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Abstract

A finite element approach to the mechanical behaviour of braided ropes at

the scale of their internal components is proposed in this paper. The ropes

considered are composed of a few tens of textile yarns, twisted into strands,

which are then braided together. The approach aims at determining the

mechanical equilibrium of such structures, viewed as assemblies of yarns un-

dergoing large displacements and developing contact-friction interactions. To

solve this equilibrium within a quasi-static framework, and using an implicit

solution scheme, each yarn of the rope is represented by a finite strain beam

model, and special emphasis is put on the detection and modelling of contact-

friction interactions between yarns. The approach is used first to determine

the unknown initial configuration of the rope, starting from an arbitrary con-

figuration and using contact interactions together with information from the

selected braid pattern, to determine the braided structure as the solution of

a mechanical equilibrium. Comparisons are made with experimental data on
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this initial geometry. Tensile test experiments were performed to characterize

the mechanical response of both the elementary yarns and the braided rope.

These tests were simulated with the model, and results are compared with

experiment. Sensitivity analyses on design parameters showing the abilities

of the model are reported.

Keywords: braided rope, finite element simulation, contact-friction, textile

structures, tensile properties

1. Introduction

In recent years, the offshore industry has developed an increasing need

for deep sea handling systems, in order to install heavy equipment at depths

down to 3000 meters. Beyond around 2000 meters, steel cables become in-

efficient due to their heavy weight. Braided synthetic ropes appear as an

attractive alternative because of their high strength compared to weight and

ease of handling. However, these braided ropes exhibit a high sensitivity

to damage induced by their repeated passages over the sheaves of traction

winches. Damage sustained by the rope as it passes over the sheave is as-

sumed to be mainly induced by contact-friction interactions. These arise

both between the rope and the sheave, and between internal components

of the rope at different scales, which undergo relative displacements due to

the bending of the rope. In order to assess these contact-friction interac-

tions a numerical model of the rope at the scale of its internal components

is required.

The braided synthetic ropes considered in this study are made of fila-

ments arranged on three successive levels. At a first level several thousand
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filaments are assembled to form yarns. (These yarns may already be an

assembly of smaller yarns twisted together and are sometimes termed rope

yarns or assembled yarns, but we will not make that distinction here). A

few of these yarns are then twisted together to make up strands, and the

final braided rope is obtained by interweaving these strands together. The

number depends on the braiding machine and the application but 8-, 12-

and 16-strand braids are common. In this paper we will focus on a 12-strand

braid configuration. The goal of the present paper is to propose a simulation

approach, based on the finite element method, able to reproduce the main

phenomena characterizing the mechanical behavior of such ropes. Modelling

starting from the elementary filament level is out of reach of the simulation

because the rope includes tens of thousands filaments, so the proposed model

will address the structure of the braided rope at the level of its constitutive

yarns, assuming that these yarns can be conveniently represented by homo-

geneous constitutive models with appropriate characteristics.

Some modelling studies, aimed at better understanding the mechanical

behavior of ropes, are available in the literature. Previous studies were based

on assumptions about the geometry of the rope components, usually approxi-

mated by helices. Analytical developments based on the equilibrium of helical

beams allow mechanical properties in tension and bending to be assessed [1],

[2, 3]. However, this kind of development is limited by the fact that the

actual geometry of braid components is not accurately defined, although this

determines to a large extent the contact-friction interactions taking place

between them.

The search for a more precise way to determine the actual geometry of
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components within the braid has motivated more recent studies based on

numerical simulation. For this purpose, components of the braided structure

must be represented by appropriate models, and contact-friction interactions

between them must be accounted for. Miao et al. [4] used so-called digital

elements to represent yarns by series of rods connected by pins. Contact and

friction interactions were considered between nodes, and a static relaxation

algorithm was used to determine the initial configuration, starting from an

initial estimate of the structure. The method was employed to determine the

micro-geometry of 3D braided fabrics. Another way of determining the initial

geometry of the braided rope is to determine yarn trajectories by analyzing

the braiding process. Tolosana et al. [5] proposed a geometrical approach to

approximate these trajectories by means of NURBS (Non-Uniform Rational

B-splines) following the motion of bobbins within the braiding machinery.

These trajectories were then used as supports for 3D finite element models

of yarns, and the structure obtained was compacted until reaching the desired

void fraction. Pickett et al. [6] proposed a mechanical simulation of the full

braiding process, modeling the interlacing of yarns induced by the motion of

the bobbins. Due to the large lengths of yarns to be considered to model the

process an explicit dynamic simulation code is required to get a reasonable

computational time.

Instead of simulating the whole braiding process using a dynamic ex-

plicit solver, an alternative method, based on an implicit solution scheme,

is proposed here. The principle of the method is to start with an arbitrary

configuration which can be easily defined, but which displays large interpen-

etrations between yarns, and to let contact interactions gradually separate
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these yarns, until obtaining a configuration corresponding to a mechanical

equilibrium, and fulfilling the selected braid pattern.

Compared to approaches which simulate the actual braiding process, the

first advantage of the method is that the input data related to the braiding are

very easy to define: instead of having to describe the complex trajectories

of bobbins and the geometries of different tools guiding the yarns in the

process, only three integer parameters are required to fully determine the

braid pattern. Moreover, instead of having to consider yarn lengths which

are large enough to cover the distance between the different parts of the

braiding machine, the yarn lengths needed in the proposed approach may

be much shorter, as they correspond only to the length of the sample to be

tested. A last advantage of the method is related to the use of an implicit

solver. With an explicit solver, since the time step is determined by the

size of the smallest element, a very large number of steps may be needed

to simulate the relatively slow braiding process. With the implicit solver

employed in the present work, which allows rather large loading increments

to be considered, only a few tens of increments are necessary to determine

the initial configuration, the mechanical equilibrium being verified at the end

of each increment. Such an approach, previously developed for woven fabrics

[7, 8, 9], has been extended to the case of braided structures [10]. The finite

element approach employed, whose theoretical background is described in

[11], solves the mechanical equilibrium of general beam assemblies subjected

to large deformations, and developing contact-friction interactions. Emphasis

is put on the modeling of yarns by means of finite strain beam elements,

and on the detection and modeling of contact-friction interactions between
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yarns. The treatment of very large initial penetrations and the application

of appropriate periodic boundary conditions to avoid perturbations of the

solution at the ends of the studied samples, are the main difficulties faced in

adapting this general approach to the case of braided ropes.

The paper is organized as follows. Section 2 recalls the basic assumptions

of the proposed finite element approach. Section 3 describes the method to

determine the unknown initial configuration of the braided structure starting

from an arbitrary configuration. Experimental tests on individual yarns and

on the braided rope are presented in Section 4. Results from a simulation of

the tensile test, comparisons with experimental data and sensitivity analyses

are reported in Section 5.

2. Description of the finite element approach

The general approach followed by the in-house finite element code used

for this study to simulate the mechanical behaviour of fiber assemblies is

briefly presented in this section (the reader is referred to [11] for a detailed

presentation). The adaptations of this approach, particularly needed for the

determination of the unknown initial configuration of braided structures, are

the subject of the next section.

2.1. General presentation

The proposed finite element approach aims to determine the mechanical

equilibrium of assemblies of fibers undergoing large displacements and devel-

oping contact-friction interactions between them. The problem is set in the

form of a principle of virtual work, and solved using an implicit solver.
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2.2. Modeling of yarn behavior

Each yarn of the assembly is represented using a 3D finite strain beam

model able to consider planar deformation of beam cross-sections. Accord-

ing to this model, the position of any particle , identified in the material

configuration of the beam by its transversal coordinates ξ1 and ξ2, and its

longitudinal abscissa ξ3, is described as follows by three independent kine-

matical vectors defined on the line of centroids of the fiber:

x(ξ1, ξ2, ξ3) = x0(ξ13) + ξ1g1(ξ3) + ξ2g2(ξ3). (1)

In this expression x0(ξ13) stands for the position of the center of the cross-

section, and g1(ξ3) and g2(ξ3) are two section directors. No constraints are

set on these directors, and the variations of their norms and of the angle they

form allow planar deformations of cross-sections to be accounted for. A full

three-dimensional constitutive law can be used, thanks to the consideration

of cross-section deformations.

2.3. Modelling of contact-friction interactions

The detection and modeling of contact interactions which can occur at

many locations in the general assembly of fibers is a crucial task for the

simulation of such media. The reader is referred to [11] for more details on

how to perform this task.

2.3.1. Construction of discrete contact elements

The choice has been made to take into account contact interactions at

discrete contact elements distributed along contact zones in the assembly. A

contact element is defined as a pair of material particles located on the surface
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of interacting yarns, which are predicted to be likely to enter into contact.

The detection of contacts and the construction of contact elements can be

time consuming due to the large number of yarns considered. To optimize the

process, a first stage in the contact detection consists of coarsely delimiting

proximity zones between pairs of yarns. A proximity zone is defined as a

pair of intervals of curvilinear abscissa defined on the lines of centroids of

interacting yarns, the distance between any pair of points belonging to both

intervals being lower than a given distance threshold. These proximity zones

are determined by evaluating the distance between control points distributed

with a coarse discretization size on one of both yarns, and their associated

closest points on the opposite yarn (see Figure 1).
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Figure 1: Determination of a proximity zone and its associated intermediate geometry

The construction of proximity zones has two advantages. It provides first

a rough localization of contacts within the assembly of yarns, at an affordable

cost. More important, it allows the geometry of the actual contact zone to

be approximated through so-called intermediate geometries, defined as the
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average between both parts of yarns constituting the proximity zone. These

intermediate geometries are then used as a geometrical support to generate

the contact elements. These contact elements are generated at discrete con-

tact checking locations distributed on each intermediate geometry, with a

given discretization size. At each contact checking location on an interme-

diate geometry, identified by its curvilinear abscissa ζi, a contact element,

denoted Ec(ζi) is defined as the pair of material particles located on the

surfaces Γ1 and Γ2 of both interacting yarns (see Figure 2), which can be

predicted to enter into contact at this location:

Ec(ζi) =
{
ξ1i , ξ

2
i

}
∈ Γ1 × Γ2, such that

ξ1i and ξ2i are predicted to enter into contact at xint(ζi), (2)

where xint(ζi) is the current position of the contact checking point on the

intermediate geometry.

Contact search directions used to select these particles are defined from

the intermediate geometry, which appears more suitable than directions usu-

ally defined as orthogonal to only one of both contacting bodies. The dis-

cretization size between contact elements is chosen depending on the finite

element discretization size of yarns, so that the number of contact elements

remains consistent with the interpolation of displacement fields. However,

particles constituting contact elements may be located anywhere with re-

spect to the finite element mesh, and not only at nodes or some other inte-

gration points, which allows very different configurations of contact, ranging

from contact between parallel yarns to contact between orthogonally crossing

yarns, to be considered. Leech has emphasized the importance of considering

the large number of contact possibilities in ropes [12].
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Figure 2: Contact element defined at a given abscissa on the intermediate geometry

2.3.2. Expression of the gap function at contact elements

The gap function for a contact element is defined by the distance between

the pair of particles forming the element, measured according to a normal

contact direction denoted N12, and defined at this contact element:

gap(Ec(ζi)) =
(
x2(ξ2i )− x1(ξ1i ),N12(Ec(ζi))

)
. (3)

The normal direction N12 is computed according to geometrical criteria in

order to be oriented in the best way to prevent both yarns from crossing

through each other.

2.3.3. Models for normal and tangential reactions

Contact is modeled using a regularized penalty method in order to exert

opposite reaction forces on both particles of a contact element when a pene-

tration is detected. These reaction forces are assumed to evolve linearly with
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the penetration for sufficiently large penetrations, but are taken proportional

to the square of the penetration for very small penetrations belong a regu-

larization threshold. According to this strategy, the normal reaction RN is

expressed as function of the penetration gap in the following way:
if gap > 0, RN = 0,

if − preg ≤ gap ≤ 0, RN =
kc

2preg
gap2,

if gap < −preg, RN = −kc
(

gap +
preg
2

)
,

(4)

where kc is the penalty coefficient and preg the regularization threshold. This

quadratic regularization ensures a continuity of the normal stiffness when

the penetration vanishes, thus stabilizing the transition between contacting

and non-contacting status. The penalty coefficient is automatically adapted

locally for each proximity zone in order to control the maximum penetra-

tion registered on each contact zone. A regularized friction model, allowing

a small reversible tangential relative displacement before large scale sliding

occurs, is considered to represent tangential reactions. Denoting gT the tan-

gential relative displacement, the tangential RT is expressed as follows:
if ‖gT‖ ≤ grev,max, RT = µ |RN |

gT

grev,max

,

else RT = µ |RN |
gT

‖~gT‖
,

(5)

where grev,max is the maximum allowed reversible tangential displacement.

2.4. Modelling of boundary conditions

The definition of boundary conditions at the ends of the different level

subcomponents is an important issue when dealing with fibre assemblies.
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Prescribing displacements at ends of these components is necessary to ensure

the mechanical problem is well posed, but on the other hand, allowing ends

of subcomponents the possibility of rearranging is also required to take into

account the deformability of the structure at its boundaries. To meet these

competing needs, boundary conditions are controlled by associating rigid

bodies to the ends of subcomponents of different levels, and by formulating

averaged conditions for groups of ends, in accordance with the hierarchical

arrangement of the rope into yarns, tows, layers and global structure.

In the case of periodicity conditions, relationships between opposite ends

can be established and prescribed, so that the usual perturbations induced

by conditions at ends disappear, as will be shown in the examples presented

in this study.

3. Determination of the initial configuration of braided ropes by

gradual separation of yarns

A way of using the modeling of contact-friction interactions within fiber

assemblies described above, to determine the initial geometry of braided

structures, is presented in this section. Starting from a first easily available

approximation of the braid structure, defined by simple geometrical func-

tions, but allowing unrealistic interpenetrations between yarns, this mod-

elling of contact interactions is used together with information related to the

relative stacking of yarns within the braid, to gradually reduce penetrations

between yarns until obtaining an equilibrium configuration in agreement with

the selected braiding pattern.
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3.1. Principles

Although trajectories of yarns within the braid cannot be easily deter-

mined a priori, two kinds of information are however available. Correspond-

ingly with the global helical arrangement of the rope, a first rough approx-

imation of the geometry of tows can be made by helices characterized by

their twist pitch and their radius. In addition, the selected braiding pat-

tern specifies, at each crossing between tows, which tow should be above or

below the other. Mixing this information, the principle of the proposed ap-

proach is to start from a configuration where tow and yarn trajectories are

respectively described by simple and double helices, but which displays large

inter-penetrations between intersecting yarns, and to use the stacking order

defined by the braiding pattern to orient contact interactions in order to move

inter-penetrating yarns away from each other. Applying this method, initial

penetrations between yarns are very large compared to their radii, which

raises difficulties regarding the convergence of contact algorithms. Adapting

the orientation of the normal contact direction and gradually reducing the

gap at contact elements are two improvements to the usual contact algo-

rithms that enable the determination of the initial configuration.

3.2. Adaption of the normal direction

In the standard contact algorithm, the normal contact direction, entirely

defined by the relative positions of contact particles and by the local geome-

try of interacting beams, determines the orientation according to which these

particles are not allowed to inter-penetrate. Consequently, a particle initially

located above another will be forced, by contact conditions, to remain on the
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same side defined by the normal contact direction. However, when determin-

ing the initial configuration, the repulsion direction should not be determined

by the relative positions of particles, but by the stacking order prescribed by

the weaving pattern. For the repulsion direction to be in accordance with

the braiding pattern, the sign of standard normal contact direction is simply

changed depending on the stacking order between the crossing tows.

3.3. Gradual reduction of contact gaps

Attempting to reduce large initial penetrations between yarns in only one

step induces instabilities that prevent the convergence of contact algorithms.

To stabilize contact algorithms, gaps are gradually reduced step by step dur-

ing the determination of the initial configuration according to the following

algorithm, by defining a maximum gap reduction per increment, denoted

δ gapmax. Let gapini denote the value of the gap for a given contact element

at the beginning of the step. The principle of the gradual reduction of the

gap is to retain as the value of the gap to be considered to calculate the

normal reaction using Eq. 4, the difference between the actual gap and the

initial one, reduced by the allowed gap variation δ gapmax (see Fig. 3). In-

stead of using the standard gap to evaluate the normal reaction, this reaction

is calculated using a modified gap, denoted gap∗ and defined as follows: if gap ≥ gapini−δ gapmax, gap∗ = gap,

else gap∗ = gap−
(
gapini − δ gapmax

)
.

(6)

In this way, for each loading increment, the variation of the gap at every

contact element is limited by the parameter δ gapmax, which allows the rate

of the separation between yarns to be controlled.
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Figure 3: Definition of the modified gap used for the process of gradual reduction of gaps

The standard contact algorithm is applied once the initial configuration

has been computed.

3.4. Application to the case of braided ropes

To apply this gradual separation process to the case of braided ropes, we

need to define the first approximation of the geometry to start from, and

to determine the stacking order at each crossing between yarns from the

definition of the selected braiding pattern.

3.4.1. Definition of the arbitrary starting configuration

Yarns within a braided rope are arranged according to two successive lev-

els. They are first twisted to form elementary strands, which are themselves

braided together. As arrangements at both levels are characterized by a pitch

length and a mean radius around a revolution axis, we propose to define the

yarn trajectories in the first starting approximation for the braid geometry

by double helices.
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The geometrical parameters needed to define this configuration are the

helix pitch pstrand and the helix radius ρstrand for strands, and the helix pitch

pyarn and the helix radius ρyarn for yarns within the strand, together with the

radius of yarns ryarn (see Figure 4a). In order to have a periodic structure,

the length of the starting configuration is taken as a multiple of the strand

helix pitch pstrand, which should itself be a multiple of the yarn helix pitch

pyarn.

ρ
yarn

p
yarn

ρ
strand

p
strand

2r
yarn

braid strand 

(a) (b)

Figure 4: a: Geometrical parameters defining the double helices of yarn trajectories in

the arbitrary starting configuration; b: Detail of the starting configuration showing initial

interpenetration between yrans

3.4.2. Taking into account the braid pattern

With the description of the starting configuration above, the strands from

different layers are inter-penetrating each other. Based on the braid pattern

at each crossing, it is possible to determine which strand is below or above the

other at the crossing between two layers. The elementary motif, consisting
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of superposed layers, is periodically repeated. For the rope considered in

this study, a strand passes twice over then twice under the strand of another

layer with a shift of 1 in the same layer (called braid pattern). Further, a

couple of strands from two layers will meet twice in a period according to the

change of their relative position, and a strand will also intersect each strand

from another layer twice, with possibly different stacking orders (Figure 5).

Therefore, the elementary motif is the two-dimensional matrix, in which the

size is twice the number of strands per layer. The stacking order is determined

by the function Braid pattern(s1, s2), taking its value in {−1,+1}, s1 and

s2 standing for the numbers of the strands from both layers relatively to the

elementary motif, Figure 6.

yarn 2

yarn 1

yarn 2
above

yarn 1
above

Figure 5: Alternate stacking order at successive crossings between two yarns

Now, we take back any intersection between two yarns ya and yb, belong-

ing to two different strands sa and sb from both layers, to the elementary

motif (Figure 6). In the cylindrical coordinate system (φ, z), the vectors

which decide the shift between two intersections of a couple of strands are
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yarns: same strands intersect repeatedly with different stacking orders depending on their

position with respect to the local motif

D1 = (180◦, pstrand

2
) and D2 = (−180◦, pstrand

2
). The direction of each vector

corresponds to that of a layer of assembled yarns and the length measures

the distance between two intersections (same state of superposition) of a pair

of assembled yarns. Now we determine the superposition of a pair of strands

at a given crossing. A crossing point belonging to strand 1 and strand 2,

is described by the vector V c in the plane (φ, z). The difference between

this vector and the vector at the first intersection is dV = V c − V 0. The

components (µ1, µ2) of dV in (D1,D2) are calculated:

dV = µ1D1 + µ2D2.

These components (µ1, µ2) are changed into integer values (µ∗
1, µ

∗
2) in the

following way:

µ∗
1 = Floor(µ1 +

1

2
), µ∗

2 = Floor(µ2 +
1

2
),
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where Floor(•) denotes the floor function, giving, for a real value, the highest

integer which is lower than this value. Integer components with respect to

the local elementary motif, denoted (λ1, λ2), are then obtained by taking

these values modulo 2:

λ1 = µ∗
1 − 2× Floor(

µ∗
1

2
), λ2 = µ∗

2 − 2× Floor(
µ∗
2

2
).

Finally, the stacking order between yarns ya and yb, belonging to strands sa

and sb is determined using the braid pattern function:

Stacking order(ya, yb) = Braid pattern(sa + λ1 ×N1, sb + λ2 ×N2),

where N1 and N2 are the numbers of strands in the first and second layer of

the braid.

3.4.3. Boundary conditions at ends

During the determination of the initial configuration, considering a pe-

riodic sample, periodic boundary conditions are prescribed in transverse di-

rections to the rope. In the longitudinal direction, displacements are fixed at

one end of the rope, while all yarns are connected, at the other end, to the

same rigid body, to which is a small tensile force is applied.

3.4.4. Gradual reduction of initial gaps for the determination of the initial

configuration

According to the process described above, yarns, initially strongly inter-

penetrating each other in the arbitrary starting configuration, are gradually

moved away from each other by the actions of contact-friction interactions,

which have been reoriented in order to fulfill the stacking order defined by
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the braid pattern, as shown in Figures 7 and 8. This rearrangement process

results in deformations in yarns, mainly in terms of elongation, bending and

torsion, which are taken into account by the beam model employed. This

way, the initial configuration is obtained as the solution of a mechanical

equilibrium.

Figure 7: Cross-section at the successive steps during the determination of the initial

configuration of the braided rope

Figure 8: Evolution of the shape of the rope at the successive steps during the determi-

nation of its initial configuration
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4. Experimental tests

Experimental tests were carried out to identify the mechanical properties

both at the level of a braided rope, and at the level of individual yarns

making up this rope. Axial stiffnesses identified on individual ropes are used

as input data for the numerical model. The force/strain curve experimentally

obtained for the considered rope will be compared to the one resulting from

simulation.

4.1. Layout of the rope

The ropes considered in this study are AmSteel BlueTM braids manufac-

tured by Samson. They are made of 12 strands, arranged into two layers of

6 strands each. All strands are identical, and made of 7 twisted yarns. The

fibre material is HMPE (high modulus polyethylene).

4.2. Yarns

4.2.1. Test procedure

Tensile tests were performed on an Instron 10 kN capacity electro-mechanical

test frame. Samples were extracted from a rope section. Their lengths and

weights were measured accurately. They were then placed in special pneu-

matic clamps which limit end stress concentrations. A small preload (5-10

N) was applied to tension the sample and measure the initial length. The

distance between clamps was 300mm.

Elongations were measured using an in-house video extensometry system

based on two digital cameras. Two black markers are attached to the sample

and the cameras follow their movement. The initial distance between the

markers, L0, is measured and image analysis software enables the strain to
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be determined. Load is also recorded continuously. The loading rate was 10

N/s.

Figure 9: Experimental setup for identification of tensile properties of yarns

4.2.2. Test results

Two types of test were performed on yarns. In the first, the samples were

simply loaded directly to failure (Figure 10a). In the second, 5 bedding-in

cycles were applied at a load of 600N and then the sample was loaded to

failure (Figure 10b). Table 1 summarizes the results. A mean curve was

constructed by determining the mean force value from all the tests at each

strain value.

Initially (01.2% strain), the slope is concave. As the load increases the
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(a) Tensile tests with straight ramp to failure
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(b) Tensile tests with bedding-in cycles

Figure 10: Examples of results from tensile tests on yarns

fibres become more organized. The bedding-in of the fibres in this initial

region is due to both a molecular reorientation within the fibres, and a reori-

entation of the fibres in the yarns [13]. Beyond this region the curve becomes

linear and the slope is defined by a least squares adjustment. Yarn cross sec-
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tional areas may be estimated by evaluating experimentally their mass per

unit length, and by dividing this lineic density by the volumic density of the

material. For the samples studied, a typical value of 2.06 mm2 is obtained.

Because of the difficulty in defining the cross-section of the yarns, the axial

stiffness (EA) is determined rather than Young’s modulus, Table 1.

Failures were observed to occur both near the sample ends and in the cen-

tral section, no significant difference was noted for strengths corresponding

to the two failure locations.

No bendding-in After bedding-in cycles

Number of tests 6 11

Average axial stiffness (kN) 161 162

Standard deviation (kN) 6 4

Table 1: Identified stiffness characteristics of yarns

4.3. Braided ropes

4.3.1. Test procedure

The rope tests were performed on a 1000 kN capacity 10 meter long

hydraulic test machine. Samples were 8 meters long and terminated with

spliced loops, which were placed over 100mm diameter loading pins at each

end of the test frame, Figure 11. Elongations were measured using the same

in-house video extensometry system based on two digital cameras as for the

yarn tests. In this case the cameras were mounted on a rail above the test

machine. Loading rate was 20% of break load per minute. This is the same

global rate as for the yarn samples, although the yarns in the rope will
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see a slightly lower rate, depending on their location, due to the angular

construction. During the first loading the orientations cause a stiffening

effect. The transverse section stabilizes progressively under load. Also, when

load-unload cycles were applied before the break tests both hysteresis and

plastic behavior was noted.

Figure 11: Test frame for rope tests. Left: Overview showing cameras above test frame.

Right: Rope in place during test.

4.3.2. Test results

Load-elongation plots from four rope tests are shown in Figure 12. Fig-

ure 12a shows one direct and three tests with 5 cycles of load-unload, while

Figure 12b shows the first and last bedding-in cycles of one of these tests.

The hysteresis observed on the curves may be due both to material effects,

similar to those displayed on yarns (Figure 10b), and to dissipation by fric-

tion induced by a gradual rearrangement of yarns. The hysteresis tends to

decrease with number of bedding-in cycles, most of the residual strain is re-

moved during the first cycle, and the form of the curve then becomes more

linear. The stiffness of rope was calculated based on the linear part of the
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final curve, Table 2.

(a) One direct test and three with bedding-in

(b) Detail of test showing first and last bedding-in

cycles

Figure 12: Tensile tests on braided rope samples

Number of specimens 4

Average axial stiffness (kN) 9512

Standard deviation (kN) 82.3

Table 2: Identified stiffness characteristics of braided rope

26



4.4. Relationship between yarn and rope stiffness

The effect of the braiding and twisting is demonstrated by the reduction

of the axial stiffness between the two scale levels of the structure, yielding a

transfer coefficient of stiffness from yarn to rope of around 70%.

Ceff =
Kbraid

nyarn ×Kyarn

=
9512

12× 7× 162
≈ 0.0699.

5. Simulation results

5.1. Modeling at the level of elementary yarns

The braided synthetic ropes considered here are composed of filaments

arranged into components of two levels, respectively yarns and strands, be-

fore forming the rope. In order to model the yarns, made of bundles of

filaments, they are assumed to deform as a continuous and homogeneous

medium. Some corrections to the 3D constitutive model are needed to ac-

count for the fact that the bending and torsional stiffness of yarns are much

lower than those of an equivalent solid material, due to the relative motions

allowed between filaments. For this reason, the stiffness terms involving the

moment of inertia of yarn cross-sections are multiplied by a correction factor

taking into account their multi-filamentary structure. In first approximation,

neglecting friction effects between fibres, bending and torsional stiffnesses of

a bundle of fibres can be estimated by taking the corresponding stiffnesses

of an equivalent beam, made of the same material, with an equivalent cross-

sectional area, and by dividing these stiffnesses by the number of fibres in the

bundle. The correction factors used have been taken approximately equal to

the inverse of the number of filaments constituting the yarns. The value of
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the Young’s modulus of yarns is determined by dividing the axial stiffness

(EA) experimentally identified to be 162 kN (Table 1), by the area of the

cross-section of beams considered in the model.

5.1.1. Rope architecture

The rope samples studied are made of 12 strands, divided in 2 layers,

each strand consisting of 7 yarns (figure 13), making a total of 84 yarns. The

length of the samples modelled was taken twice the pitch of the rope.

pitch of rope: 132 mm

rope sample:
2 layers

1 layer:
6 strands

1 strand:
7 yarns

di
am

et
er

 o
f 

ro
pe

:
20

 m
m

Figure 13: Architecture and dimensions of the rope samples studied

5.1.2. Geometrical validation

Two comparisons were made based on geometry to validate the numerical

model. The main geometrical features of the real sample and the model

sample are compared in Table 3. The geometrical parameters defining the

arbitrary starting configuration are fitted so as to obtain a good agreement

between the actual and the modeled samples.

The comparison between a cross-section of the rope obtained by X-ray

tomography and a cross-section of the initial configuration resulting from
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Real sample Model sample

Diameter of yarn (mm) 0.83 0.86

Diameter of rope in tension (mm) 19.0 20.0

Pitch of rope (mm) 132 132

Table 3: comparison of geometrical features between the real and the modeled samples

simulation provides a second qualitative validation (Figure 14). Similar voids

are observed in the central area of the rope.

Figure 14: Comparison between a cross-section of the initial configuration determined by

simulation and an X-ray tomography image of the rope

5.2. Simulation of a tensile test

5.2.1. Comparison with experimental data

A tensile test was simulated by applying an incremental displacement to

the end of the modeled sample, after having determined its initial config-

uration. The force/elongation curve, resulting from simulation, is plotted

in Figure 15, and compared with experimental data. Good agreement is

obtained for the axial stiffness in the linear part of the curves. The axial
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stiffness determined from simulation was 9880 KN whereas the mean value

identified by experiment was 9512 KN (values from all 4 rope tests).

Figure 15: Comparison between force/elongation curves obtained experimentally and by

simulation

5.2.2. Axial stresses in yarns

Axial stresses at the scale of individual yarns (Figure 16), derived from

simulation, show a large heterogeneity, first between yarns, and second along

each yarn. This heterogeneity in axial stresses results both from variations of

the local curvatures of yarns and from load transfer between yarns induced

by tangential friction interactions. The friction coefficient was taken equal

to 0.1, in agreement with values between 0.08 and 0.11 for friction of HMPE

fibers on steel reported in [14].

5.2.3. Parameter sensitivity analysis

Helix pitch length. The axial stiffness of the rope depends on the local orien-

tation of yarns with respect to the rope axis. An efficiency coefficient Ceff ,
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Figure 16: Axial stresses in yarns within a rope subjected to a 70 kN load from left to

right; global view of the rope, section along the rope, and view of an individual strand

evaluated by dividing the axial stiffness of the rope by the sum of the axial

stiffnesses of yarns, can be used to characterize this effect. The average elon-

gation of yarns is related to the rope elongation through a coefficient cosα,

where α is the helix angle of strands, whose tangent can be calculated as a

function of the strand helix radius ρstrand and the strand helix pitch pstrand

as:

tanα = 2π
ρstrand
pstrand

.

Since the contribution of each yarn to the load in the axial direction of the

rope is affected by a coefficient cosα, the axial stiffness of the rope should

evolve linearly with the coefficient (cosα)2. To verify this effect, the same

procedure (determination of the initial configuration and simulation of a

tensile test) was applied to four different samples, only varying the strand
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helix pitch. Figure 17 shows an example of the sections for 3 pitch angles.

The evolution of the rope axial stiffness with the coefficient (cosα)2, plotted

in Figure 18, shows a linear relationship.

Figure 17: Section through braided ropes with three pitch lengths, (green 121mm, violet

131mm, blue 153mm)

Figure 18: Evolution of the rope axial stiffness with the (cosα)2 coefficient
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Friction coefficient. A sensitivity analysis was also performed to examine the

influence of the friction coefficient between yarns on the response of the rope.

This coefficient affects load transfers between yarns, and consequently the ax-

ial stresses distribution. The same tensile test simulation was run with three

different values of the friction coefficient between yarns: 0.003, 0.03 and 0.1.

The corresponding loading curves are plotted in Figure 19. The variation of

the friction coefficient influences only the beginning of the curve correspond-

ing to nonlinear geometrical effects: the increase of the friction coefficient

reduces the ability of yarns to rearrange in order to fill voids between them.

However, once these initial gaps between yarns have vanished, the rope axial

stiffness no longer depends on the friction coefficient, which suggests that

friction has little influence on this tensile behaviour. The friction coefficient

has nevertheless a large influence on the stress distribution among yarns, as

shown in Figure 20. There is a much larger variability in loads when the

friction coefficient is higher, which can be explained by non-uniform load

transfers between yarns resulting in local stress concentrations. The fric-

tion coefficient will therefore be expected to affect damage development and

failure load.

6. Conclusion

A numerical model of braided ropes has been proposed, which takes into

account contact-friction interactions between elementary components within

a large deformation framework. The approach is first employed to determine

the unknown initial configuration, starting from an arbitrary configuration

in which yarns inter-penetrate each other, and letting contact-friction inter-
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Figure 19: Loading curves for the tensile test simulation with three different friction

coefficients

Figure 20: Stress distributions among yarns for the tensile test with two different friction

coefficients, 0.003 and 0.1

actions gradually separate these yarns until reaching the mechanical equilib-

rium. Geometrical features of this initial configuration are compared with

measures on real samples and a good agreement is found. The model is then

used to simulate tensile tests on braided ropes, and again good agreement

with experimental data is obtained. The model can be used to study the

influence of various design parameters on the mechanical response of the
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rope. It provides detailed information at the scale of individual yarns, which

allows local phenomena taking place at this scale to be examined. In par-

ticular, load transfers between yarns due to friction, inducing heterogeneous

distributions of stresses, are highlighted. The model developed is now being

used to study more complex phenomena regarding braided synthetic ropes,

and in particular the fatigue damage generated by repeated bending over

sheaves. This work will be presented in a subsequent paper.
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