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Helical reconstruction from electron cryomicrographs has become a routine technique for macromolec-
ular structure determination of helical assemblies since the first days of Fourier-based three-dimensional
image reconstruction. In the past decade, the single-particle technique has had an important impact on
the advancement of helical reconstruction. Here, we present the software package SPRING that combines
Fourier based symmetry analysis and real-space helical processing into a single workflow. One of the
most time-consuming steps in helical reconstruction is the determination of the initial symmetry param-
eters. First, we propose a class-based helical reconstruction approach that enables the simultaneous
exploration and evaluation of many symmetry combinations at low resolution. Second, multiple symme-
try solutions can be further assessed and refined by single-particle based helical reconstruction using the
correlation of simulated and experimental power spectra. Finally, the 3D structure can be determined to
high resolution. In order to validate the procedure, we use the reference specimen Tobacco Mosaic Virus
(TMV). After refinement of the helical symmetry, a total of 50,000 asymmetric units from two micro-
graphs are sufficient to reconstruct a subnanometer 3D structure of TMV at 6.4 Å resolution. Furthermore,
we introduce the individual programs of the software and discuss enhancements of the helical recon-
struction workflow. Thanks to its user-friendly interface and documentation, SPRING can be utilized by
the novice as well as the expert user. In addition to the study of well-ordered helical structures, the devel-
opment of a streamlined workflow for single-particle based helical reconstruction opens new possibilities
to analyze specimens that are heterogeneous in symmetries.

� 2013 The Authors. Published by Elsevier Inc. Open access under CC BY license.
1. Introduction

Structure determination of large macromolecular assemblies
embedded in vitreous ice using electron microscopy (EM) is
becoming increasingly popular as evidenced by the steady increase
in the number of structure depositions into the EM databank
(EMDB) (Lawson et al., 2011). Depending on the molecular weight
and order of the assembly, a series of three-dimensional (3D)
structures at near-atomic resolution have become available in
the past decade. Pioneering work on highly symmetric structures
derived from two-dimensional arrays, helical or icosahedral
assemblies (Henderson et al., 1990; Unwin, 2005; Zhang et al.,
2008) have demonstrated the potential of electron cryomicroscopy
(cryo-EM) based structure determination. Historically, the first 3D
reconstructions were computed from electron micrographs of heli-
cal assemblies (De Rosier and Klug, 1968). These assemblies have
the advantage that a single helix already represents many views
of the asymmetric unit whose structure needs to be determined.

Currently, helical assemblies make up �10% of the determined
structures in the entire EMDB. This is due to the fact that only a
limited number of proteins form arrays of helical symmetry. Nev-
ertheless, many of these are functional in the helical state and as
such, are of fundamental importance to the cell (Moore et al.,
1970; Nogales et al., 1999). Several structures that mediate the
modulation of membrane shapes have been determined with the
protein coat assembled at the membrane in a helical geometry
(Frost et al., 2008; Low et al., 2009). In addition, there are examples
of helical assemblies that form protein crystals in the context of a
tubular membrane (Korkhov et al., 2010; Unwin, 1993). Such
assemblies have also been successfully formed by affinity-tagged
membrane-associated proteins (Wilson-Kubalek et al., 1998).
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Methods for structure determination of helical assemblies have
significantly evolved since the birth of 3D electron microscopy. In
the past, the procedure relied on entire and straight filaments, fil-
amentous viruses or tubules that were processed in Fourier space
by indexing the helical lattice and extracting the amplitudes and
phase from the corresponding layer lines. Multiple helices were
averaged and brought to a common phase origin and a 3D recon-
struction was computed by Fourier inversion of the structure fac-
tors. For a more comprehensive description consult (Stewart,
1988). More recently, adapted Fourier-based techniques and real-
space approaches that treat helices as small segments have signif-
icantly improved the attainable resolution (Beroukhim and Unwin,
1997; Ge and Zhou, 2011; Sachse et al., 2007; Yonekura et al.,
2003). In addition, some helical assemblies deviate from their ideal
straight path and can also vary in their helical symmetries because
of inherent flexibilities (Fujii et al., 2010; Sachse et al., 2008). In
certain cases, Fourier-based helical 3D reconstruction can be com-
plicated by particular symmetries. First, in cases of long helical
pitches many layer lines are required to represent the entire helical
structure as in the case of amyloid fibrils. Second, several layer
lines can interfere on a single reciprocal pixel line and the resulting
Bessel overlap makes the assignment of Bessel order impossible.
Nevertheless, real-space helical reconstruction can cope with these
complications and determine the 3D structures of these helical
assemblies (Jiménez et al., 1999; Sachse et al., 2008).

Despite the previous successes of helical structure determina-
tion, a simple standardized workflow for 3D helical reconstruction
is still lacking. The most widely used approach is the implementa-
tion of the iterative helical real-space reconstruction (IHRSR) based
on the SPIDER package (Frank et al., 1996) and additional tools for
helical symmetry determination and imposition (Egelman, 2000).
In the meantime, other packages such as SPARX have adapted
the IHRSR algorithm (Behrmann et al., 2012). Moreover, several
structures have been determined by extending and modifying the
original IHRSR approach significantly with additional SPIDER
operations (Sachse et al., 2007). Using a full correction of the con-
trast-transfer function, alignment restraints and an adapted 3D
symmetrization procedure, a series of structures were determined
(Bharat et al., 2012; Korkhov et al., 2010; Low et al., 2009; Sachse
et al., 2007; Sachse et al., 2008). In order to condense the adapted
procedures into a generally usable workflow, we describe here a
package for single-particle based helical reconstruction termed
SPRING (Single particle reconstruction from images of known
geometries). We demonstrate the full functionality of the package
by processing a subset of previously published micrographs of To-
bacco Mosaic Virus (TMV) (Sachse et al., 2007) (http://grigorief-
flab.janelia.org/datadownload). SPRING contains programs that
determine the microscope parameters, analyze and classify the
segmented helices, explore helical symmetry at low resolution, re-
fine high-resolution symmetry and determine the 3D structure.
2. Overview

SPRING aims to provide a comprehensive workflow for process-
ing electron micrographs of helical specimens from micrographs to
3D structure analysis and interpretation. The workflow has been
subdivided into three separate suites of programs: ‘‘Springmicro-
graph’’, ‘‘Spring2d’’ and ‘‘Spring3d’’ (Table 1). In SPRINGMICRO-
GRAPH, digital micrographs can be analyzed and processed. The
extraction and analysis of helical segments is implemented in the
second suite, SPRING2D. The third suite of programs, SPRING3D,
generates, refines and analyzes 3D structures. The individual pro-
grams can be operated from a graphical user interface (GUI)
(Fig. 1), from the command line prompt, from command line
options or using a simple text file as input parameter file. In all
programs, the user can specify three levels of expertise: beginner,
intermediate and expert. The beginner level reduces the complex-
ity of the input parameters by using sensible default values. As
their familiarity with the processing operations increases the user
can choose to add more parameters. In the current implementation
of SPRING, a significant effort was invested to streamline analysis
and diagnosis of the obtained results in a user-friendly manner.
Where possible, either condensed graphical plots are generated
or more complex data representations can be browsed interac-
tively (Fig. 2).

The SPRING package is entirely written in object-oriented py-
thon and uses EM-related libraries and functions from SPARX and
EMAN2 (Hohn et al., 2007). Microscope parameters are determined
by CTFFIND and CTFTILT (Mindell and Grigorieff, 2003). In addition,
scientific computing tasks are performed by Numpy and Scipy func-
tions (numpy.scipy.org). For parameter storage sqlite3 databases
are used and interfaced by SQLAlchemy (www.sqlalchemy.org).
Interactive and diagnostic plots were made with the plotting li-
braries of matplotlib (http://matplotlib.sourceforge.net). SPRING’s
GUI has been built using PyQT libraries. SPRING is optimized to
run in a multi-CPU environment on high-performance computer
cluster implemented by Mpi4Py (http://mpi4py.scipy.org).

Python can be used as a scripting language as well as a struc-
tured programming language. Both of these features make the
usage of isolated existing functions in a new processing context
and the easy modification of SPRING possible. In addition, the
widespread use of python as a programming language and the
excellent interfaces to scientific computing libraries such as Num-
py and Scipy are a great advantage for prototyping any numerical
computations and thus promoting further development of the
package. The python programming language facilitates code struc-
turing and readability and the code is directly documented and
available on SPRING’s website as a detailed reference (Fig. 1B). Py-
thon has become a popular tool to master the scripting and pro-
gramming tasks in a variety of other EM software packages such
as PyTOM and Xmipp (Hrabe et al., 2012; Scheres et al., 2008).
3. Initial analysis of micrographs and segments

The EM operator records electron micrographs in several differ-
ent ways. Currently, film, CCD cameras and direct detectors are the
common sources of EM data. After film has been digitized all types
of data are available as images in various formats. SPRING accepts
all the formats of micrograph data that EMAN2 currently supports
such as standard MRC, IMAGIC, SPIDER, TIF formats. MICEXAM
examines the micrographs by analyzing the power spectra tiles
to exclude images that suffer from poor information transfer at
higher resolutions due to charging or drift (Hohn et al., 2007). MIC-
CTFDETERMINE determines the CTF of the micrographs by interfac-
ing with CTFFIND initially and optionally refines parameters using
CTFTILT (Mindell and Grigorieff, 2003). The program captures a re-
duced output of CTFFIND and CTFTILT and the results are stored in
the SPRING database to be retrieved for further processing.

After the selection of high-quality micrographs, helices need to
be extracted from the images. For this purpose, the helices are
interactively picked using external programs. In the past, EMAN’s
HELIXBOXER or BOXER with the helix option was used (Ludtke
et al., 1999) (EMAN2 has an updated version named E2HELIX-
BOXER). BSOFT is also capable of picking filaments with significant
curvature and recording their helix paths (Heymann and Belnap,
2007). The program SEGMENT from SPRING extracts a complete
data set of overlapping segments using the provided coordinates
from either EMAN, EMAN2 or BSOFT, applies CTF correction by
either phase-flipping or convolving the segments with the deter-
mined CTF and stores coordinates and the derived in-plane
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Table 1
Summary of individual SPRING programs and associated functionality.

Program Description

Micrograph analysis (Springmicrograph)
Micexam Program to examine micrograph quality by computing a localized power spectrum using EMAN2’s e2scaneval.py and an averaged power

spectrum from overlapping tiles using SPARX’ sx_welch_pw2.py
Micctfdetermine Program to determine CTF parameters from a set of micrographs using CTFFIND and CTFTILT (Mindell and Grigorieff, 2003)
Segment analysis (Spring2d)
Segment Program to extract overlapping segments from micrographs
Segmentexam Program to examine all of excised in-plane rotated segments and compute their collapsed (1D) and 2D power spectrum and width profile of

helices
Segmentclass Program to classify excised in-plane rotated segments using SPARX’s k-means clustering
Segclassexam Program to examine helix classes to compute their collapsed (1D) and 2D power spectrum and width profile of helices
Segclasslayer Program to extract amplitudes and phases from desired layer lines of class averages
Seglayer2lattice Program to simulate helical diffraction pattern and plot helical lattice from a series of indexed layer lines or rise/rotation parameters
Segmentplot Program to plot parameters from segmented helices
Segment 3D reconstruction (Spring3d)
Segclassreconstruct Program to compute 3D reconstruction from a single class average using a range of different helical symmetries
Seggridexplore Program to interactively explore grid searches according to different criteria
Segmentrefine3d Program to iteratively refine a 3D structure of helical specimens from segment stacks
Segrefine3plot Program to plot refinement parameters from segmentrefine3d
Segrefine3dgrid Program to optimize segmentrefine3d reconstruction by varying refinement parameters systematically on a grid
Segrefine3dinspect Program to interactively inspect 3D reconstructions from segmentrefine3d

Fig.1. SPRING - a package for single-particle based helical processing. (A) GUI of SPRING to launch individual programs. The GUI can be visualized in beginner, intermediate
and expert mode with increasing complexity of the input parameters. (B) Website and documentation for SPRING. All input parameters are listed and described on the
website. (C) SEGCLASSLAYER - GUI program to plot left and right layer line profile with corresponding amplitude and phase difference. (D) SEGGRIDEXPLORE - GUI program to
interactively visualize grids e.g. for optimization of helical symmetry parameters.
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rotation in a database file. For further 2D analysis, the stack of in-
plane rotated segments is analyzed by adding their power spectra
using SEGMENTEXAM. The presence or absence of layer lines is a
good indicator of the degree of order and symmetry of the speci-
men. In particular, the reduction of the power spectrum into a ‘‘col-
lapsed’’ one-dimensional profile by averaging the spectrum along
the layer lines is useful to assess the existence of weak layer lines.
Furthermore, width profiles of segments allow a quick character-
ization of the specimen. For further characterization, SEGMENT-
CLASS iteratively classifies and aligns the segment stack using a
k-means clustering algorithm from SPARX (Hohn et al., 2007)
(Fig. 3A–D). Segment assignment to classes is recorded in a data-
base and can be used as a selection criterion at a later stage during
the 3D structure refinement. The resulting classes can be further
analyzed in real space and in the Fourier domain. SEGCLASSEXAM
can extract width and power spectrum from the 2D class averages
with significantly improved signal-to-noise ratio when compared
with raw segments (Fig. 3D/E). The process of segmenting helices
for classification-based averaging using a regular step size bears
the risk of introducing artificial frequency components (Fig. 3B/
C). The artifacts show high intensities along all expected layer lines
up to highest resolution but do not follow the intensity profile of
the expected Bessel functions. These artifacts arise as a conse-
quence of using overlapping segments. If a small and constant step
size is chosen, the images are overlapping. Thus, the overlapping
image information produces a repeat in the average of neighboring
segments that will be enhanced during the classification proce-
dure. In order to address this issue, the classification procedure is



Fig.2. Flow chart of processing helical specimens including micrograph analysis, CTFFIND/CTFTILT, segment and class average analysis. The class average can be used for
symmetry exploration. The helical symmetry parameters can be refined by a projection-matching based symmetry grid. Finally, the structure can be refined to highest
resolution. Interactive GUI programs (red) help to analyze results of the respective programs.
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performed with a different stack that was not segmented by a reg-
ular step size but by using a randomized step between 0 and the
desired step size. This approach results in power spectra that do
not show artificially introduced repeats (Fig. 3E). In addition, SEG-
CLASSLAYER allows the interactive exploration of layer lines from
class averages (Fig. 1C). First, class averages have improved sig-
nal-to-noise ratio in comparison with raw images. Second, classifi-
cation can separate different symmetries from a heterogeneous
data set. Third, in comparison with the added power spectra from
SEGMENTEXAM (Fig. 3F) class averages have the additional advan-
tage that they contain phase information and can therefore be used
to determine whether Bessel orders are odd or even due to the
characteristic phase difference between left and right sides of the
layer line. In the case of TMV, the inspection of the 1/23 and 1/
11.5 1/Å layer lines reveals that they have a Bessel order of 1 and
2 due to the position of the first amplitude maximum and phase
difference of left and right layer line profile (Fig. 3G). The assign-
ment of the Bessel order is essential to index the helical lattice,
which is a common procedure for determination of helical symme-
try of helices (Diaz et al., 2010; Korkhov et al., 2010). Once all heli-
ces are segmented the program SEGMENTPLOT visualizes
quantities of segments interactively, e.g. coordinates or in-plane
angle rotation as a function of the segment assignment to classes.

4. Class-based helical reconstruction and symmetry exploration

The determination of helical symmetry is one of the most crit-
ical and time-consuming steps in the structure determination of
helical specimens. Awareness of this problem has been raised pre-
viously (Yu and Egelman, 2010) and stems from the fact that pro-
jections of helices with different helical symmetries can be
identical as a set of helical densities at varying radii can give rise
to the same projections in two dimensions. For a detailed discus-
sion using TMV as an example refer to (Egelman, 2010). Thus, an
inherent problem remains the choice of the initial reference sym-
metry that severely biases any structure refinement steps because
these related symmetries will ‘‘converge’’ to a stable solution but
only one of them corresponds to the true symmetry. Currently,
the IHRSR approach iteratively refines the helical symmetry but
it strongly depends on the choice of the starting parameters. In
previous approaches other groups have derived starting estimates
of helical symmetry parameters from classical Fourier analysis
(Pomfret et al., 2007; Ramey et al., 2009) to further refine the sym-
metry by the provided IHRSR programs. Alternatively, a motif-
based maximum likelihood estimator has been formulated to
determine the helical symmetry parameters (Lee et al., 2011). In
principle, the symmetry problem could be overcome, if all 3D
reconstructions with all possible combinations of helical rise and
helical rotation during 3D structure refinement were computed
at the highest possible resolution. In the presence of an atomic
structure with a characteristic fold, subnanometer resolution
should be sufficient to unambiguously place the structure into
the EM density reconstructed using the true symmetry parameters
and thus verify the imposed helical symmetry. By contrast, an EM
density reconstructed with the wrong helical symmetry could not
be fitted with the PDB structure. Currently, such an exhaustive
search is computationally not feasible in particular with small
increments between different symmetries.

In order to address this problem, we propose a class-based heli-
cal reconstruction scheme that explores the helical symmetry by
reconstructing the 3D structures from a large number of symmetry
combinations using a single class average. Since a single view al-
ready represents many projections of a helix, a single class average
is sufficient to reconstruct a low-resolution initial 3D reconstruc-
tion. Subsequently, the class average will be duplicated and multi-
ples of helical rise and rotation will be applied to image duplicates
that are subsequently used for the 3D reconstruction. A similar ap-
proach has been applied to class averages to generate an initial 3D
structure once the symmetry had been determined through index-
ing the helical lattice (Ramey et al., 2009). The program SEGCLASS-
RECONSTRUCT performs the class-based helical reconstruction.
The underlying hypothesis is that if the correct helical symmetry



Fig.3. Segment analysis of TMV. (A) Eight TMV segments of 670 Å dimension from cryo-EM images. Segments were rotated in the plane and phase-flipped by the determined
contrast-transfer function. (B) Classification results from repeated cycles of k-means clustering and multi-reference alignment using a segmentation step size of 70 Å and 55 Å
(left and right panel respectively). (C) Corresponding power spectra computed from (B) give rise to noticeable artifacts of the overlapping segments. (D) Four exemplary
classes from a random segmentation step from 0 to 70 Å. (E) The power spectrum reveals layer lines up to 1/11.5 1/Å and is devoid of artifacts from the fourth class of (B). (F)
High-resolution power spectrum computed as a sum of power spectra of in-plane rotated segments. Right. Enhanced power spectrum obtained by B-factor compensation. (G)
Closer layer-line analysis reveals that 1/23 and 1/11.5 1/Å have an order of 1 and 2 supported by the peak position and the phase difference from layer line profiles (E).
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was applied, the reprojection will match the original class average.
This assumption should hold true for real-space and Fourier-space
comparisons.

In order to quantify this comparison, we have measured ampli-
tude correlation from the power spectra of the class average and
reprojections of the 3D model, the cross-correlation of the class
average and the reprojections of the 3D model and the variance
of the 3D reconstruction from a large number of possible symme-
try combinations (Fig. 4A–D). We have applied this strategy to a
class average from TMV (Fig. 4F). The symmetry was searched by
varying the helical pitch from 22.0 to 24.0 Å in 0.1 Å steps and
the number of units per turn from 10.00 to 20.00 in 0.01 steps.
First, amplitude correlations were determined by correlating the
power spectra of the duplicates of the class average with the power



Fig.4. Helical symmetry exploration based on TMV class averages reveals a number
of possible solutions at low resolution. (A) 3D surface presentation of mean cross-
correlation between class average power spectrum and power spectrum from
reprojection of 3D reconstruction from a grid of helical pitch (22–24) and number of
units per turn (10–20). (B) Mean amplitude correlation profile at 23.0 Å helical
pitch. (C) Mean cross-correlation profile at 23.0 Å helical pitch as a function of
number of units per turn indicates several possible solutions for the helical
symmetry. (D) Variance of 3D reconstruction. (E) Ten 3D reconstructions with
number of units per turn from 10.34 to 19.66 imposed. (F) Class average used to
generate 3D reconstructions. (G) Ten reprojections from (E). (H) Power spectrum of
class average from (F). (I) Ten half power spectra computed from reprojections (G).
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spectra of the corresponding reprojections of the 3D model com-
pared up to 1/7 1/Å resolution and averaged. Second, cross-
correlations were computed between the duplicates of the class
average and the corresponding reprojections of the 3D model
and averaged. Therefore, from here on we refer to these measure-
ments as mean cross-correlation and mean amplitude correlation.
The mean cross-correlation grid gave rise to high correlations at a
pitch of 23 Å and several maxima ranging from 10.34 to 16.34
number of units per turn (Fig. 4A/C). Similarly, the mean amplitude
correlation grid confirmed the observations resulting in a slightly
noisier profile when compared with the mean cross-correlation.
We noticed by visual inspection that the 3D reconstructions can
differ significantly (Fig. 4E), while the 2D reprojections and power
spectra of these 3D reconstructions are virtually indistinguishable
(Fig. 4F–I). In conclusion, the grids demonstrate that multiple sym-
metry solutions can be obtained using this method without the
need of structure refinement. Therefore, the class-based helical
reconstruction can limit the symmetry space to be explored and
thus provides good starting estimates for launching a confined
symmetry grid search of iterative structure refinements (see sec-
tion on symmetry refinement below). In some cases, indexing of
a helical lattice may help to limit the number of solutions. In order
to better access and evaluate the large grid of different symmetry
parameters, we developed the interactive GUI-based SEGGRIDEX-
PLORE program (Fig. 1D) where multiple comparison criteria can
be browsed simultaneously and the associated data files such as
the simulated power spectrum, the corresponding experimental
power spectrum and 3D reconstruction can be immediately
opened by clicking on the respective grid point. This option of
interactively browsing the results makes the evaluation of these
many symmetry combinations easily accessible and user-friendly.

To further test the applicability of the class-based reconstruc-
tion approach, we generated test classes from 3D reconstructions
of the flagellar hook and Respiratory Syncytial Virus (RSV) nucleo-
capsid (EMDB 1647/ 1622, respectively) (Fujii et al., 2009; Tawar
et al., 2009). In agreement with the TMV analysis, when evaluating
symmetry combinations with increasing number of units per turn
along the constant pitch, we noticed that the ambiguous symmetry
peaks of the mean cross-correlation are not randomly distributed.
Instead they repeat every two units per turn and possess a mirror
symmetry around integer number of units per turn (Fig. 5B/D).
Although not explicitly described, a similar relationship between
ambiguous helical symmetries has already been observed (Chen
et al., 2004; Egelman, 2010; Wang et al., 2006). In addition to the
cited examples, the here-investigated cases all share this ambigu-
ity pattern. It is important to note that all considered cases are one-
start helices and cases with additional rotational symmetry further
complicate the interpretation of the symmetry pattern. For one-
start helices, the relationship can be understood by examining
the reciprocal space pattern arising from such symmetric struc-
tures. First, all solutions share the same exact repeat distance but
differ in their number of units per repeat and thus they will give
rise to layer lines at the same reciprocal heights (Fig. S1,
Table S1). Second, the orders of the Bessel functions at a given layer
line from the ambiguous solutions are either always odd or always
even. Thus the parity of the Bessel orders at the same layer lines is
conserved (Table 2, Appendix). For all ambiguous solutions, the
absolute first peak position of the layer line is identical thus the
change in Bessel order is compensated by a radius change of the
real-space densities. For a more detailed mathematical treatment
of helical ambiguity, refer to the Appendix. Nevertheless, there is
only one true helical symmetry among the ambiguous solutions,
whose 3D reconstruction can be interpreted with the correct pro-
tein structure.

In practice, we noticed several complications of class-based
helical reconstruction that will limit the results for particular sets
of helical symmetry parameters. First, we prefer to use phase-
flipped in-plane rotated images rather than CTF-convolved images
because the low-resolution frequency signal is stronger when com-
pared with CTF-convolved images. Second, the helical parameters
of rise and rotation dictate the number of images that can be used
for the 3D reconstruction. For example, for a helical rise half of the
image dimension only two images can be used. This can in princi-
ple be compensated for by using larger image segments for classi-
fication but is limited by the straightness of the helix. Furthermore,



Fig.5. Class-based symmetry determination profiles at constant pitches for RSV and flagellar hook. (A) Side-by-side comparison of RSV class average (left) and reprojection
(right) from true symmetry and corresponding side-by-side power spectra. (B) Mean cross-correlation profile of class average with reprojections. (C) Side-by-side display of
flagellar hook class average and reprojection from correct symmetry and corresponding power spectra. (D) Mean cross-correlation profile as a function of number of units per
turn give rise to a number of symmetry solutions that are ambiguous. The ambiguous solutions are related to each other such that they repeat every two units per turn
including a mirror symmetry around integer values.

Table 2
Comparison of Bessel orders of layer lines from ambiguous symmetry solutions (odd and even Bessels orders are highlighted in red and blue).

n odd n even Number of units per turn

Layer line position Layer-line position (1/Å) 13.66 14.34 15.66 16.34 17.66 18.34

1 1/67.6 14 �14 16 �16 18 �18
2 1/34.8 �13 15 �15 17 �17 19
3 1/23.0 1 1 1 1 1 1
4 1/17.2 15 �13 17 �15 19 �17
5 1/13.9 �12 16 �14 18 �16 20
6 1/11.5 2 2 2 2 2 2
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helical rotations that have integer divisors of 360� will result in
sparse sampling of the azimuthal rotation angle. For example, a
helical rotation of 60� will only be inserted six times into the
360� regardless of the helical rise and the number of image dupli-
cates. As a result, the 3D reconstructions contain significant arti-
facts because of the gaps in the angular coverage. Third, prior
knowledge of the out-of-plane tilt angle of the helix is required
for a correct 3D reconstruction. If no tilt stage was induced, the
out-of-plane angles are usually Gaussian distributed around zero
and thus the majority of classes will not show a significant out-
of-plane tilt. Inspection of the phase differences using the program
SEGCLASSLAYER along the layer lines will indicate whether the
class average view is tilted significantly out of plane (Diaz et al.,
2010; Stewart, 1988).
5. Projection-matching based symmetry refinement

The symmetry solutions of the class-based symmetry explora-
tion can now be assessed until the correct fold of the protein is
identified. This way, we can rule out ambiguous solutions from
the symmetry search. Therefore, we performed a 3D structure
refinement with the symmetries at a pitch of 23 Å and 13.66,
14.34, 15.66, 16.34, 17.66 and 18.34 subunits per turn (Fig. 6).
For this computation, we used a total of 1400 segments from 40
viruses extracted from two micrographs that were taken at 1.5
and 3.5 lm underfocus (Sachse et al., 2007) (http://grigorief-
flab.janelia.org/datadownload). As a result, only the 3D reconstruc-
tion with 16.34 numbers of subunits per turn imposed is
compatible with the known four-helix bundle structure (Fig. 6,
PDB code 2OM3, 2TMV) (Namba et al., 1989; Sachse et al., 2007)
and the outer densities in particular are best defined in comparison
with the other 3D structures. It is important to note that refine-
ment convergence and statistics such as FSC and azimuthal angle
distribution do not reveal whether the symmetry is correct or
wrong. Some solutions may even be interpreted as a fold contain-
ing a-helices but are clearly incompatible with the atomic refer-
ence structure. In conclusion, the aim remains to determine an
EM-map at sufficient resolution to verify the 3D reconstruction
and symmetry in order to recognize a characteristic fold or poly-
peptide backbone at medium to high resolution (4–10 Å) or an
unambiguous fit of the PDB structure at lower resolution (>10 Å).

To further refine the correct symmetry, we performed a
symmetry grid search of iterative 3D refinements around 16.34
numbers of subunits per turn for the TMV data set using the pro-
gram SEGREFINE3DGRID. In comparison with the single-class

http://www.grigoriefflab.janelia.org/datadownload
http://www.grigoriefflab.janelia.org/datadownload


Fig.6. Comparison of high-resolution 3D TMV structures by imposing different ambiguous symmetries. 3D structures were sharpened by a B-factor of -200 1/Å2 filtered to a
resolution of 7 Å. Slab view through helical rod. The reconstructions share the pitch of 23 Å and possess 13.66, 14.34, 15.66, 16.34, 17.66 and 18.34 subunits per turn,
respectively. Only the correct reference structure with 16.34 numbers of subunits per turn is compatible with the four-helix bundle atomic structure (PDB code 2OM3).

Fig.7. Symmetry refinement of TMV. Grid search of different symmetry combina-
tions from 22.8 to 23.2 pitch and from 16.25 to 16.45 number of units per turn. (A)
Amplitude correlation of symmetry grid search. The highest correlation is found at a
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reconstructions, this approach has the advantage that limited
angular sampling can be overcome if many segments contribute
to an even angular coverage. As the iterative refinement is a
CPU-expensive task, we chose a smaller subset of data and re-
stricted the number of iteration cycles to 4–8.

Using the TMV data set, we performed a refined search of
pitches ranging from 22.8 to 23.2 with a step size of 0.1 and num-
ber of units per turn ranging from 16.25 to 16.45 with a step size of
0.01 (Fig. 7). First, we evaluated the amplitude correlation between
experimental and simulated projection. For each grid point, we
averaged all power spectra of in-plane rotated segments that
showed no out-of-plane tilt and compared it with the power spec-
tra of the matched reprojections (Fig. 7A/D/E). The advantage of
this approach over a mean cross-correlation measure between seg-
ments and projections is that no translational alignment informa-
tion is required to compute and compare high-resolution power
spectra of the segments (Fig. 4E). Thus, this approach avoids the
known effects of noise bias when comparing references with noisy
segments (Stewart and Grigorieff, 2004). In the case of TMV, we
can refine the symmetry by comparing the layer lines beyond 1/
7.67 (0.13) 1/Å. Here, we have taken the same principal approach
as in the cases of helical tubules of TspO and bacterial dynamin
(Korkhov et al., 2010; Low et al., 2009). In addition, we have tested
a series of different criteria to evaluate and distinguish reconstruc-
tions with different symmetries: variance of the 3D reconstruction,
number of excluded segments and mean cross-correlation peak
that represents the similarity measure of the projection matching
procedure (Fig. 7B/C). The obtained pitch of 23.0 Å and number
of units per turn of 16.34, i.e. 49.02 subunits for three turns, are
in exact agreement with results from fiber diffraction (Stubbs
and Makowski, 1982; Stubbs et al., 1977). Finally, the amplitude
correlation criterion remains most reliable and it has the advan-
tage that a simple visual inspection can confirm whether the
refinement has found a good agreement between experimental
and simulated power spectra.
pitch of 23.0 Å and 16.34 units per turn corresponding to a helical rise of 1.408 Å
and 22.03�. (B) The mean cross-correlation peak measure of all matched segments
plotted as a function of the changed symmetry parameters. The mean peak shows
slight deviation from the determined number of units per turn. (C) A similar
convergence can be found by plotting the ratio of excluded segments based on
incorrect polarity matches. The minimum of 25 % also at 23.0 Å pitch and 16.34
units per turn. (D) Side-by-side display of highest correlation of experimental and
simulated power spectrum. (E) Resolution-dependent amplitude correlation of
experimental with simulated power spectrum indicates correlation up to 0.13 1/Å.
6. High-resolution helical reconstruction

Our previous description of single-particle helical based recon-
struction for TMV was implemented as a prototype using SPIDER
scripts (Sachse et al., 2007). The current article focuses on the bun-
dling and extension of the previous approach into an efficient and
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reproducible image processing pipeline with significant optimiza-
tions (Fig. 2). In SPRING, we have re-implemented many of the fea-
tures using the python API of SPARX/EMAN2. Briefly, we would like
to summarize the important features of the structure refinement
that we have implemented as previously described. For a more de-
tailed discussion of these topics consult our article (Sachse et al.,
2007). Once the overlapping segments have been extracted the
images are convolved with the corresponding CTF as estimated
from the CTFTILT measurement and the position of the segment
on the micrograph. The original in-plane rotation of the segments
is retained in the images and recorded in a database. This step is
critical for correcting astigmatism of the CTF on the segment level
and beneficial to avoid multiple interpolation steps when seg-
ments are included in the 3D reconstruction. These segments are
subjected to projection matching and followed by 3D reconstruc-
tion. The polarity assignments of segments within a helix are re-
corded and excluded if an opposite polarity has been found.
Furthermore, alignment restraints are applied to exclude excessive
shifts against a mean path of the helix. The 3D reconstruction is
computed from the matched segments and symmetry-related
views that are not covered by the overlapping segments are in-
cluded in the 3D reconstruction. The helical symmetry is fixed dur-
ing the entire run. The resulting 3D reconstruction is divided by a
3D CTF squared with a Wiener filter constant to compensate for
amplitude modulations from the specific set of defoci used for im-
age acquisition (Sachse et al., 2007).

In single-particle structure refinement, it is crucial to be aware
of the inherent noise bias and the danger of over-fitting noise dur-
ing the alignment procedure (Scheres and Chen, 2012; Stewart and
Grigorieff, 2004) which can result in wrong or over-refined struc-
tures. In order to address this issue, we have implemented two
precautionary measures to avoid over-fitting. First, we derive a
low-pass filter from the square root of the FSC curve of the previ-
ous cycle, which is applied during projection matching. This filter
will gradually include higher resolution signal as the resolution
of the 3D reconstruction improves. Second, we implement a strict
low-pass filter cutoff at 11 Å resolution to the alignment procedure
which excludes the risk of over-fitting in the resolution range
where it is most prominent. In agreement with previous results,
we found that the low-resolution frequencies provide sufficient
detail for alignment and 3D reconstruction at high resolution
(Rosenthal and Henderson, 2003).

High-resolution structure refinement is computationally expen-
sive and requires the use of multiple processors. For this reason, a
significant effort was invested in improving the performance of 3D
structure refinement. First, seamless parallelization was imple-
mented by Mpi4Py – a python interface to OpenMPI. Moreover,
segments are downscaled internally in multiple resolution steps
to reduce computational cost. The complete refinement is broken
up into appropriate resolution aim ranges that the user is able to
select (Table 3). The underlying principle is that a 3D reconstruc-
tion at the targeted resolution can be obtained using a pixel size
where 3� pixel size is assumed as the practical resolution limit
due to interpolation errors. SPRING will determine the required
decimation factor to achieve the respective resolution aim. Thus,
the segments are low-pass filtered and subsequently decimated
and as a result the convergence of the refinement is accelerated.
Table 3
Summary of refinement strategy of TMV structure determination.

Refinement strategy Low Medium High Maximum

Resolution aim (Å) >20 20–10 10–5 <5
Decimation factor 8 3 2 �
Pixel size (Å) 8.141 3.489 2.326 1.163
Number of iterations 4 4 4 4
By default, the refinement projects 90 projections around the heli-
cal axis and assumes seven possible out-of-plane tilt angles from
�12� to 12�. The azimuthal angles do not increase by a constant
step but are distributed such that the asymmetric unit is regularly
azimuthally sampled and so only unique helical views are tested
for projection matching (Ge and Zhou, 2011). The out-of-plane tilt
step follows an even distribution between 0 and the maximum tilt
angle. The number of angular projections will be further increased
by a factor of five for high-resolution refinements. To reduce com-
putational cost further, at a later stage of refinement the number of
projections tested for projection matching are reduced such that
the search is limited to views around ±20� and later by ±2� around
the previous match of the previous cycle. The following 3D recon-
struction step tends to be computationally expensive depending on
the pixel dimensions of the segment. We, therefore, reconstruct a
reduced size volume of helix width dimensions and for the subse-
quent step of projection helically expand the volume back to the
intended dimension required for alignment.

In order to further demonstrate the complete functionality of
the package, we performed a structure refinement with a smaller
subset of our previous data set used for the prototype of high-
resolution reconstruction. With a total of 50,000 asymmetric units
extracted from two micrographs we computed a 3D reconstruction
at 6.4 Å resolution (Fig. 8A–F). The final 3D structure was interac-
tively B-factor sharpened by –150 1/(Å)2 and filtered to a resolu-
tion cutoff of 5 Å using the program SEGREFINE3DINSPECT to
correctly display the EM densities (Rosenthal and Henderson,
2003). The total refinement time of 16 iterations from low to high-
est resolution took 45 h on 48 Intel Xeon 2.4 GHz processors. Next,
we wondered how the resolution of SPRING reconstructions com-
pares with the previously published structure that was computed
with SPIDER scripts (Sachse et al., 2007). Consequently, we deter-
mined a structure using the previous data set of 200,000 asymmet-
ric units and measured very similar resolutions with cutoffs at 4.8/
4.3 Å (FSC 0.5/0.143) when compared with the previously deter-
mined 4.7/4.3 Å (EMDB-1316) (Fig. 8F). At closer inspection of
the map, the EM densities provide a very similar level of detail
for structure interpretation (Fig. 8H/I).

In order to increase the homogeneity of single-particle data sets,
classification strategies are routinely employed that rely on princi-
pal component analyses (van Heel and Frank, 1981) or cross-
correlation based approaches. In helical processing in particular,
projection-matching based sorting of varying pitches has been ap-
plied to improve structural homogeneity of particular helical sym-
metries (Wang et al., 2006). In order to conveniently track the
membership of segments to micrographs, helices, classes and other
microscope-related parameters SPRING relies on an SQL database
that records the available data of each segment. If desired, the user
can apply segment exclusion criteria that are based on properties
before any refinement is done, e.g. class assignment, micrograph,
helix, defocus and astigmatism. In addition, segment exclusion
can also be based on refinement parameters such as cross-
correlation peaks, out-of-plane tilt and excessive x-shifts. For
further analysis, refinement parameters can easily be plotted as a
function of distance along the helix using the program SEGRE-
FINE3DPLOT. The segment database will simplify processing of
large heterogeneous data sets and enable comprehensive selection
schemes to obtain 3D structures from homogeneous subsets of the
data.

7. Outlook

The development of the here-described processing package
SPRING will facilitate many of the steps of single-based particle
helical reconstruction. One of the most time-consuming processing
steps, however, will remain the determination of the helical



Fig.8. High-resolution helical reconstruction of TMV of 50,000 asymmetric units from two micrographs. (A) Final 3D density map fitted with PDB code 2OM3 at 6.4 Å
resolution including a B-factor sharpening of �150 1/(Å)2 using the program SEGREFINE3DINSPECT that allows interactive B-factor application to avoid oversharpening of the
structure. (B) Histogram of azimuthal angles per segments in degrees. (C) Histogram of azimuthal angles in degrees after symmetrization. (D) Projections of final structure
and corresponding segment. (E) Side-by-side display of B-factor compensated experimental and simulated power spectrum. (F) Using 50,000 asymmetric units from two
micrographs the final resolution of the SPRING reconstruction is estimated at 6.4/5.1 Å using the Fourier Shell Correlation criteria at 0.5/0.143. In comparison with the Sachse
et al., 2007 data set of 200,000 asymmetric units, SPRING computes a very similar structure with resolutions estimated at 4.8/4.3 Å at the respective FSC cutoffs. (G/H/I) Close-
up views of EM densities including fitted PDB (2OM3) structures from SPRING reconstructions using 50,000 and 200,000 asymmetric units (G/H) in comparison with
reference structure from Sachse et al., 2007 (EMDB-1316).
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symmetry parameters because validation is really only possible
once the obtained resolution allows an unambiguous fit of a
high-resolution PDB model. This ambiguity in 2D projections
may be overcome by additional experimental approaches to evalu-
ate the helical symmetry directly from 3D tomograms as was pre-
viously demonstrated on retroviral Mason-Pfizer Monkey virus
tubes (Bharat et al., 2012). Those initial lattice parameters can be
further refined using SPRING without the need of large-scale
exploration and validation of symmetry parameters. In conclusion,
SPRING will significantly speed up helical structure determination
by merging many processing steps into a single processing work-
flow. Furthermore, it will enable the user to address more chal-
lenging samples that exhibit significant heterogeneity in their
helical symmetries or helical order. With the advent of direct elec-
tron detectors additional improvements in image quality can be
expected and will increase the obtainable resolution of helical
specimens with fewer asymmetric units and for example facilitate
the processing of data sets of helices with different symmetry
families.

The SPRING website (http://www.sachse.embl.de/emspring)
provides a tutorial on how to process the two described micro-
graphs of the TMV data set used in this publication.
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Appendix

Ambiguous solutions observed in the mean cross-correlation
patterns are related to each other by the expression shown in Eq.
(1). Consider three one-start helices A, B and C of the same pitch
P with the number of subunits per turn N(A), N(B) and N(C):

NðAÞ ¼ Z � Df

NðBÞ ¼ Z þ Df

NðCÞ ¼ Z � Df þ 2

8><
>: ð1Þ

All numbers N can be written in the form Z + Df where Z is the
closest integer to the number of units per turn and Df the remain-
ing fractional difference to the closest integer (0 < Df <= 0.5). Those
helices represent ambiguous solutions of helical symmetry that are
observed when comparing a 2D projection of helix A, B or C with
reprojections of helices A, B and C. In the example of TMV, helix
B corresponds to the true symmetry at 16.34 subunits per turn
whereas helix A and C are incorrect symmetry at 15.66 and
17.66, respectively. The same ambiguous relationship holds true
for a set of artificial helices H1, H2 and H3 that are illustrated for
in Figure S1.

Because helices A, B and C share the fractional difference Df but
differ in Z, they will have an exact repeat after the same number of
turns t with t⁄Df being the smallest integer multiple of Df
(Table S1). As the three helices have the same pitch P, their repeat
c will occur at the same axial distance t⁄P. Therefore, the Fourier
Transform of 2D projections of those helices will be confined to
layer lines at same positions f:

f ¼ l
c

A��1 ð2Þ

where l is an integer that represents the l-th layer line. On each
layer line, the order of contributing Bessel functions n are restricted
by the selection rule

f ¼ n
P
þm

p
¼ l

c
A��1 ð3Þ

that relates the layer lines positions f to the pitch P, the rise per
subunit p and the integers n and m. By replacing the axial rise p by
the pitch over the number of subunits per turn as expressed in (1),
and writing the selection rule for the three helices A, B and C, we
obtain after simplification:

fðAÞ ¼ nðAÞþmðAÞZ
P � mðAÞDf

P

fðBÞ ¼ nðBÞþmðBÞZ
P þ mðBÞDf

P

fðCÞ ¼ nðCÞþmðCÞZ
P � mðCÞf

P þ
2mðCÞ

P

8>><
>>:

ð4Þ

If we assume that helices A, B, and C share layer line positions f,
so that

fðBÞ ¼ fðAÞ
fðCÞ ¼ fðAÞ

�
ð5Þ

We can first deduce relationships of values of m between heli-
ces A and B and helices A and C by multiplying left and right side
of (5) by P, using the expression of f given in (5), and further
simplification:

nðBÞ þmðBÞZ � nðAÞ �mðAÞZ ¼ �Df ðmðAÞ þmðBÞÞ
nðCÞ þmðCÞZ þ 2mðCÞ � nðAÞ �mðAÞZ ¼ Df ðmðCÞ �mðAÞÞ

�
ð6Þ

The left part of Eq. (6) is by definition an integer because m, n
and Z are confined to integers. In the simplest case, it follows:

mðBÞ ¼ �mðAÞ
mðCÞ ¼ mðAÞ

�
ð7Þ
We deduce a relationship between the possible orders of Bessel
function for helices A, B and C on each layer line, using Eqs. (4), (5)
and (7):

nðBÞ ¼ nðAÞ þ 2ZmðAÞ
nðCÞ ¼ nðAÞ � 2mðAÞ

�
ð8Þ

For any considered layer line, Bessel function orders of helices
A, B and C differ from each other by a factor of two. Thus, we con-
clude that the parity of Bessel function orders is conserved be-
tween ambiguous solutions.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.jsb.2013.11.003.
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