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Abstract

In human walking, it is often assumed that the arms have a passive movement

which reduces the energy consumption of walking. The issue addressed in this

work is the influence of the arms on the walking of a humanoid robot. The study

has two objectives: to verify the effect of arms on a sthenic criterion during walk-

ing, and to determine whether the optimal movement of the arms is passive or

not.

Firstly, we defined optimal cyclic gaits for a biped robot moving in 2D. These

gaits are composed of single support phases with a supporting flat foot, double

support phases with rotation of the feet and an impact. Different evolutions of

arms are studied: bound arms, arms having an active motion and passive arms.

The comparison of our results for different walking speeds show the impor-

tance of an active movement of the arms. The part of the sthenic criterion sup-

plied in the joints of arms allows reducing the global sthenic criterion especially

for high walking speeds.

A passive movement of the arms will have large amplitude when the natural

frequency of the arms coincides with the frequency of the walking gait. Adding

springs at the shoulders allows to adjust the natural frequency of the arms to

that of walking gait. However, the sthenic criterion with the active arms with or

without spring remains less than with the passive arms.
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1. Introduction

Several approaches of upper body motion generation are used to improve the
walking of the robot [1, 2, 3]. Xing and Su generated the movements of the arms
during walking by compensating the yaw moment of the robot during the motion
[1]. This upper body motion can stabilize the foot spin for the walking robot.
Approaches of generation of the motion of upper limbs from a given reference
angular momentum around the center of mass (CoM) have been proposed by Ka-
jita et al. [2]. Shafii et al. [3] generated optimal trajectories of a biped robot by
using series of Fourier. They found that their model of control is more efficient
and produces faster and more stable walk if they consider the influence of the
arms of the robot. The study of S. Collins et al. [4] allowed to reveal the dynam-
ics of the arms during the walking of a 3D passive biped robot without torso in
simulation, but also their utility in the movement. From numerical tests, periodic
movements were found through a gradient method. Several modes of arm swing
were developed.

• Normal: where each arm oscillates in phase with the leg on the opposite
side.

• Bound: the arms are mechanically constrained against rotation. They al-
ways remain aligned with the torso.

• Anti-normal: each arm oscillates in phase with the leg on the same side.

• Parallel: during one step both arms swing together. The period of the arm
swinging is the stride period.

Thus it has been shown with the numerical tests of S. Collins et al. that passive
gaits with arm phasing anti-normal induced a much greater reaction moment from
the ground. However these interesting results are obtained with a 3D biped robot
the geometrical structure is little far from that of an anthropomorphic bipedal robot
with knees and a torso.

Few studies and results are available to describe the effects of arms on bipedal
walking gaits. The effect of the arms on the energy consumption during a ballistic
walk was explored by Aoustin and Formalskii [5], who considered cyclic ballistic
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walking gaits with instantaneous double support phases and impulsive torques
in 3D. Torques needed for walking are only applied at the moment of impact.
The numerical results show that for a given period of the walking gait step and a
length of the step, there is an optimum amplitude of arm swing for which a cost
functional is minimum. They also proved that, for any amplitude of arm motion,
the energy consumed is less for arms in normal mode than in anti-normal mode.
At the instant of the instantaneous double support phase, they numerically proved
that the jump of the angular momentum with respect to the vertical axe crossing
the stance foot is less for the normal gait than for the anti-normal gait.

In this paper a sthenic criterion is considered. For a robot this criterion rep-
resents the energy dissipated by Joule effects in the electrical motors [6]. This
criterion leads to the minimization of the maximal torque required and thus al-
lows to choose less powerful actuators. We studied in a previous work, the effect
of arm swing on the sthenic criterion during walking of the bipedal planar robot
with a flat foot [7] and the effect of passive motion of the arms [8]. However,
according to our knowledge, it has not been yet shown whether the effect of active
or passive movements of the arms can reduce the energy consumption for bipedal
walking gaits including double support phases. In this work, we will study the
effects of the arms on the sthenic criterion of a planar biped during a walking gait,
which is composed of single support phases with flat contact of the stance foot
and double support phases with rotation of both feet.

Studies of human walking can provide useful information to improve the hu-
manoid robots. The swinging of the arms is not a purely incidental accompani-
ment of a forward movement but is an integral part of the dynamics of progres-
sion, as shown in [9]. It has been shown that the oscillation of the arm reduces
the energy costs during human walking [10, 11, 4]. It is suggested that the high
metabolic costs of walking without swinging the arms are either due to the greater
momentum around vertical axis that needs to be counteracted [4, 12], either be-
cause the oscillations of the arms limit the vertical oscillations of the center of
mass [13, 11]. Furthermore, several authors argued that the arm swing during hu-
man locomotion enhances gait stability [13, 10, 14]. Collins et al. [4] have shown
that to swing the arms in anti-normal mode requires the greatest metabolic energy.

The nature of movement of arms is not yet fully understood. Besides, biome-
chanics do not agree on the passivity of this movement [4, 15, 16, 17]. For ex-
ample, Pontzer and al. [15], from the analysis of human walking and running,
hypothesize of a passive oscillation of arms. F. Ballesteros et al. [16], using
electrodes to measure muscular activity, show that the motion of the arms is ac-
companied by the activity of the deltoid muscle, particularly during retraction.
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Jackson et al. [17] make the assumption that the movement of arms is not com-
pletely passive. Several experimental measurements on humans show that normal
arm swinging requires a minimal shoulder torque, while to hold the arms requires
more torque in the shoulder [4]. In this work, optimal trajectories are defined for
the biped, when the arms are bound to the torso, with a passive motion of arms,
and with actuated arms. The sthenic criteria respectively obtained while walking
for these three modes are compared.

Cyclic walking gaits are defined with double support phases. Our study has
two main goals: the first is to check the effect of the arms on the sthenic crite-
rion during walking. The second is to check the nature of the activation of arms
for the optimal gaits and whether the optimal walking requires active or passive
movement of the arms.

In order to reach our objective three modes of arm motion are studied:

1. Bound arm mode where the arms are attached to the trunk. Since they are
attached the torque useful to keep the desired constant relative position with
the torso is not taken into account in the criterion. It is assumed that an
external mechanical system is used to maintain the arm held as in the ex-
periments done by S. Collins et al. [4]. A simplified model consists to
consider only a torso such that its mass and inertia include mass and inertia
of the arms.Thus they are an additional charge on the torso.

2. Active arm swing where the arms are actuated and swing freely in amplitude
about the torso.

3. Passive arm swing where the arms are unactuated and swing freely in am-
plitude about the torso.

The paper is structured as follows:
The studied robot is presented in Sect 2. The study takes place in the sagittal

plane. We use a kinematic structures of biped robot with arms. Starting from this
structure, we define a dynamic model of biped for different phases of the walking
gait.

In section 3, trajectories of cyclic motion for fully actuated biped are defined.
We also define the method to generate passive motion of the arms. Then, the
optimization strategy is explained. The results of trajectory optimization for one
step in the different cases of the arm motions are shown and arm swing effects are
discussed in Sect 4. Section 5 presents our conclusion and perspectives.
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2. The biped modeling in 2D

This section is devoted to the development of the model of the biped robot, its
generalized coordinates, the different geometrical structures with active or bound
arms, and its model. This model will be used for the generation of optimal move-
ments presented in Sect 3.

2.1. Presentation of the biped

As most of the movements are in the sagittal plan during walking, our study
is based on a 2D biped, see Fig. 1. Its physical parameters are derived from
the humanoid robot HYDROÏD (HYDraulic andROÏD). It is a 3D biped, which
was built through the cooperation of several french laboratories and an industrial
partner, supported by the French national agency of research, ANR, see [18]. It
is equipped with hydraulic actuators. The size of HYDROÏD is 1.40 m, its mass
is 45 kg. It has 30 degrees of freedom. Its locomotor system has 16 degrees of
freedom (three for each hip, one for each knee, three for each ankle and one for
the toe of each foot). It is designed to have geometrical and dynamical parameters
close to those of the model of Hanavan established to characterize the human body.
To determine the behavior of the biped during different phases, we are going to
define the dynamic model of the biped robot for each phase of the studied walking
gait. From HYDROÏD we keep only the joints that produce movements in the
sagittal plane. The mechanical system is a nine-link bipedal robot composed of
two identical legs, two identical one-link arms and a torso. Each leg consists of a
femur, a tibia, and a rigid foot. Each arm is composed of one link only. The trunk
and the head form a single body too. Table 1 gathers the physical parameters of
the biped. From [19], we can observe that the geometrical parameters are close to
the dimensions of an occidental subject, who is 15 years old.
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Figure 1: Planar biped: generalized coordinates representation and applied torques.

Mass Length Center of Inertia
Kg m mass m Kg.m2

Foot 0.678 Lp=0.207 spx= 0.0135 0.00175
hp=0.06425 spy= 0.03212
lp=0.072

Tibia 2.188 0.392 0.1685 0.0276
Femur 5.025 0.392 0.1685 0.0664
Trunk 24.97 0.5428 0.2013 0.6848
Arm 2.15 0.586 0.2418 0.0578

Table 1: Physical parameters of the robot, [19].
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Figure 2: Details of the foot.
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2.2. Definition of studied cyclic gait

The cyclic walking gait is composed of single support phases, double support
phases and impacts as shown in Fig. 3. Let us consider the current step starting
with a double support phase where the front foot (foot 1) and the rear foot (foot
2) are in contact with the ground respectively with the heel and the toe. Both
feet rotate until there is an impact on the ground of the toe of the front foot (toe
impact). At this instant the rear foot takes off. The single support phase starts on
the stance foot 1. This phase is ended with the impactless landing of the heel of
foot 2, i.e. the velocity of the heel is equal to zero at the landing.

Figure 3: Walking gait

2.3. Modeling

The generalized coordinates are described with the vector

x = [xh yh qp1 qp2 q1 · · · qn−1]
⊤ = [xh yh q⊤]⊤,

where n = 6 or 8 depending on the biped with free or bound arms. Γ =
[Γ1 Γ2 · · · Γn]

⊤ is the joint torque vector. The dynamic model of the biped
robot is:

Dẍ+N(x, ẋ) +Q = BΓ+ J⊤

1 r1 + J⊤

2 r2 (1)

with the constraint equations to define the contact between the stance foot i and
the ground:

Jiẍ+ J̇iẋ = 0 for i = 1 to 2. (2)

Here D(x) ∈ R
(n+3)×(n+3) is a positive definitive inertia matrix, N(x, ẋ) ∈

R
n+3 contains the Coriolis and centrifugal forces, Q(x) ∈ R

n+3 is the vector of
gravity forces, and B ∈ R

(n+3)×(n) is the actuation matrix which is constant. For
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the studied walking gaits the contact with the ground of the biped’s feet can be
with the whole sole, the heel of the toe. Vector ri = [rix, riy]

⊤ (respectively ri =
[rix, riy, mz]

⊤ with a contact of the whole sole) defines the effort (respectively the
force and moment with a contact of the whole sole) of the ground reaction acting
on foot i and Ji is the Jacobian matrix of foot i, i = 1, 2.

In double support, the bipedal robot is in contact with the ground on the heel
of the front leg as well as on the toe of the rear foot such that the contact between
each foot and the ground is punctual, see Fig 4. For a given movement of the
biped, there are n + 4 unknown variables, i.e. n torques and 4 components of the
ground reactions, which are solutions of the inverse dynamic model (1), composed
of n+ 3 scalar equations. Then one variable can be chosen as a parameter among
the set of these n + 4 unknown variables for a given movement. This choice,
useful for the definition of a cyclic trajectory, is detailed in Appendix A.

2.4. Impact

We observed numerically in previous work [20] that to obtain the cyclic walk-
ing gaits, which are composed of double and single supports, the velocity of the
swing foot landing on its heel, at the end of the single support, has to be zero.
Otherwise it is not possible to obtain a double support phase satisfying the unilat-
eral constraints. Therefore, a zero velocity of the landing is considered when the
swing leg touches the ground with its heel just before the double support phase.
An impact occurs when toe of the front foot touches the ground at the end of phase
of double support. The front foot (foot 1) remains on the ground in flat contact, to
be the stance foot for the next single support phase. The velocity of the foot 1 just
after impact is zero.

The joint configurations are continuous at the impact, while the joint velocities
are discontinuous [21]. The impact model is used to determine the velocities after
impact, as well as the impulsive forces, according to the velocities and positions
which are known before the impact. The impact model is given by:

D(x(Tds))(ẋ
+ − ẋ−) = J⊤

1 I1 (3)

Here, ẋ− and ẋ+ are the joint velocity vectors just before and after impact
respectively. I1 ∈ R

3×1 represents the impulsive ground reaction wrench on the
stance foot at toe impact. Matrix J1 ∈ R

(n+3)×(3) is the Jacobian matrix to take
into account the constraints of no take off and no rotation of the landing foot
(the ground reaction efforts are composed of an impulsive force and an impulsive
moment).
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To ensure a flat foot contact on the ground, the velocity of the sole of the front
leg just after impact must be zero. This constraint is expressed as:

J1ẋ
+ = 0 (4)

Finally, to calculate the joint velocities just after impact and the impulsive
wrench on front foot, we have:

[

D −J⊤

1

J1 0

] [

ẋ+

I1

]

=

[

Dẋ−

0

]

(5)

3. Description of the joint motion

3.1. Generation of cyclic walking gaits

For a cyclic walking gait, all steps are identical. Then we only study one step.
The swing leg at the end of a step becomes the stance leg for the next step. The
duration T of one walking step is:

T = Tds + Tss (6)

Tds corresponds to the duration of the double support phase and Tss corre-
sponds to the duration of the single support phase.

Let us note that the heel of the stance foot in single support, never takes off
from the ground during one step, see figure 3. This heel can be considered as the
biped’s base during the step and then xh and yh depend on the angular variable of
the stance leg. As a consequence, the reference motion is defined using the joint
variables q only. In our study the joint evolution will be expressed as a polynomial
functions of third order:

qj = a0 + a1t+ a2t
2 + a3t

3 j = 1, · · · , n+ 1 (7)

To determine the four coefficients of the polynomial functions (7), four bound-
ary conditions are used in each phase which are the initial and final values of qj

and q̇j .

3.1.1. Motions with active motion of the arms

To define a movement it is necessary to determine the four coefficients of all
polynomial functions (7) for the double and single support phases. The number of
variables for these two phases is 2× (4× 9) = 72 unknown variables. However it
is possible to reduce this number by taking into account the characteristics of the
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desired walking gait such as the impact model, the continuity properties between
the single phase and the double support phase. This point is detailed as following.

Let us consider the beginning of the double support, t = 0. The locomotor
system and the ground form a closed geometrical structure. One foot touches the
ground with its heel, while the other foot has a flat contact. Its means that if the
distance between both feet are given, only six generalized coordinates among the
nine components of q(0) and six angular velocities among the nine components
of q̇(0) are independent.
During the double support both feet rotates on the ground, one with its heel and
the other with its toe. The double support is ended at t = Tds by an impact on the
ground of the foot, which rotates with its heel. At this instant the orientation of its
sole with respect to the ground is null but its angular velocity does not equal zero.
As a consequence the continuity in position and the impact model allows us to
consider only six generalized coordinates among the nine components of q(Tds)
and seven angular velocities among the nine components of q(Tds), i.e. just before
the impact.
Through the continuity and cyclicity properties, the exchange of the role of both
legs makes the correspondence between the states of the biped at t = T and
t = 0. As a consequence, it is possible to reduce the number of unknown variables
from 72 to 26 angular positions and velocities in addition to the distance between
the two feet in double support phase. These 27 unknown variables will be the
optimization variables and are gathered in Table 2.

3.1.2. Motions with passive motion of the arms

We are looking here for the optimal cyclic walking with passive motion of
the upper links of the biped. Only the locomotor system (legs and trunk) of the
biped is actuated. Variables of the locomotor system ql can then be defined as
in Sect 3.1.1 where the index ”l” refers to the lower parts of the biped robot
xl = [xh yh qp1 qp2 q1 q2 q3 q4 q5]

⊤. The variables of arms xu are not actu-
ated and their motion are due to dynamics of the locomotor system, where the
index ”u” refers to the upper parts of the biped robot, xu = [q6 q7 ]⊤, such as
x = [x⊤

l ,x
⊤

u ]
⊤. Since the actuated variables are expressed as chosen polynomial

function, we can imposed the continuity conditions between x(0) and x(t) to pro-
duce a cyclic motion. For the passive joints we cannot define a priori a cyclic
motion. The motion of these passive joints are due to the dynamic of the locomo-
teur system. Periodic motion of the arms can be only obtained through equality
constraints.

We look for the passive motion of the arms, due to the dynamic of the actuated
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locomotor system during a walking gait. Hence, we present here the equations to
obtain this motion. No torques are applied to the arm joints. The matrix equation
(1) of the biped robot can be rewritten:

[

Dll Dlu

Dul Duu

] [

ẍl

ẍu

]

+

[

Hl

Hu

]

=

[

BlΓl

02×1

]

+ J⊤

1 r1 + J⊤

2 r2 (8)

where H = N(q, q̇)ẋ+Q(q), ẍu ∈ R
2×1 is the accelerations vector of the upper

parts of the biped, Duu ∈ R
2×2, Dlu ∈ R

9×2, Dul ∈ R
2×9 and Duu ∈ R

2×2,
Hu ∈ R

2×1 and Hl ∈ R
9×1 are subvectors of H. Bl ∈ R

9×6 is the actuation
matrix. Γl ∈ R

6×1 is the joint torque vector of the locomotor system of the biped.
Vector 02×1 corresponds to the assumption that no torque is exerted on the two
shoulders since arm motion is passive.

The cyclic passive trajectories of the arms can be determined through the nu-
merical resolution of:

ẍu = D−1
uu (−Dulẍl −Hu +Wu), (9)

with vector Wu is composed of the two last components of J⊤

1 r1+J⊤

2 r2. Periodic
motion is obtained for appropriate initial values of angular configurations and
velocities of the arms. The computation of these initial values is now detailed.

Trajectories of the locomotor system xl(t), ẋl(t), ẍl(t) during the double sup-
port phase are generated by polynomial functions of third order. Thus, trajectory
of each joint is defined by four boundary conditions, see Sect. 3.1.1.

Once the values xu(0), ẋu(0) are found, the integration to find xu(t) becomes
possible by using a numerical resolution of (9).

Now, trajectories are completely known during the double support phase, in-
cluding the values at the end of this phase. After "toe impact", initial values of
the single support phase (x(Tds) and ẋ(Tds)

+) are known by using the continu-
ity condition and solving the impact model. Trajectories of the locomotor system
during the single support phase can be calculated. It can be noted that the motion
of arms affects the state of the locomoteur system after impact due to the coupling
between the legs and the arms existing in impact model.

In the same way, these trajectories are used to find the passive motion of arms
during the single support phase by the numerical resolution of (9). We thus obtain
the joint variables xu(T ) and velocities ẋu(T ) of the arms at the end of the single
support phase.

The desired arm passive motion is cyclic with a period which is the same as
that of the locomotor system. By taking into account the exchange on the role of
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arms between final time of a step (t = T) and initial time of the following step
(t = 0), the following equalities must be respected:

ẋu(0) =

[

0 1
1 0

]

ẋu(T ) and xu(0) =

[

0 1
1 0

]

xu(T ) (10)

To generate the passive movement of the arms, it is necessary to find the arm
trajectories xu(t) such that the conditions given by (10) are satisfied.

3.2. Trajectory optimization

In the parametric optimization problem, a reference trajectory for a walking
step of biped is obtained with the minimization of a criterion under constraints. A
sthenic criterion is used for a given distance d to travel during one step of duration
T .

CΓ =
1

d

∫ T

0

Γ⊤ Γdt (11)

under nonlinear constraints and bounded conditions:

c(x) ≤ 0, cex(x) = 0
lb ≤ x ≤ ub

(12)

The constraints are defined in the following section.

3.2.1. The optimization constraints

In order to ensure that the biped will successfully walk and that the trajectory
is feasible, a number of constraints must be satisfied.

1. Constraints of contact with the ground:

• A foot i in contact must stay on the ground without taking-off neither
slipping during various phases and the impact. To insure the contact,
the following equalities must be satisfied:

{

µriy ≥ |rix|
µIriy ≥ |Irix |

(13)

where riy is the vertical component of the reaction forces on the foot i
in contact with the ground, µ is the coefficient of friction and Irix , Iriy
are the vertical and tangential components of ground reaction of the
foot i in contact with the ground at the impact.
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• The Zero Moment Point (ZMP) of the biped’s stance foot must be
inside the support polygon [22, 6].

− lp ≤ ZMP x ≤ ld (14)

The Condition of ZMP must be verified during the single support
phase and at the impact. In double support phase, if the constraint
(13) is satisfied for each foot, the biped’s balance is insured. Thus the
ZMP is implicitly inside the polygon support defined by the two points
of contacts belonging to the two feet.

• The heel and toe velocities of the foot 2 leaving the ground just after
impact of the toe of foot 1 must be positive to ensure the take-off.

{

Vheel ≥ 0
Vtoe ≥ 0

(15)

2. Geometric constraints:

The swing foot 2 must not touch the ground during the single support phase,
i.e. the vertical position of swing foot heel and toe must be positive.

{

yheel > 0
ytoe > 0

(16)

where yheel and ytoe are respectively the vertical distances of the heel and
toe of the swinging foot during single support phase.

3. Technological constraints: These constraints consist of physical limitations
of the biped’s actuators and joints. The constraints on joints position, ve-
locity and torque are:

{

|Γi| − Γi,max ≤ 0, for i = 1, ..., n
|q̇i| − q̇i,max ≤ 0, for i = 1, ..., n

(17)

where n = 6 or 8 depending on if the arms are actuated or not, Γi,max

denotes the maximum value of torque for each actuator and q̇i,max represents
the maximum value of velocity for each actuator.

The upper and lower bounds of joints for the configurations during the mo-
tion are:

qi,min ≤ qi ≤ qi,max, for i = 1, ..., n. (18)
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where qi,min and qi,max are the minimum and maximum joint configuration
limits respectively.

In the case of a passive motion of the arms, (10) are used in addition to all the
previous constraints.

3.2.2. The optimization variables

The walking speed V is fixed for each optimization procedure. By consider-
ing the step length d as a parameter of optimization, the step duration T is then
calculated from T = d/V . With the ratio Tds/T as a variable of optimization, Tds

can be obtained.
The optimization variables to define an optimal walking gait is presented in

Table 2. With these optimization variables, the impact equations, the boundary
conditions between the double support phase and the single support phase, the
coefficients of (7) can be calculated.

Table 2: Optimization variables

Optimization Active Bound Passive Instant
variables arms arms arms

q qP2, q1, q2, qP2, q1, q2, q3 qP2, q1, q2, q3 Tds

q3, q6, q7
q̇ q̇P1, q̇P2, q̇1, q̇P1, q̇P2, q̇1, q̇P1, q̇P2, q̇1, Tds

q̇2, q̇3, q̇6, q̇7 q̇2, q̇3 q̇2, q̇3
q qP2, q1, q2, qP2, q1, q2, q3 qP2, q1, q2, q3 T

q3, q6, q7
q̇ q̇P2, q̇1, q̇2, q̇P2, q̇1, q̇2, q̇3 q̇P2, q̇1, q̇2, q̇3 T

q̇3, q̇6, q̇7
Distance d d d -
Tds/T Tds/T Tds/T Tds/T

Total number 27 19 19 -

In the following, we present the different types of arm motion and then we
illustrate the results of trajectories optimization for the different evolutions of the
arms.
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4. Optimal walk

Optimal gaits are defined for several speeds and for different modes.

4.1. Active motion of the arms and bound arm mode

• Active motion of the arms:

An optimal walking gait at V = 1 m/s is shown in Fig. 4, where the
maximal absolute values of q6 and q7 are fixed to q6,max = 60o. The arms
can have a very large amplitude of swinging if they are not constrained.

Figure 4: Walking gait of biped with arms during one step for walking speed V = 1 m/s;
q6,max = 60

o.

• Bound arm mode:

Fig. 5 shows walking gait obtained at walking speed 1m/s.
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Figure 5: Walking gait of biped without arms during one step for walking speed V = 1 m/s.

Several values of the criterion are shown as function of the walking speed
in Fig. 6. Numerical results show that the arm swing reduces the criterion cost
during its walking.

Figure 6: Evolution of sthenic criterion versus walking speed
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It is interesting to note that an optimal walking with arm swing can be obtained
for higher walking speeds until 2.1m/s. An optimal motion of biped without arms
cannot be obtained for a walking speed above 1.65m/s.

The profiles of the joint torques are shown on two steps and for a walking
speed V = 1 m/s, see Fig. 7. The torques during the double support phase are
higher than those during single support.

The numerical results show that for active arms, the value of the sthenic crite-
rion is lower than for bound arms for any motion velocity speed. We recall here
that for bound arms, the torque required to maintain the arm are not included since
there are assumed to be produced by external mechanical device. The active arms
allow to reduce the torques in the locomotor system.
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Figure 7: Evolutions of joint torques during two steps for a walking speed V = 1 m/s.

Figure 8 shows the evolutions of articular configurations of the bipedal robot
with bound and active arms respectively. They are quite similar in shape as func-
tion of time and with small difference in amplitude. Absolute angles shown in
Fig. 9 b,are used in figure 8 to allow a comparison of the optimal motions of biped
with the curves of Fig. 9 a. Barliya and al. [23], which illustrate the absolute
angles of human walking gaits. Between the biped and human several similarities
in shape and amplitude of the absolute angles can be observed. Concerning the
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leg 1, the angle α is equal to q2 in stance phase and to q4 in phase of transfer. The
angle β = q1 or q5 depending on whether the phase is the stance phase or transfer

phase respectively. To calculate the angle of the foot 1, we have γ =
π

2
+ qp2 in

phase of transfer and γ =
π

2
in stance phase (Fig. 9 b).
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b) Active arms
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Figure 8: Evolutions of the articular configurations of the biped during four steps of walking at
V = 1 m/s.

Joint configurations of the arms versus time at walking speed V = 1 m/s are
illustrated in Fig. 10. The shape of the amplitude profile of the arm swing for
both arms is not exactly symmetric with respect to the origin of the y-axis. It is
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a)- Evolutions of legs

Foot

Thigh

Shank

Foot

Thigh

Shank

Foot

Thigh

Shank

b)- Absolute angles

Figure 9: Characteristics of human walking gaits used by A. Barliya and al. [23]. Absolute angles
for human of thigh, shank and foot are plotted in solid lines. Three harmonics of Fourier series are
plotted for each segment with dashed lines [23].

probably due to dynamic coupling between the active arms and the torso with a
forward inclination.
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Figure 10: Evolution of arms versus time at walking speed V = 1m/s

4.2. Passive motion of the arms

We note that in the previous study, torques are not zero in arm joints for the
optimal motions. We used polynomial expression to define the evolution of arms
versus time. This representation can be unsuitable for a correct modeling of a pas-
sive movement. We are looking here for optimal trajectories with passive move-
ments of the arms. Numerical results show that no passive motion with large
amplitude of arms oscillation is possible for the initial design of the robot. All
arm motions have small amplitude for all walking speeds. This can be explained
by an inadequate choice of the step duration with respect to the natural frequency
of the arm. The duration of walking stride 2T does not correspond to the natural
period To of the oscillation of arms.

If the biped arm is considered as a simple pendulum suspended from a fric-
tionless pivot as in Fig. 11, its model is:

Isθ̈ +mgl sin(θ) = 0, (19)

where Is = I +ml2 is the moment of inertia around the suspension point. For
small oscillations, sin(θ) ≈ θ, the natural period of the pendulum To is:

To =
2π

wo

= 2π
√

Is/(mgl) (20)

It depends on the mass, length, and inertia.
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Figure 11: Simple pendulum

We can change the natural period of arm oscillations by using torsion springs
placed in the shoulders. In this case, the dynamic model of the pendulum be-
comes:

Isθ̈ +mgl sinθ + kθ = 0, (21)

where k is the stiffness of the springs.
The natural period of arm oscillations becomes:

To =
2π

wo

= 2π
√

Is/(mgl + k). (22)

We conducted a scan of the possible passive motions of the arms according to the
value of the spring stiffness k. Starting from optimal variables corresponding to an
optimal solution we looked for the possible passive movement of the arms at each
given value of the spring stiffness k. This stiffness coefficient k is involved in the
set of the optimization variables. Both sthenic criterion and maximal amplitude
between the arms are plotted as a function of k in figure 12) for a walking speed
V = 1.0m/s.

And then from the Fig. 12 we can numerically observe that it is possible to
obtain a large amplitude passive movement of arms through a spring with a stiff-
ness coefficient k = 4.8N.m/rad, which corresponds to the first amplitude peak,
with a minimal value of the sthenic criterion. In this case, the natural period of
the arm is given with(22) is such that To1 = 2T . The peaks of the evolution
of the maximum amplitude of q6, which correspond to the stiffness coefficients
k1, k2, k3, , · · · , kn, kn+1, represent different natural periods of arm oscillations
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Figure 12: The evolutions of the sthenic criterion and the maximum amplitude q6 as a function of
k at walking speed V = 1.0m/s.

To1, To2, To3, · · · , Ton, To(n+1). These natural periods of the oscillations of the
arms are related to the stride duration of walking gait 2T as follow:

2T = To1

2T = 2To2

2T = 3To3

.

.

.
2T = nTon

2T = (n+ 1)To(n+1)

(23)

A passive motion with a large amplitude is possible if and only if the period 2T of
walking stride (two steps) is close enough to a multiple of the natural period To of
arms oscillation. The odd coefficients correspond to opposite phase movements
of both arms. While for even coefficients, both arms swing in phase with large
oscillations. For walking speeds higher than 1.0m/s, large amplitude oscillations
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of arms are obtained only to the even coefficients. For walking speeds lower or
equal to 1.2m/s, opposite phase movements are also achievable.

This observation offers an analogy with the human walking gait. Wagenaar
et al. [24] shown experimentally with young healthy subjects, that for veloci-
ties between 0.3 − 0.8 m/s the frequency of the arm swing synchronizes with
the frequency of one step. For higher velocities the frequency of the arm swing
corresponds to those of two steps.

Figures 13 and 14, propose also a comparaison between passive and active
swings of the arms when a spring is added in the shoulders. The main information,
which can be claimed from these figures is that for our bipedal robot the active
movement of the swing arm leads to lower values of the sthenic criterion than
the passive motion of arm. Optimal stiffness coefficients are close for passive or
active arm motions.

Figure 13: Sthenic criterion as function of the velocity for active and passive swings of the arms.

26



Figure 14: Stiffness coefficient k as a function of the velocity: for values of k less than
10 N.m/rad the arms swing in opposite phase, for higher values of k and a velocity greater
than 1.1m/s they swing in phase (parallel mode).

Figure 15 illustrates an optimal walking gait with passive motion of the arms
at walking speed V = 1m/s, (k = 4.8 N.m/rad).

Figure 15: Optimal walking gait at walking speed V = 1m/s
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For the walking speed V = 1 m/s, the evolutions of joint torques during a
walking stride are illustrated in Fig. 16. The maximal amplitude of the oscilla-
tions of arms with respect to the vertical axis is reached at the end of the single
support phase. It is coherent with the human walking, when the arm movement
frequencies are synchronized with the step frequency, see [9], [24], and [25].
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Figure 16: Evolutions of joint torques during a walking stride (two steps) at walking speed V =

1m/s.

For the walking speed V = 1 m/s, the absolute angles of legs and the evolu-
tion of arm joints versus time are illustrated in Fig. 17.

4.3. Comparaison and Discussion

The biped trajectories are optimized for all cases of arms modes, i.e. bound
arm mode, active arm swing with spring or without spring, and passive arm swing.
These cases are compared according to the sthenic criterion in figure 18. The
performances obtained with passive arm swing and bound arm mode are very
close. If we consider the effort to maintain arm, we can says that the passive
arm swing is better than bound arm mode. The lowest values of the criterion is
obtained with the active arm swing with spring. Then for our biped, with the
optimal walking gaits and the considered we can say that the optimal motion is
obtained with an active arm swing (with or without spring because both cases are
close). This observation could support the idea that the arm swing of humain is
not passive, even if the modeling of our biped is far from the complex dynamics
of human.
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b)- Evolutions of joint arms
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Figure 17: Evolutions of variables versus time at walking speed V = 1m/s.

When arm joints are actuated, the criterion value is lower than in the case of
passive arms. Furthermore, the values of the criterion in the case of the active
arms are lower with regard to arms bound case for all walking speeds.

We can conclude that the optimal motion of the arms is not passive and that
the actuation of the arms reduces the torques needed in the actuators on the other
joints of the biped and therefore less value of criterion will be required.
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Figure 18: Evolution of sthenic criterion versus walking speed.

5. Conclusion and perspectives

For optimal walking gaits, three cases of the biped arms are compared: bound
arm mode, active arm swing and passive arm swing. For all given walking speeds,
the sthenic criterion when the actuated arms swing is lower than that when the
biped has the bound arms. The actuation of the arms reduces the torques required
in the other joints of the biped and therefore a less value of criterion is obtained.
Optimal motion of the arms requires torques in arm joints especially during the
double support phase. This is coherent with the studies on human walking, which
suppose that the arm swinging is not a passive movement and that the deltoid
muscles are active during walking [17, 26].

Yet, polynomial functions were used to obtain joint evolution including arm
evolution. This representation can be unsuitable to model correctly a passive
movement. Therefore, we explored passive arms movements of the biped due
to the dynamics of the locomotor system. Only the locomotor system of the biped
was actuated. Numerical results showed that trajectories with passive movements
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of arms have higher values of the sthenic criterion than trajectories where shoul-
ders are actuated.

The effects of springs placed in shoulders on the natural period of oscillation
of arms were explored on the passive and active movements of the arms. Solutions
including movements with large amplitudes of arms exist if the duration of walk-
ing stride corresponds to the natural period of oscillation of arms. Both passive or
active arms swing together according to the stiffness of springs.

We assumed that the stance foot stay on the ground with a flat foot during
the single support phase. Our perspectives are to consider a sub-phase in single
support with partial contact on the stance foot and to design running gait as in
[27], especially to observe if the effect of arms on the sthenic criterion augments
when the walking speed increases.
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Appendix A. Calculation of r2x

In double support phase the biped is in contact with the ground through the
heel of the front foot and the toe of the rear foot for a given reference trajectory, the
inverse dynamic model (1) has n+3 scalar equations and n+4 unknown variables,
i.e. n torques and the four components r1x, r1yx, r2x, and r2y of both ground
reaction forces. Then among the set of these unknown variables, one variable can
be chosen as an optimization variable during the double support phase. To choose
this optimization variable let us consider the global equilibrium about the center
of mass of the biped, written in translation and rotation. In double support phase
with contacts of the heel of the front foot and the toe of the rear foot (Fig. A.19),
the following equations are obtained:







(r1x + r2x)yg + r2y(xg − d) + r1yxg = γg
r1x + r2x = mẍg

r1y + r2y −mg = mÿg

(A.1)

Where m is the biped’s mass, ẍg and ÿg represent the tangential and horizontal
components of acceleration of CoM of the biped, r1 and r2 are the ground reaction
acting in the front hell and the rear toe and γg is the time derivative of the angular
momentum of the biped with respect to its center of mass.

The system of equations (A.1) has three equations for four unknown variables.
For a given reference trajectory mẍg is known, and then the sum r1x+r2x through
the second equation of (A.1). Consequently r1y and r2y are the unique solution of
the first and third equations of (A.1). It means that in double support, for the same
movement, several solutions for r1x or r2x are possible as functions of torques.
Then r1x or r2x can be used as a optimization variable.

The reaction r2x is selected to minimize the optimization criterion. To cal-
culate r2x, the dynamic equation will be solved in such a way as r2x is going to
minimize the criterion of optimization based on the torques C∗

Γ taking into account
the constraint that reaction forces of the ground r1 and r2 are compatible with the
assumed contact; that is to say without taking off nor sliding.

C∗

Γ = min
r2x

Γ⊤Γ (A.2)

with














−µr1y − r1x ≤ 0
−µr1y + r1x ≤ 0
−µr2y − r2x ≤ 0
−µr2y + r2x ≤ 0
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Figure A.19: Efforts of contact ground-feet

When r2x is known, the reaction of the ground r1 on the front foot can be
found.

Besides, joint torques as well as the vertical component of ground reaction
force on rear foot can be calculated through the orthogonal matrix J⊥

1 (6×(n+3)),
such that left multiplying it by (1) we obtain:

[

Γ

r2y

]

=
[

J⊥

1
B J⊥

1
J
⊤

2(:,2)

]−1 [

J⊥

1
D(q)ẍ+ J⊥

1
N(q, q̇)ẋ+ J⊥

1
Q(q)− J⊥

1
J
⊤

2(:,1)r2x

]

(A.3)
Where J⊤

2(:,1) defines the first column of the matrix J⊤

2 .
We can thus obtain the components of the reaction of the ground on the foot 1

with (A.3).
Considering that the left-hand side of (1) is calculated from the desired move-

ment. It is noted φ such that:

φ = J⊥

1
BΓ + J⊥

1
J
⊤

2(:,1)r2x + J⊥

1
J
⊤

2(:,2)r2y (A.4)

We can get:

Γ = F1 + F2r2x (A.5)

Where F1 = ([J⊥

1
B J⊥

1
J
⊤

2(:,2)]
−1φ)(1:n) andF2 = −([J⊥

1
B J⊥

1
J
⊤

2(:,2)]
−1J⊤

2(:,1))(1:n).
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The expression of C∗

Γ can be written as:

C∗

Γ = Γ⊤Γ = F1
⊤F1 + 2F1

⊤F2r2x + F2
⊤F2r

2
2x (A.6)

Term F2
⊤F2 being strictly positive, then C∗

Γ as function of r2x has a minimum.
The value r2x which allows to minimize C∗

Γ can be calculated by writing that the
derivative of C∗

Γ with regard to r2x is equal to zero.

∂C∗

Γ

∂r2x
= 0 => 2F1

⊤F2 + 2F2
⊤F2r2x optΓ = 0

r2x optΓ = −(F2
⊤F2)

−1F1
⊤F2 (A.7)

The solution r2x, found with (A.7), minimizes C∗

Γ without constraints.
Having calculated r2x, we can use (A.3) and (A.1) to calculate r2y and r1

respectively. These reaction forces will be used to calculate and to impose con-
straints of no-slipping and no-take-off [20]. If the constraints of friction are not
verified by algorithm, we choose r2x to be as close as possible to the optimal value
[28].
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