatible with these assessments. This is a convex set (bearing
on subsets of X ) whose extreme points can be determined by means of
Theorem 1. By means of Eq. (10), each of these extreme points is the
Möbius inverse of some belief function, that in turn is equivalent to a convex
set of probability measures on 2X . Note that this convex set of masses also
induces a convex set of probabilities. To see that, simply note that a convex
set of convex sets is convex, and that each Möbius inverse corresponds to a
convex set of probabilities (we refer to Augustin [2005] for further details
about convex sets of Möbius inverses).

Let us illustrate this idea with two examples.
Inner/outer measures. [Fagin and Halpern , 1991a] The situation above
can arise when X is partitioned into n sets A1, . . . ,An and where a proba-
bility value P(Ai) is associated with each set Ai. Practical cases where this
partitioning may occur include continuous variables discretized in (multi-
variate) histograms, or cases where some grouping of cases makes sense.

The assessments P(Ai), i = 1, . . . ,n induce a set of probabilities (whose
lower and upper envelopes are called inner/outer measures) on the power
set of X that can be described by m(Ai) = P(Ai): the set of probabilities
that dominate the belief function determined by the Möbius inverse m on
the power set of {A1, . . . ,An}. Indeed, it can be checked that the lower
and upper envelopes of this set correspond to the inner and outer measures
determined by the belief function.

In this framework, making comparative statements between the probabil-
ities P(Ai) of the elements of the discretized space comes down to making
comparative statements between the masses m(Ai), and the set of extreme
masses can then be derived using our results.

Example 8. Let X = {x1, . . . ,x5} with the partition A1 = {x1,x5}, A2 =
{x2} and A3 = {x3,x4}. Then the statements m(A3) ≥ m(A2), m(A3) ≥
m(A1) induce the set M with the following extreme points

m
B A1 A2 A3
{A3} 0 0 1
{A1,A3} 1/2 0 1/2

{A2,A3} 0 1/2 1/2

{A1,A2,A3} 1/3 1/3 1/3
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Note that, in the case where the partition counts n elements and is such
that Ai = {xi}, we retrieve the comparative probabilities studied in the pre-
vious sections. The results of Section 4.3 and Example 6 then show that,
in general, a convex set of Möbius inverses will not induce a belief func-
tion (because it will not induce in general a 2-monotone set function, as
Example 6 shows, and a belief function is n-monotone for every n).
Possibility measures. A second example is the case of possibility mea-
sures. A possibility measure is the upper probability that is conjugate to
a necessity measure. It is thus induced by a Möbius inverse that gives pos-
itive weights only to a collection of nested sets. Without loss of generality,
we can consider that these sets are Ai = {x1, . . . ,xi} and that m(A)> 0 only
if A = Ai for some i.

Such a model may be derived by ordering elements from the most plau-
sible (x1) to the least plausible (xn) and then constructing sets Ai. However,
in practice, specifying possibility values for each element (which is equiv-
alent to specifying the values m(Ai)) can be difficult. To avoid this issue,
we can use the previous results to get a set M of Möbius inverses. In this
specific case, the obtained model can still be represented by a possibility
measure, as the supremum of possibility measures is still a possibility mea-
sure (note that possibility measures correspond to upper envelopes of a set
of probability measures, instead of the lower envelopes we have considered
throughout).

Imagine for instance that an expert is asked to provide such a ranking of
plausible values, and is then asked about his own confidence about this rank-
ing. If the expert is quite confident, it seems fair to conclude that he would
give more weight to the precise information m(A1) than to more imprecise
ones. In practice, we can translate this information by m(A1)≥ . . .≥m(An),
from which it is easy to extract extreme points. Sets of possibility mea-
sures have also been recently investigated from a qualitative perspective
by Dubois et al. [2013].

5.3. Numerical modelling of partial preferences. A problem where our
results may prove useful is the numerical handling of partial preferences;
these arise often in multi-criteria decision making [Boutilier et al. , 2004,
Labreuche , 2010] or in preference learning [Fürnkranz and Hüllermeier ,
2010, Lu and Boutilier , 2011].

Consider a set X = {x1, . . . ,xn} of n different items, and a binary re-
lation L over them defining a preorder that can be represented through a
directed graph G . Our results allow to provide a numerical representation of
such a preorder as a set of extreme points, or in terms of a set of complete
pre-orders compatible with the preorder L : each element within P(L )
provides a pre-order over the elements of X that is compatible with L .
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This also provides us with a straightforward method to sample linear ex-
tensions of L (that is, linear orders compatible with L ): if p1, . . . , pE are
the extreme points of P(L ), a sampling of E positive weights w1, . . . ,wE
summing up to one (by sampling a uniform Dirichlet distribution, for in-
stance) provides a mass p = ∑

E
i=1 wi pi corresponding to a linear extension.

This view of our results can also be linked to the d-permutaedron, that
is the closed convex hull of all d-dimensional permutation vectors, as our
results allow to characterize the set of complete preorders consistent with
L by means of extreme points in the unit simplex. Exploring such links
would bring us closer to results related to binary choices or random utili-
ties [Zhang , 2004], the latter concerning probabilities over ranks, while our
results focus on ranks over singleton probabilities.

5.4. Extension to general comparative probability models: some com-
ments. The most important extension of our work would be to consider
arbitrary comparative probability models, where we allow for comparisons
between any pair of events (the case of partitions is treated in Section 5.2),
that is to allow any comparison P(A) ≥ P(B) with A,B ⊆X . These are
the models studied extensively by Koopman [1940a], Suppes [1974] and
Walley and Fine [1979], amongst others. Most of the axiomatic work is
based on de Finetti [1931].

When considering comparative probability models, we can assume that
the sets A,B we compare are disjoint, since the assessments P(A) ≥ P(B)
and P(A\B)≥ P(B\A) are equivalent by additivity of P. However, the ex-
istence of a probability compatible with the assessments is no longer trivial,
and therefore the associated set P(L ) may be empty [Kraft et al. , 1959,
Section 4]. Using the terminology from Kaplan [1977], this means that it
does not necessarily hold that the comparative ordering is additive.6

When P(L ) is non-empty, then it is a closed convex set that is charac-
terized by its finite number of extreme points. However, as the next example
shows, we cannot expect the extreme points of such assessments to be as
simple as the extreme points generated by the comparison of the probabil-
ities of the states. In particular, the extreme points of the associated credal
sets will not be necessarily related to uniform probability distributions over
some subsets, and finding an easy graphical representation from which they
could be extracted seems hard.

Example 9. Consider the space X = {x1,x2,x3} and the following assess-
ments:

• P({x2})≥ P({x1})
6The notion of additivity is referred to as the existence of an almost agreeing probability

by Fishburn [1986].
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• P({x1,x2})≥ P({x3}) (or, equivalently, P({x3})≤ 1/2).
And let P be the credal set of the probabilities satisfying these assessments.
The extreme points of P are summarised in Table 4.

p
x1 x2 x3
0 1 0

1/2 1/2 0
1/4 1/4 1/2

0 1/2 1/2

TABLE 4. Extreme points of Example 9. �

The set of probabilities P(L ) is uniquely determined by the lower pre-
vision P it generates by means of Eq. (11). However, Theorem 7 implies
that this lower prevision derived from P(L ) will not be 2-monotone in
general, and as consequence it will not correspond to the Choquet integral
with respect to its restriction to events. In other words, the lower probability
that we can derive by means of the formula

Q(A) := min{P(A) : P ∈P(L )}
will only allow us to provide in general an outer approximation of the set
P(L ): there are probability measures that do not belong to P(L ) but
dominate nonetheless Q.

Another (quite rough) outer approximation is to consider the set of com-
parative probability assessments on the singletons that are implied by L ,
and to characterise the associated credal set by means of our results in this
paper.

6. CONCLUSIONS

Comparative probabilities are a useful approach to modelling uncertain
information about a probability measure, especially when the available in-
formation is of a qualitative nature. However, most works in the literature
about these models have focused on axiomatising those comparative prob-
ability models that can be associated with a set of probability measures. In
this paper, we have focused on the particular case where the comparisons
are established between the probabilities of the singletons, and we have
deepened the link between comparative probability models and imprecise
probabilities, by: (a) characterising the structure of the set of probability
measures associated with a comparative probability model, and (b) study-
ing the properties of the lower probability induced by this set. We have
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shown that this lower probability may not be 2-monotone, from which it
follows that 2-monotone capacities (and in particular belief functions, or
possibility measures) are not expressive enough to be able to deal with this
type of qualitative information.

We have characterised the extreme points of the credal set associated with
a comparative probability model, and shown that the number of extreme
points can be as high as two to the power of |X |−1. This is comparable to
the maximal number of extreme points of credal sets induced by possibil-
ity measures, and smaller than those induced by 2-monotone capacities or
belief functions.

We have also suggested some practical situations where comparative pro-
babilities can be useful (elicitation of modal or least probable values, im-
precise probability masses, . . . ). However, this model remains quite simple
and of limited expressiveness, and it would be desirable to study to which
extent the results presented in this paper can help to solve the same problem
applied to general comparisons between disjoint events (illustrated in Sec-
tion 5.4). Some useful work in this sense may be done by means of Walley’s
work on n-coherence [Walley , 1991, Appendix B]. In particular, it would
be interesting to see if our results help to characterise weighted comparative
models on the singletons (that is, assessments of the type “the probability
of xi is at least twice that of x j”, for instance), or probability ratios [Walley
, 1991, Section 4.6.2],[Piatti et al. , 2010]. Although it is not difficult to see
that in that case the extreme points may not correspond to uniform distribu-
tions and that the set of agreeing probabilities may even be empty, we think
that weighted graphs, and the arguments provided at the end of Section 3,
may prove useful here.

Another important open problem would be to provide algorithms for the
computation of the lower prevision induced by a comparative probability
model, and to study in detail the applications of these results in fields such
as qualitative decision making.

One interesting issue is to characterise the differences between strict pref-
erences, i.e., p(xi)> p(x j) over non-strict ones in terms of uncertainty rep-
resentation. This would require a richer language than lower previsions,
such as for instance sets of desirable gambles [Walley , 1991, Section 3.7],
since, as we have mentioned in Section 2, both strict and non-strict prefer-
ences determine the same lower prevision when G is acyclic. In this sense,
it would also be interesting to investigate the connections between compara-
tive probability models and the choice functions considered in Seidenfeld et
al. [2010], which seem better suited to deal with open sets of probabilities.

Finally, a more practical perspective is to run numerical experiments to
check whether Algorithm 1 is competitive when compared to classical algo-
rithms used to extract extreme points of polytopes. This could be done with
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the Improb Python Library (https://pypi.python.org/pypi/improb/)
or directly with the lrs package
( http://cgm.cs.mcgill.ca/~avis/C/lrslib/lrslib.html).
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