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Abstract Minimum cost paths have been extensively

studied theoretical tools for interactive image segmen-

tation. The existing geodesically linked active contour

(GLAC) model, which basically consists of a set of ver-

tices connected by paths of minimal cost, blends the

benefits of minimal paths and region-based active con-

tours. This results in a closed piecewise-smooth curve,

over which an edge or region energy functional can be

formulated. As an important shortcoming, the GLAC

in its initial formulation does not guarantee the curve

to be simple, consistent with respect to the purpose of

segmentation. In this paper, we draw our inspiration

from the GLAC and other boundary-based interactive

segmentation algorithms, in the sense that we aim to

extract a contour given a set of user-provided points,

by connecting these points using paths. The key idea is

to select a combination among a set of possible paths,

such that the resulting structure represents a relevant

closed curve. Instead of considering minimal paths only,

we switch to a more general formulation, which we re-

fer to as admissible paths. These basically correspond to

the roads travelling along the bottom of distinct valleys

between given endpoints. We introduce a novel term to
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favor the simplicity of the generated contour, as well as

a local search method to choose the best combination

among possible paths.

1 Introduction

1.1 Related work

Methods addressing the problem of two-phase seg-

mentation based on energy minimization techniques

provide a solid mathematical background, and have

proven to find suitable solutions in many practical sit-

uations. Among them, many methods are interactive,

in the sense that they require user-defined information,

provided prior to the optimization process or during
the different steps of segmentation. For instance, in

the case of local optimization methods, such as active

contours or level sets driven by gradient descent of

the energy [11], the interaction serves to provide an

initialization that one hopes to be relatively close

to the final solution. We especially focus on prior

interactions, which may be roughly classified into two

types. They may be region-based, in which case the

user quickly draws scribbles that will be used as region

seeds. Particular graph cut-based methods [6, 43],

random walks [20] or the lazy snapping algorithm [27]

fall into this category. Level sets also lend themselves

to region-based user interactions, which were used

as hard constraints [18] or soft contraints to guide

the segmentation [4, 14, 22]. Interactions can also be

boundary-based, in which case the user draws a curve,

e.g for parametric active contours [21, 23], or provides

a set of landmark points that will be linked by curves

satisfying, among others, smoothness conditions and

fitting to the image data. Significant examples include
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the intelligent scissors (or live-wire) [34] and their

on-the-fly extension [17], or the riverbed algorithm [33]

based on the image foresting transform [16].

Interactive segmentation methods constrained by

user-provided landmark points very often rely on

minimum cost paths, which may be expressed either

within a discrete or a continuous framework. In the

discrete setting, the image domain is structured as a

graph following the grid connectivity. Depending on

the model, nodes can be pixels [34] or pixel vertices [17]

- also referred to as pointels, for point element - so

that arcs are edges between pairs of pixels or pixel

boundaries - linels, for line element - respectively. In

any case, relevant image contours are sought as paths,

i.e. ordered loopless sequences of adjacent nodes, mini-

mizing some cost functional. The most natural case is

the additive cost function, allowing boundaries to be

computed thanks to Dijkstra’s shortest path algorithm,

as in [17, 34], but more general cost functions have

also been studied [33].

In the continuous setting, many boundary-based

interactive segmentation methods fall into the broad

domain of curve optimization. Optimal cost bound-

aries were addressed under the framework of minimal

paths introduced by Cohen and Kimmel [12]. They

proposed to find a global minimum of the geodesic

active contour functional [9], provided that one or

two points of the target object boundary are initially

supplied by the user. The resulting geodesic curve,

which can be respectively closed or open, is efficiently

computed through the solution of the Eikonal equa-

tion, numerically solved using the Fast Marching

method [39, 41]. Another significant contribution

to globally minimal curves was made in [2] with a

different approach relying on continuous maximal

flows. Unlike graph-based methods, which are discrete

by essence, the minimal path method is a discretization

of a continuous problem, and hence does not suffer

from metrication errors [12]. To some extent, in a

different trend than convex relaxation and dual mini-

mization schemes [10, 7], the minimal path approach

addresses the issue of sensitivity to local minima of

“old-fashioned” edge-based active contours and level

sets [9, 23, 28], which are driven by gradient descent of

the Euler-Lagrange equation derived from the energy.

Extensions of the minimal path algorithm include

implementations dedicated to interactive segmentation

using multiple endpoints [19] and more recently to

complex curves with arbitrary topologies [24]. Whether

discrete or continuous, optimality is a major advantage

of path-based methods, since in most cases, a minimum

cost path can be efficiently found as the global solution

of the corresponding minimization problem. In order

to fit paths to image contours, the cost function is

most often chosen as a decreasing function of the

image gradient magnitude. The reader will notice that

path denotes both an ordered sequence of connected

nodes in a graph or an open continuous regular curve

between two endpoints.

In their basic formulations, minimum cost path

algorithms extract open curves between two fixed

endpoints. For practical segmentation, i.e. extraction

of closed contours, one needs to modify and/or con-

strain the original frameworks. On the one hand, a

class of methods require minimal interaction, i.e. a

single user-provided point on the object boundary.

For instance, the construction of a closed curve from

a single point was considered in [12]. Thanks to the

Fast Marching algorithm, the minimal action map, or

geodesic distance map, is propagated from the origin

point. The first point where the front collides with

itself, namely a saddle point, is detected and taken

as the origin of two opposite backpropagations, both

sides apart from the colliding location, so that the two

resulting paths can be assembled in order to form a

closed contour. Benmansour and Cohen [5] proposed

to recursively detect intermediate keypoints during

the propagation, with respect to a stopping criterion

based on the Euclidean length of minimal paths. Each

detected keypoint is taken as the origin of a new

propagation, until the first point is reached again, thus

making a closed contour. On the other hand, closed

contours may be constructed by linking together n

ordered user-provided landmark points with minimum

cost paths. The resulting contour can thus be referred

to as piecewise-geodesic. In the same way that at least

three vertices are necessary to define a polygon, it is

naturally assumed that n ≥ 3. Significant examples

include the Riverbed algorithm by Miranda et al [33].

Whether based on a single or several user-provided

point(s), the previous approaches were not designed

to consider the regions inside and outside the contour

in the optimization process. Indeed, they fall into the

“edge-based only” category of segmentation methods,

the edge-fitting criterion being indirectly contained in

the definition of minimum cost paths. However, adding

region homogeneity terms into the energy functional

has proven to go beyond limitations of “edge-based

only” energies, and may lead to more accurate seg-

mentation, e.g. in case of images exhibiting noise, lack

of sharp contours or cluttered background. Global

statistical data computed over the entire regions is

a well established technique to improve the behavior

of variational segmentation methods. Widely used

region homogeneity terms are particular instances of

the Mumford-Shah functional [35] - like the piecewise
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constant intensity model by Chan and Vese [11], the

piecewise smooth model [8], localized versions of these

models [26] or extensions to higher level features such

as texture descriptors [36, 38, 42] - or rely on color

probability distributions - like the maximum-entropy

energy [25] or the maximum discrepancy between

inner and outer color distributions [29]. Region-based

variational methods usually perform an iterative

evolution of the contour - on a parametric curve or a

level set function - in order to minimize the energy.

However, if one desires to integrate region terms into

segmentation methods relying on minimal paths, one

quickly gets faced with a “chicken and egg” dilemna:

inner and outer regions are well defined only when the

contour is closed. Thus, region homogeneity can be

expressed and optimized, even locally, only when all

minimal paths are available. However, if one wishes to

compute minimal paths exactly and in agreement to

some region homogeneity criterion, the regions should

already exist. Hence, minimal paths and region-based

energies cannot be held together in a classical varia-

tional framework.

The geodesically linked active contour (GLAC) model

was introduced by Mille and Cohen [32] as a heuristic

approach for combining the benefits of boundaries

defined by minimal paths and the use of region terms in

the energy functional. It basically consists in evolving

a set of n variable points in discrete local search

windows so that, at every step of the evolution, the

piecewise-geodesic curve linking the vertices together

minimizes a combination of edge and region terms.

Each point is iteratively moved to the location for

which the corresponding piecewise-geodesic curve

locally minimizes the energy. This model may be

viewed as a classical active contour, with control

points remaining linked by minimal paths. Generally, a

requirement on the recovered object boundary is that it

should be simple, i.e. without double point. While the

GLAC is relatively robust to local minima, it can fail

to construct a simple curve, as several minimal paths

emanating from different points may partially overlap.

This can occur at the initialization step, or during

the evolution, particularly when few control points

are used. This heavily diminishes the benefits of the

approach, as the small amount of required input points

is supposed to be one of the desirable features of the

GLAC. Building upon this model, the purpose of the

current work is to define a closed boundary, assembled

from several piecewise-geodesic curves derived from

the minimal path approach, which is able to satisfy a

region homogeneity term while avoiding self-overlap

and self-intersection issues.

1.2 Overview of the proposed method

When linking two given endpoints with a path, the key

idea is that we should not limit ourselves to the mini-

mal one. We propose to generate several relevant paths

between landmark points and to select the combina-

tion of paths generating the best closed contour. To

this end, we introduce an energy functional, combining

contour and region terms with a novel term favoring

the simplicity of the curve, penalizing self-overlap and

self-intersections. Our contribution is threefold:

– Definition and construction of admissible paths: a

path between two endpoints may be optimal accord-

ing to the edge-based cost function, but might turn

out irrelevant when assembled with paths emanat-

ing from other endpoints to build a closed contour.

Given two endpoints, other good paths can be built

in addition to the shortest one. We will define what

“potentially good” paths are, and how they are gen-

erated.

– Design of the simplicity energy : we should define

how to measure the consistency of a combination

of paths with respect to the segmentation purpose.

This combination should be located on actual image

edges, split the image into regions matching some

homogeneity criterion, and be simple from a geo-

metrical point of view. In other words, we should

penalize contours that self-overlap or intersect.

– Heuristic optimization: exhaustive enumeration of

all possible combination of paths leads to an ex-

ponential complexity. We define a greedy search

method to determine a relevant combination of

paths in reasonable time, following the natural evo-

lution of an active contour.

First, the concepts which the proposed approach rely

on are presented. The minimal path approach and

the GLAC are detailed. Secondly, we focus on the

study of valleys on the geodesic distance map, lead-

ing to the definition of admissible paths. Then, the

various energy terms are formulated. Among oth-

ers, we present the novel simplicity term. The local

search method to find a good enough combination of

paths is explained, followed by remarks on discretiza-

tion and implementation. Finally, experimental results

demonstrate the ability of our model to perform accu-

rate object segmentation on a well-established dataset.

We show the influence of the various energy terms,

and provide comparisons against related existing al-

gorithms. The current document is an extended ver-

sion of a previous shorter paper by the same au-

thors [31]. Appendix B, which describes implementa-

tion details, is provided in a supplemental document

available at http://liris.cnrs.fr/∼jmille.
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2 Background

2.1 Minimal paths

To extract structures in a given image I :D→R, Co-

hen and Kimmel [12] proposed to find curves of mini-

mal length according to a heterogeneous isotropic met-

ric defined from a potential P :D→R+. This potential,

which is chosen to take lower values on the structure

of interest, allows to measure the length of piecewise

smooth curves C : [0, 1]→D as follows 1:

L[C] =

∫ 1

0

P (C(u)) ‖C′(u)‖ du. (1)

In the context of contour extraction, curves should be

located along edges. The potential is thus defined as

P (x) = g(x) +w, where g :D→R+ is a decreasing func-

tion of the gradient magnitude of the image at some

scale s, usually obtained by convolution with the gradi-

ent of a Gaussian kernel Ks with standard deviation s

and w∈R∗+ is the weight of the Euclidean distance

component, acting as a regularizing constant. A com-

monly chosen edge detecting function is:

g(x) =
1

1 + ‖∇Ks ∗ I(x)‖ .
(2)

The target image structure is then extracted by finding

a path of minimal length among all paths connecting

two given points a and b located on the structure

γa,b = argmin
C⊂D

{L[C]} s.t.

{
C(0) = a

C(1) = b.
(3)

Such a globally defined minimal path is called a
geodesic. The solution of minimization problem (3) can

be obtained by considering the geodesic distance map,

also referred to as the minimal action map, Ua :D→R+

which assigns, to each point x∈D, the length of the

minimal path connecting x to a given point a∈D:

Ua(x) = inf
C
{L[C]} s.t.

{
C(0) = a,

C(1) = x.
(4)

This map is the unique viscosity solution of the Eikonal

equation{
‖∇Ua(x)‖ = P (x), ∀x ∈ D \ {a},
Ua(a) = 0,

(5)

see for instance [13]. This allows to replace optimiza-

tion problem (4) by a partial differential equation.

Its discrete version, on a cartesian grid, can be effi-

ciently solved by the Fast Marching (FM) method in

1 Note that, in the entire paper, curves will be assumed to
be defined over the normalized range [0, 1]

O(N logN) operations, where N is the number of grid

points [41, 39, 40]. Once the distance map has been nu-

merically computed, the minimal path from any point x

of D to a can be extracted by a gradient descent on Ua, γx,a
′(u) = − ∇Ua(γx,a(u))

‖∇Ua(γx,a(u))‖
,

γx,a(0) = x,

(6)

where ′ is the derivative with respect to u. This corre-

sponds to a back-propagation from x to a. The poten-

tial being isotropic, and thus independent from the di-

rection, γa,x can be obtained by simply reversing γx,a.

In practice, since the FM is a monotonically-advancing

front propagation method, finding the minimal path

between two points does not require to compute the

distance on the whole domain D. Starting from one

point, the FM can be stopped when the second point

is reached, ensuring that the minimal path can be ex-

tracted with (6).

The minimal path approach is not restricted to extract

an open curve, provided its endpoints. In particular,

in the context of object extraction, it is able to find

a closed curve, given only one point on the target ob-

ject boundary. The closed curve is obtained by detect-

ing a saddle point of the distance map and then by

performing two back-propagations, in opposite direc-

tions, starting from this saddle point [12]. At this stage,

we do not provide a precise mathematical definition of

saddle points yet. As they are used in the current pro-

posed approach, a formal definition is given in Section 3.

Whether the curve is closed or open, the minimal path

approach can fail to extract the desired curve. As de-

picted in Fig. 1(d), some portions of the minimal path
do not follow the desired curve. This happens for in-

stance when P is too noisy or not contrasted enough,

when the length of the target curve is too important,

or when the regularization constant w is too high. This

undesirable behaviour hides a sampling problem, that

is one or two points may be insufficient to capture the

whole desired curve.

2.2 The geodesically linked active contour model

In order to extract closed contours using minimal paths,

Mille and Cohen [32] proposed the geodesically linked

active contour (GLAC) model, represented by a closed

piecewise-smooth curve, allowing initialization inside

the object or around the object boundary. The opti-

mal contour is searched for among a space of piecewise-

defined curves. These ones are generated by concate-

nating geodesic paths, i.e. joining them end-to-end,

which are built from a set of vertices V = {vi}1≤i≤n,
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(a) (b)

a

b
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v2
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v1

v2v3

(e) (f)

Fig. 1 (a) Input image. (b) Potential P . (c) With a suffi-
ciently low regularization weight w, the geodesic between two
given points follows the object contour. (d) Due to an ex-
cessive regularization weight w, the geodesic makes an unde-
sirable shortcut. (e) Relevant piecewise-geodesic curve with
evenly spaced vertices. (f) Undesirable overlapping with un-
evenly spaced vertices

with n ≥ 3. Let Γ be the closed contour resulting from

the assembly of geodesic paths γvi,vi+1
. It is important

to keep in mind that a concatenation of geodesics is

not a geodesic itself, thus it is relevant to refer to Γ as

piecewise-geodesic.

The GLAC model implements an evolution method

which enables to move the vertices so as to minimize the

energy. Indeed, the authors handled the case in which

vertices could be located either outside or inside the

object boundary. Since we focus on interactive segmen-

tation with a set of fixed landmark points, we believe

this deformation step to be beyond the scope of this

paper and will not describe it. While the GLAC allows

to blend the benefits of minimal paths and region-based

terms, it turns out to have a significant drawback, as its

initial state is not necessarily a simple closed curve. As

depicted in Fig. 1(f), this can occur when the initial ver-

tices are unevenly distributed around the target bound-

ary. In this case, geodesics gather on particular sides of

the target boundary, as γv2,v3 takes a way opposed to

the expected one, and overlaps γv1,v2 and γv3,v1 . The

reason is that each geodesic is generated independently

of the others, such that the obtained piecewise-geodesic

curve does not depend on the visiting order of pairs of

adjacent vertices. This undesirable phenomenon may

occur either as soon as the GLAC is initialized, or after

several evolution steps on a previously well initialized

contour.

As in Section 2.1, this problem can be seen as a

sampling one. Intuitively, one could think of impos-

ing evenly spaced vertices, as depicted in Fig. 1(e), or

adding vertices near the parts of the target boundary

which are not covered by the piecewise geodesic curve.

In the considered context, such sampling criteria are

difficult to express, since the target boundary is un-

known and applications usually need minimal user in-

teraction. Otherwise, one could think of imposing hard

constraints on the overlap between paths or penalizing

paths enclosing a region with excessively small area,

but the independent construction of paths, which al-

lows parallel implementation, prevents such constraints

to be implemented.

2.3 The geodesically linked active contour model with

multiple disjoint paths

To overcome the drawbacks of the GLAC, the authors

studied in [30] a more relevant contour construction

preserving the advantages of piecewise geodesic curves.

Assuming that several possible paths linking successive

vertices are available, the key idea consists in selecting

the paths generating the most relevant boundary curve.
For each pair of successive vertices vi and vi+1, a set Ai
of K short paths is considered:

Ai = {γi,j}1≤j≤K.

Paths in Ai are disjoint and sorted by cost in ascend-

ing order, so that γi,1 actually corresponds to the min-

imal path between vi and vi+1 whereas the remaining

curves γi,j , 2 ≤ j ≤ K, are only short paths of increas-

ing cost. They are built by successive deletion of already

existing paths from the potential map, hence imposing

paths to be disjoint. Curve γi,1 is the minimal path be-

tween vi and vi+1 in the space endowed by the initial

potential P1 = P . Once the minimal path γi,1 has been

computed, the second admissible path γi,2 is sought

under the constraint that it should not pass through

points belonging to γi,1. Hence, γi,2 is not a geodesic

in the space induced by potential P , but in the space

induced by a modified potential P2. The deletion of γi,1
in the modified potential map is achieved by setting the
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Fig. 2 Generation of K = 6 disjoint paths for a given pair of endpoints. (Rows 1 and 3) Successive potential maps Pj , where
the black-to-gray scale corresponds to range [0, 1] and white corresponds to +∞. (Rows 2 and 4) Corresponding paths γ·,j ,
with j = 1...6.

potential to +∞ at all points of the geodesic. Extending

this principle to the construction of the jth admissible

path γi,j , a recursive definition of potential functions

can be written as:

Pj(x) =

{
+∞ if x ∈ γi,j−1
Pj−1(x) otherwise.

(7)

This approach should not be mistaken for the so-called

K shortest paths problem [45, 15], which, in its basic

formulation, does not impose paths to be disjoint. In

the present case, the non-overlap constraint simplifies

the generation of several paths between a pair of ver-

tices, as they can be found by running several instances

of the shortest path algorithm, after removal of vertices

and incident edges belonging to already found paths.

An example of a set of successive disjoint paths γ·,j and

corresponding potential maps Pj is depicted in Fig. 2.

The computation of a closed contour Γ consists in se-

lecting one path out of each set Ai, such that the con-

tour resulting from the concatenation of selected paths

minimizes an energy, made up of an edge-fitting and

region homogeneity terms as well as a term penalizing

self-overlap of the curve. In [30], the best combination

of paths was determined by an exhaustive search among

all possible combinations.

2.4 Limitations of the previous models

Our contribution partially relies on the GLAC [32], as

we aim to build a piecewise-regular closed curve given

a set of input vertices, while reusing the idea of gen-

erating several relevant paths for each pair of vertices

and selecting the best combination of paths, as in [30].

The improvements brought by the current work are

justified in a first time by highlighting several short-

comings of [30], particularly the generation of disjoint

paths. When computing K disjoint paths, preventing

each path to pass through already visited points arbi-

trarily removes sections of contours that could be taken
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by other relevant paths. Moreover, in case of unsharp

contours, low potential areas may get undesirably thick,

so that two paths may agglomerate, i.e. take the same

contour sections, the second path being most often an

offset counterpart of the first one. For instance, this is

the case for the 2nd and 6th of Fig. 2, respectively. This

behavior, referred to as the path agglomeration issue, is

further discussed in Section 3.3 once the proposed con-

struction of path is presented.

Moreover, imposing a constant number K of admissible

paths per pair of vertices may be unsuitable in many

situations, and raises the issue of choosing K appropri-

ately. When the object and background are complex be-

tween vertices vi and vi+1, many relevant paths may be

found and excessively small values of K would restrict

their generation. Conversely, when the object and back-

ground are simple and well separated from each other,

there may be a single obvious path and one would like

to avoid computing supplemental paths which would

turn out useless for the generation of the final contour.

Finally, we should point out the shortcomings related to

the computational cost. Since the potential map is mod-

ified after the construction of one path, the action map

should be propagated again so that the next path can

be extracted. This implies running K instances of the

Fast Marching algorithm. As regards the computation

of the combination minimizing the energy, exhaustive

search, which has an exponential complexity O(Kn),

limits the practical usability of the approach. For ob-

vious reasons, search methods with lower algorithmic

complexity, even heuristical approaches, are preferable.

3 Generation of admissible paths

As in the GLAC, let us consider a set of vertices V =

{vi}1≤i≤n, with n ≥ 2. As an additional constraint,

vertices are assumed to be distributed in a clockwise

order around the object of interest. Hence, any simple

curve Ci,i+1 linking vi to vi+1 is positively oriented,

such that the unit normal vector

nCi,i+1
(u) =

Ci,i+1
′(u)⊥∥∥Ci,i+1
′(u)

∥∥
points towards the interior of the object, at any po-

sition u along Ci,i+1. The clockwise order is a require-

ment for the computation of region integrals involved in

the various energy terms. We introduce the admissible

set Ai, as a non-empty set of Ki admissible paths:

Ai = {γi,j}1≤j≤Ki.

As in the previous approach, we assume that these

admissible sets are organized such that γi,1 is the

geodesic path from vi to vi+1 and remaining curves γi,j ,

2 ≤ j ≤ Ki, are other interesting paths. Let d be the

curve concatenation operator. The curve resulting from

the concatenation of C1 and C2, which is valid only if

C1(1) = C2(0), is defined as follows:

(C1 d C2) (u) =

{
C1(2u) if 0 ≤ u ≤ 1

2

C2(2u− 1) if 1
2 < u ≤ 1.

(8)

Selecting the xthi path in each admissible set Ai, the

closed curve resulting from the concatenation of se-

lected admissible paths

Γ = γv1,x1
d γv2,x2

d . . . d γvn−1,xn−1
d γvn,xn

,

should match the boundaries of the object of interest.

To compute the admissible paths, we propose an ap-

proach based on the extraction of saddle points.

3.1 Valleys and saddle points

Let us consider two distinct points a and b and the

edge-based potential P . The geodesic linking a and b

may be actually extracted in three different ways:

– Propagate the minimal action from a, stop when b

is reached, and perform gradient descent from b

– Propagate the minimal action from b, stop when a

is reached, and perform gradient descent from a

– Propagate simultaneously from a and b, stop at

the first location where the two fronts collide, per-

form two gradient descents both sides apart from

the meeting location, and assemble the two obtained

paths adequately

The third principle is the basis for the generation of

multiple paths. When the action map is propagated

from two source points a and b - which generates what

we refer to as the combined action map Ua,b -, the two

propagation fronts meet at the saddle points of Ua,b

(see Fig 3). If one intuitively thinks of the action as

the height in a mountainous area, the saddle points

are the highest points on the different roads travelling

from a to b. These roads may either be disjoint or share

common sections, but generally each road lies in the

bottom of a particular valley. A formal definition of

saddle points is given by first introducing the medial

set Ma,b, made up of points geodesically equidistant

from a and b:

Ma,b = {x | Ua(x) = Ub(x)}.

The medial set Ma,b forms a crest on the combined

action map and is thus a set of critical points of Ua,b,

put another way ∇Ua,b is not defined overMa,b. How-

ever, setMa,b may be parameterized by a simple curve
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s2

s1

a

b

a

b

s1

s2

(a) (b) (c)

Fig. 3 Saddle points as a basis for determining relevant admissible paths between two given endpoints a and b: (a) Potential
highlights two possible distinctive paths. (b) Action map with two admissible paths with their respective saddle points located
halfway and medial curve in dashed line. (c) Corresponding 3D plot.

0

20

200

Fig. 4 Admissible paths for every pair of successive input vertices. (Top row, left) Potential P and (Top row, middle) Medial
curve (black) and saddle points (green) with corresponding paths drawn over combined action map (Top row, right, and bottom
row) Admissible set for each pair of successive vertices with n = 4. Paths are sorted (blue to red) according to their exteriority.

- which may be closed or open, depending on the loca-

tions of the endpoints and the potential function - and

the combined action map may be differentiated along

it. Let ma,b : [0, 1] −→ D be the medial curve, sweep-

ing along the equidistant points. The saddle points on

the combined action map between a and b are the local

minima of Ua,b along ma,b.

3.2 Admissible paths as piecewise-geodesic curves

The generation of admissible paths is the first stage of

the proposed algorithm, summarized in Algorithm 1.

For each pair of successive vertices (vi,vi+1), a com-

bined action map Uvi,vi+1
is propagated, generating two

monotonically advancing fronts from vi and vi+1. The

locations where the two fronts collide are detected and

stored until the combined action map has been propa-

gated over the entire image domain. Only locations that

are local minima of Uvi,vi+1
in the direction orthogo-

nal to the propagation direction, i.e. along the medial

curve, are kept as the Ki selected saddle points. Two

gradient descents are performed on both sides of each

saddle point sj , one path going down to vi and the

other one to vi+1. In other words, we take as starting
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Algorithm 1 Summary algorithm of the entire seg-

mentation process
Input : image I, sequence of n vertices {vi}1≤1≤n

// Generate sets of admissible paths

Compute potential P
foreach vertex pair (vi,vi+1)

Propagate combined action map Uvi,vi+1
using Fast

Marching
Extract saddle points of Uvi,vi+1

Build admissible set Ai by performing gradient descents
from saddle points
Sort paths in Ai with respect to their exteriority measure
in Eq. (17)

endfor

// Local search optimization
Set current combination of admissible paths to (1, ...1)
while at least one index in the combination can be increased

Compute energy of current combination using Eq. (12)
Compute energies of at most n candidate combinations
using Eq. (12)
Select the candidate combination with lowest energy as
the current combination for the next iteration

endwhile

points for the gradient descents

m(uj) + ε
m′⊥(uj)

‖m′(uj)‖
and m(uj)− ε

m′⊥(uj)

‖m′(uj)‖
,

where m stands for mvi,vi+1
, uj is the curve param-

eter such that m(uj) = sj and ε is an infinitesimal

offset. These two points are necessarily on different

slopes of the mountain, their respective gradient vec-

tors ∇Uvi,vi+1
being almost opposite. The two gradient

descents generate paths γsj ,vi and γsj ,vi+1 respectively.

The jth admissible path in Ai is obtained by reversing

the first path and concatenating it with the other path.

γi,j = γvi,sj d γsj ,vi+1 .

Among all saddle points, the one with the lowest action,

which is also the first colliding location of fronts,

smin = argmin
s∈Svi,vi+1

{Uvi,vi+1
(s)},

is located halfway, in the geodesic sense, on the minimal

path between vi and vi+1:

γvi,smin
d γsmin,vi+1

= γvi,vi+1
.

The same relation does not hold for all higher sad-

dle points sj . Paths from vi to vi+1 passing through

these saddle points may be only referred to as piecewise-

geodesic. Details about the discrete implementation of

Fast Marching and the extraction of saddle points are

given in Appendix B.1.

a

b

a

b

(a) (b)

Fig. 5 Saddle point-based paths versus disjoint paths on
smooth contours. (a) The second path (green) extracted with
the higher saddle point follows a contour distinct from the
one followed by γa,b (b) The second shortest path (green)
constrained to be disjoint from γa,b turns out to be an offset
curve of γa,b.

3.3 Advantages over disjoint paths

We believe that considering saddle point-based paths,

i.e. valley roads, instead of disjoint paths generates

a more relevant and less redundant set of candidate

paths. Indeed, different valleys may correspond to dif-

ferent sections of the boundary of an object, whereas

different short paths may run through the same valley

and thus be redundant. If the image contours were in-

finitesimally thick, only a single path could run through

each valley, thus the notion of valley roads and disjoint

shortest paths would be nearly equivalent. However, in

real images where contours may be arbitrarily smooth,

areas with low potential lead to large valleys on the

action map. In continuous space, there is an infinite

number of “almost minimal paths” passing along the
bottom of the lowest valley.

Consider the example in Fig. 3(a) again, where the com-

bined action map gives rise to two saddle points. Let s1
be the saddle point on the low and curvy valley, and s2
the saddle point on the higher and straighter valley.

Let γ1a,b and γ2a,b be the paths passing through these

respective saddle points, drawn in Fig. 3(b). Regard-

less of the Euclidean length, γ1a,b is the shortest path in

the geodesic sense: γ1a,b = γa,b. Should the lower valley

be large enough, i.e. the potential would be low over a

thick band, the second shortest disjoint path would be

very likely an offset curve of γa,b, as depicted in Fig. 5.

This illustrates the path agglomeration issue mentioned

in Section 2.4. In the disjoint paths approach, this is-

sue is dependent on the choice of the thickness of paths.

A curve being by essence a mathematical object with

infinitesimal thickness, setting P to +∞ according to

Eq. (7) has rigorously no effect since it does not pre-

vent subsequent paths to take the same way, up to an

infinitesimal offset. In practice, one has to add an arti-
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(a) (b) (c)u
v

u
v

u
v

Fig. 6 Distances φC plotted in (u, v)-space for several types of curve: (a) On a simple closed curve, φC vanishes only on the
graph diagonal. (b) On a curve with a section of self-tangency, φC additionally exhibits two symetrical zero lines. (c) On a
curve with self-intersections, φC additionally exhibits isolated zeros.

ficial thickness to the curve, i.e. choose a bandwidth B

over which subsequent paths will not be allowed to pass.

Accounting for this consideration, a practical redefini-

tion of Eq. (7) would be

Pj(x) ={
+∞ if ∃u ∈ [0, 1] s.t. ‖x− γi,j−1(u)‖ ≤ B

2

Pj−1(x) otherwise.

From an implementation point of view, since the po-

tential is discretized over the image grid, it needs to

be set to +∞ at all integer-coordinates pixels within

a ball of radius B/2 centered at each path point. B

may be referred to as the erasure thickness and adds

a supplemental parameter, which is needed both for

defining the correct mathematical notion of path dis-

jointness and for effective implementation. Unless the

erasure thickness B is chosen as large as the thickness of

low-potential valleys, subsequent paths tend to be offset

curves of the geodesic curve. The thickness of valleys is

an intractable property, depending on the sharpness of

contours and varying both between valleys and along

each valley, which prevents from choosing an appro-

priate value of B without prior knowledge. Conversely,

in the proposed approach, we endeavour to develop a

more mathematically sound framework, which is not

influenced by an artificial erasure thickness added to

curves. The proposed saddle point-based approach is

not affected by the geometry of valleys, as it depends

only on the number of local minima of the action map.

The action map having no flat plateau, the number of

local minima along the medial curve is finite. Hence,

the number of saddle point-based admissible paths is

also finite, and varies with respect to the underlying

image structures. In images containing smooth regions

with sharp contours, the action maps exhibit few lo-

cal minima along the medial curves and the resulting

sets of admissible paths are advantageously small. In

presence of cluttered or noisy data, spurious structures

can lead to unwanted local minima along the medial

curves if no smoothing operation is applied. In any case,

provided that regularization is wisely applied, the risk

of generating useless candidate paths is reduced. Con-

versely, there may be an infinite set of short disjoint

paths, which has to be truncated by fixing a thresh-

old K, regardless of the considered pair of vertices. On

the one hand, in case of images with smooth regions,

redundant paths may be generated if K is too large,

increasing the computational time of the optimization

step. On the other hand, in case of cluttered images,

relevant contours can be missed if K is too small.

Eventually, in the current approach, one propagation is

sufficient per pair of successive vertices, whereas dis-

joint paths require K instances of the Fast March-

ing algorithm. Even if a O(KN logN) complexity is

reasonable, extracting all paths from the same action

map generated by a single propagation in O(N logN)

is more convenient. Each admissible path is computed

on the combined action map regardless of other paths,

which allows to compute admissible paths in parallel.

Notice that, despite this possibility, computation times

reported in Section 6 are obtained without any parallel

implementation.

4 Defects of non-simple curves

Let us now assume that several admissible paths are

concatenated one behind the other, yielding an assem-

bled closed contour Γ . One of the desirable properties

of Γ is that it should be simple, i.e. with no multiple

point. Instead of imposing simplicity as a hard con-

straint, which might exclude relevant contours, it is

encouraged by an additional energy. Indeed, it is rea-

sonable to allow a certain degree of non-simplicity, e.g.

when vertices are located far from the target bound-
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aries, which might cause several admissible paths to

have common sections before splitting up. Dealing with

the geometrical and topological properties of the ob-

tained curve, we wish to measure to what extent the

curve is not simple.

If a curve C is non-simple, it has a number of multiple

points that should be studied. We only consider dou-

ble points 2, which may be of two kinds: self-tangencies

and self-intersections. The proposed simplicity term is

based on a distinction between these two aspects.

4.1 Self-tangency

Let (u, v) ∈ [0, 1]2 s.t. u 6= v be the pair of curve posi-

tions identifying a double point: C(u) = C(v). If (u, v)

corresponds to a point of self-tangency, velocity vec-

tors C′(u) and C′(v) are colinear:∣∣∣∣ C′(u) · C′(v)

‖C′(u)‖ ‖C′(u)‖

∣∣∣∣ = 1.

On the other hand, if (u, v) corresponds to a self-

intersection - also known as an ordinary double point

or crunode - velocity vectors point towards different di-

rections, making the curve cross itself. This distinction

allows to address separately two different defects on

curves, which are not necessarily related. A curve with

points of self-tangencies will exhibit self-overlapping

segments, as depicted in Fig. 6(b), whereas a curve with

self-intersections shown in Fig. 6(c) will split the image

domain into more than two connected regions.

As regards the first kind of double points, the amount

of self-tangency is quantified by measuring the length

of overlapping curve segments. Considering function φC
measuring the squared Euclidean distance between two

points on curve C,

φC(u, v) = ‖C(u)− C(v)‖2 ,

the zero level set of φC , ZC = {(u, v) | C(u) = C(v)}, is

the set of pairs of positions giving equal points. Triv-

ially, this set is never empty, since it contains at least all

pairs (u, u). The length of ZC in the (u, v)-space corre-

sponds to the total length of the overlapping segments:

|ZC | =
∫ 1

0

∫ 1

0

‖∇H(φC(u, v))‖ dudv

=

∫ 1

0

∫ 1

0

δ(φC(u, v)) ‖∇φC(u, v)‖ dudv,

(9)

where ∇ is the gradient operator in the (u, v)−space,

H is the Heaviside step function and δ is the Dirac

2 In our framework, curves with points of multiplicity> 2
are detected and excluded from the search

+ -

u u

v v

Fig. 7 Positive and negative crossings defined by ordered pair
of positions (u, v). C(u) and C(v) are the intersected and in-
tersecting sections in blue and red respectively.

(a) (b)

Fig. 8 Self-intersecting curve and inverted segments: (a) A
nonsimple loop with ordinary double points which could be
transformed into a set of (b) disjoint simple loops using a se-
quence of uncrossing moves. Resulting badly-oriented (coun-
terclockwise) simple loops are drawn in red.

(a) (b)

Fig. 9 Untwisting simple and double loops by (a) Reidemeis-
ter move of type I and (b) Reidemeister move of type II. Only
colored parts of the curve are moved.

delta distribution.

It can be proven that for any simple regular curve C,
the amount of self-tangency |ZC | is

√
2 (a detailed

proof with a more general distance function and

parameterization is given in Appendix A.1). It can be

intuitively understood by observing the plots of φ in

the curve parameter space in Fig. 6, where dark lines

correspond to self-overlapping segments. If the curve is

non-simple, |ZC | ≥
√

2. Moreover, this term is advanta-

geously intrinsic, i.e. independent of parameterization,

and invariant to scaling. Note that intersection points

may be viewed as overlapping segments of length zero,

and thus have no contribution in |ZC |. Details about

the discretization and computation of Eq. (9) are given

in Appendix B.2.
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+

-
-

(a) (b)

Fig. 10 Simple and double loops making inverted curve seg-
ments. (a) Simple loop made by a single negative crossing
and (b) double loop made by a couple of positive and nega-
tive crossings.

4.2 Twisting

While tangent double points are used to measure over-

lapping, ordinary double points will serve as a basis for

measuring the amount of twisting of the curve. Self-

crossings are pairs of curve positions (u, v) where tan-

gent vectors are not colinear:∣∣∣∣ C′(u) · C′(v)

‖C′(u)‖ ‖C′(v)‖

∣∣∣∣ 6= 1.

Pairs of positions corresponding to crossing points are

ordered, so that u is the position where the curve is in-

tersected and v is the position where the curve is inter-

secting. Whether a position on the curve is intersected

or intersecting only depends on the order in which these

positions are met while one travels along the curve, so

it follows that u < v. Whitney [44] studied crossing

points of closed regular curves and divided them into

two categories with respect to their orientation. Let us

recall the orientation of curves, set up in the standard

computer left-handed Cartesian coordinate system. In

this setting, we choose the natural orientation of curves

as the clockwise one, such that when one travels along

the curve, looking forward, the interior of the curve is

on the right. In such case, C′⊥ is the inward normal.

The crossing will be positive if the intersecting part of

the curve C(v) goes from right to left, or negative if it

goes from left to right (see Fig. 7). In a positive (resp.

negative) crossing, the intersecting section arrives from

the interior (resp. exterior) of the intersected section.

It follows that:

C′(u)⊥ · C′(v) < 0 for a positive crossing

C′(u)⊥ · C′(v) > 0 for a negative crossing.

Consider the self-intersecting curve shown in Fig. 8(a).

It splits the image domain into disjoints subdomains,

some of which are demarcated by inverted segments, i.e.

portions of curves along which the normal vector points

outward. If one decomposes the curve using uncrossing

moves - replacing each couple of crossing sections by

two new non-crossing sections - one obtains a collec-

tion of disjoint simple loops, as in Fig. 8(b), also known

as Seifert circles [1, p. 94]. While some simple loops are

well oriented (clockwise), others are inverted (counter-

clockwise). We propose to quantify the twisting of C
as the proportion of area demarcated by inverted seg-

ments to the total area of C, or equivalently, the area

inside the counter-clockwise oriented loops one would

obtain when decomposing the curve. To some extent,

this proportion is related to the energy that one should

exert to untwist the curve.

A self-intersecting curve can be thought of as a pla-

nar projection of a knot, i.e. an embedding of the unit

circle into Euclidean R3 space. Following the theory of

knots [1, p. 13] [3], we consider twisted configurations

of curves in which corresponding knots could be un-

knotted by Reidemeister moves of type I and II (see

Fig. 9). The simple loop, described by a single inverted

segment and involving a single intersection, is related

to the Reidemeister move of type I, whereas the double

loop, consisting of two segments and involving two in-

tersections, is related to the Reidemeister move of type

II. The two types of crossing points, that were previ-

ously presented, are used to detect such loops. A sim-

ple inverted loop will be detected thanks to a negative

crossing point (u, v) such that there is no other crossing

from u to v, as in Fig. 10(a). A double inverted loop

will be detected thanks to a negative crossing (u, v) such

that the path from u to v contains a positive crossing,

as in Fig. 10(b). Actually, we do not explicitly split

the curve into simple loops, as in Fig. 8(b). We rather

detect self-crossings, determine their orientations, and

extract inverted loops on the initial curve.

Let SL(C) ⊂ [0, 1]2 be the set of ordered pairs

of curve positions (u, v) s.t. u < v, describ-

ing intersections involved in single inverted loops,

and DL(C) ⊂ [0, 1]2 × [0, 1]2 be the set of double or-

dered pairs ((u1, v1), (u2, v2)) s.t. u1 < u2 and v1 > v2
describing the couples of intersections involved in dou-

ble inverted loops. Sets SL and DL are extracted by

the loop detection algorithm detailed in Appendix B.2.

When a portion of curve C from s to t, denoted C|s→t,
is closed and simple, the signed area inside C|s→t can

be expressed using Green’s theorem:

∫
Ωin(C|s→t)

dx =
1

2

∫ t

s

x(u)y′(u)− x′(u)y(u)du

=

∫ t

s

C(u)⊥ · C′(u)

2
du.

(10)

Eventually, the total area of inverted loops of C, de-

noted by I[C], is expressed by considering all simple
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and double inverted loops in SL and DL:

I[C] = −
∑

(s,t)∈SL(C)

∫ t

s

C⊥ · C′

2
du

−
∑

((s1,t1),(s2,t2))

∈DL(C)

∫ s2

s1

C⊥ · C′

2
du+

∫ t1

t2

C⊥ · C′

2
du.

(11)

Note that I[C] is positive, as the signed area of every

inverted loop is negative.

5 Combination of admissible paths using the

simplicity energy

5.1 Energy terms

The proposed energy functional extends the energy of

the GLAC. It is designed to penalize contours exhibit-

ing strongly overlapping sections or self-intersections,

poorly fitting to image edges or enclosing regions with

indistinct color distributions:

E[Γ ] = Esimplicity[Γ ]

+ ωedgeEedge[Γ ] + ωregionEregion[Γ ].
(12)

Weights ωedge and ωregion are user-defined parameters

controlling the relative significance of the data terms

over the simplicity term. The latter involves the self-

tangency and twisting measures defined in Eqs. (9)

and (11),

Esimplicity[Γ ] =
|ZΓ | −

√
2√

2
+

1

|Ωin(Γ )|
I[Γ ]. (13)

Note that the two terms in this simplicity term are

normalized each within range [0, 1]. In order to penal-

ize equally self-tangency and twisting, the normalized

terms are added without any additional weight. En-

ergy Esimplicity[Γ ] vanishes when Γ is a simple curve.

As regards image-based terms, the same edge energy

is kept as in the GLAC, so Eedge integrates the edge

indicator function g (Eq. (2)) along the contour:

Eedge[Γ ] =
1

|Γ |

∫ 1

0

g(Γ (u)) ‖Γ ′(u)‖ du. (14)

In order not to penalize lengthy contours, it is normal-

ized by the Euclidean length |Γ |. One may note that

the edge indicator g is used instead of the potential P

so that the Euclidean component of the curve length is

not taken into account. This ensures that short curves,

which could be undesirable shortcuts, are not preferred

over longer ones. For the region term, instead of using

the piecewise-constant model as in the GLAC, which

limits the segmentation to relatively homogeneous ob-

jects and backgrounds, we use the Bhattacharyya coef-

ficient between the color probability distributions inside

and outside Γ , following [29]:

Eregion[Γ ] =

∫
Q

√
pin(Γ, q)pout(Γ, q)dq, (15)

where Q is the color space. Probability distribution

functions (PDF), for a given color q, are estimated us-

ing a Gaussian kernel-based histogram:

pin(Γ, q) =
1

|Ωin(Γ )|

∫
Ωin(Γ )

Gσ(q − I(x))dx

pout(Γ, q) =
1

|Ωout(Γ )|

∫
Ωout(Γ )

Gσ(q − I(x))dx,
(16)

where Ωin and Ωout are the regions inside and out-

side Γ , respectively.

5.2 Local search method

The computation of the final contour can be formulated

as determining the sequence of labels (x1, x2, . . . , xn)

minimizing energy (12), where label xi corresponds to

the chosen admissible path in set Ai:

min
(x1,x2,...,xn)∈

[1..K1]×[1..K2]×···×[1..Kn]

E [γ1,x1
d γ2,x2

d ... d γn,xn
] ,

Determining the best combination is the second stage

of the proposed approach summarized in Algorithm 1.

Let Kmax be the maximum allowed number of admissi-

ble paths over all pairs of successive vertices:

Kmax = max
1≤i≤n

Ki

To determine the best sequence of labels (x1, . . . , xn),

a brute-force search would yield an exponential time-

complexity upper-bounded by O(Kn
max). To avoid test-

ing all possible configurations, we propose a greedy

search in O(n2Kmax) relying on a specific ordering of

paths. In each admissible set Ai, paths are sorted ac-

cording to increasing exteriority X , i.e. the signed area,

calculated with Green’s theorem, formed by a given

path C and the line segment from C(1) returning to C(0):

X [C] =
1

2

∫ 1

0

C⊥ · C′du+
1

2
C(1)⊥ · C(0). (17)

If the straight line from C(0) to C(1) is taken as a ref-

erence horizontal axis, the exteriority is negative (resp.

positive) if C is predominantly below (resp. above) the

axis. The vertices being located clockwise, admissible

paths are sorted from the innermost to the outermost
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(see Fig. 4). In a given admissible set Ai, γi,1 is now

the innermost path whereas γi,Ki
is the outermost one.

The optimization procedure starts with the initial la-

belling (1, . . . , 1), which corresponds to the most inte-

rior configuration

γ1,1 d γ2,1 d ... d γn−1,1 d γn,1.

Labels are then changed according to a local search,

by iteratively testing candidate labellings. At each it-

eration, given the current sequence of labels S, candi-

date sequences are tested that differ from a single label

from S, by increasing labels only. Obviously, at the cur-

rent iteration, there are at most n candidate sequences.

For instance, if (2, 3, 1) is the current sequence, candi-

date sequences will be (3, 3, 1), (2, 4, 1) and (2, 3, 2).

Testing a candidate sequence (x1, x2, ...x, xn−1, xn) im-

plies computing energy

E
[
γ1,x1 d γ2,x2 d ... d γn−1,xn−1 d γn,xn

]
according to Eq. (12). The candidate sequence leading

to the smallest energy, regardless of the current energy,

is chosen as the base sequence for the next iteration.

The best sequence found since the beginning of the pro-

cedure is updated as well. Since increasing labels cor-

respond to paths of increasing exteriority, generating

candidate sequences by solely increasing labels makes

the contour expand monotonically. To some extent, the

greedy search is in accordance with the evolution of a

classical active contour or level set with a balloon-based

inflating speed. The algorithmic details of the optimiza-

tion procedure are given in Appendix B.3.

6 Experiments and discussion

We demonstrate the ability of the model to recover

closed boundaries of objects in natural color images,

given a variable number of user-provided points along

the target boundary. Most of the tests are carried out

on the Grabcut dataset [37]. These experiments include

an independent study of our algorithm, as well as com-

parisons against the original GLAC method [32] (with-

out deformation, i.e. the piecewise-geodesic curve only)

and the Riverbed algorithm [33], in order to show the

benefits brought by the use of admissible paths and ad-

ditional energy terms.

The experiments are limited to simply connected ob-

jects, as every tested method is designed to recover a

single closed outer boundary of one object. One may

note that it would be possible to extend the model such

that the set of initial vertices would be separated into

subsets: one subset containing the vertices on the outer

boundary and several subsets containing vertices on in-

ner boundaries. However, we chose to restrict ourselves

to objects without inner boundaries.

As regards the selection of parameters, each method

is assessed in the most favorable configuration. Pa-

rameters such as the regularization weight w (for the

GLAC and our approach) or the energy weights ωedge

and ωregion (specifically for the proposed algorithm) are

tuned separately each time, in order to achieve the most

relevant segmentation. The appropriate color space is

also chosen for each image, i.e. RGB or the more per-

ceptually uniform Lab, which affects potential P and

the color PDFs involved in the region energy (15). In

order for the reader to get an accurate idea of the im-

portance of the regularization weight w in balance with

the gradient magnitude in potential (18), notice that

color components of I are normalized between 0 and 1.

The maximum number Kmax of admissible paths per

set Ai is typically chosen between 3 and 10.

6.1 Potential for color images

The potential used in the minimal path approach in

Section 2.1 was described for scalar-valued images. As

an implementation detail, in order to avoid any ambigu-

ity, one should note that the potential P (x) = w+g(x)

actually used is based on color edge filtering. Hence we

consider a vector-valued input image I : D → R3 in the

chosen color space. Moreover, instead of a hyperbolic

decrease of potential with respect to edge magnitude,

as in Eq. (2), we found that clipped linear decrease led

to better contour extraction, so that the potential used

is

P (x) = w + max (0, 1− α ‖(∇Ks ∗ I)(x)‖) (18)

where ∇Ks ∗ I should be understood as the 2 × 3 Ja-

cobian matrix made up of Gaussian-smoothed x and

y-derivatives of each component of I. In this case, ‖.‖
is the entrywise Euclidean norm (strictly speaking, the

Frobenius norm). Parameter α controls the decreasing

slope with respect to edge magnitude.

6.2 Influence of edge, region and simplicity terms

One of the main benefits of the proposed approach over

usual minimal path-based segmentation algorithms is

the ability to formulate a region-based criterion, as in

classical active contours. It allows to formulate the sim-

plicity term as well. Fig. 11 illustrates the interest of

using the region and simplicity terms, in addition to

the edge term. The LEAF image is processed with reg-

ularization weight w set to 0.01, and Kmax = 5. Chosen
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(a) (b) (c)

(d) (e) (f)

Fig. 11 Influence of energy terms on the final segmentation: (a) Potential, (b) Comparison against GLAC without deformation
(piecewise-geodesic curve), Combination of paths with (c) edge term only (d) edge and region terms (e) edge and simplicity
terms and (f) edge, region and simplicity terms.

color space is RGB. When corresponding energy terms

are used, weights are set to ωedge = 1 and ωregion = 2,

0 otherwise. The undesirable overlapping phenomenon

yielded by the piecewise-geodesic curve is shown in

Fig. 11(b). With the edge term only (Fig. 11(c)), our

algorithm selects the strongest contours, leading to the

lowest potential, regardless of their lengths. Hence, it

tends to capture any boundary in the image which

is more salient than the actual object boundaries. On

this particular image, where the object and background

have strongly overlapping color distributions, adding

the region term (Fig. 11(d)) yields a contour includ-

ing an almost empty interior region. The inner color

PDF is thus very compact, which limits the overlap-

ping with the outer color PDF and thus minimizes the

region term. A satisfactory segmentation is achieved as

soon as the simplicity term is added, as depicted in

Figs. 11(e) and 11(f). The combination of region and

simplicity terms allows to remove the small remaining

background areas that were mistakenly included into

the object.

6.3 Overview of the Riverbed algorithm

We give a summary of the recent Riverbed algorithm

by Miranda et al, so that the reader can get the essence

of this segmentation method without going into the

specifics of the implementation. We especially focus

on the properties which make this algorithm suitable

for comparison. For further details, we refer the reader

to [33].

First, the Riverbed algorithm rests upon a discrete

framework, as the image domain is modeled as a di-

rected 4-connected grid graph. Miranda et al developed

their method with a generic edge cost function c, leaving

the choice depending on the selected features of inter-

est in the image. In order to use a cost function similar

to the potential P used in our approach, we chose the

edge cost c(x,y) from node (pixel) x to node y as

c(x,y) = P (y).

Hence, as in our approach, favoring low-cost edges is

equivalent to following high-gradient areas. A sequence

of n ordered vertices is placed along the object con-

tour. Minimum cost paths between these vertices are

extracted thanks to the Image Foresting Transform

(IFT) [16], which may be considered as a heuristic gen-

eralization of Dijkstra’s shortest path algorithm. In ad-

dition to computing the distance from a set of seed

nodes to every other node in the grid, it generates a pre-

decessor map, which links every node to its preceding

node in the corresponding path. Let πx be a path end-

ing at node x. Assuming that y is a successor node of x,
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we denote by 〈πx,y〉 the extension of πx by arc (x,y).

Instead of considering an additive cost function only,

C (〈πx,y〉) = C(πx) + c(x,y),

the IFT computes the distances and predecessors for ar-

bitrary path cost functions. If the cost function satisfies

smoothness conditions, it is proven that the distance

and predecessor map are optimal. Otherwise, they cor-

respond to a local solution. This is the case with the

Riverbed approach, which uses the following cost func-

tion:

Criverbed (〈πx,y〉) = c(x,y).

Therefore, at any time, the IFT propagation algorithm

decides to take the most interesting arc, regardless of

the past history. As a summary of the justifications

stated in [33], it allows not to favor shortest distance

paths and to avoid undesirable shortcuts. Given n ini-

tial vertices, n instances of the IFT are run. The ith

instance takes vertex vi as the single seed node and gen-

erates a path to vi+1. Between two instances of the IFT,

nodes belonging to previously-built paths are “frozen”,

so that subsequent paths cannot pass through them.

Hence, by construction, the Riverbed forbids overlap

between paths as a hard constraint. Unlike our ap-

proach, the resulting contour depends on the order in

which pairs of successive vertices are considered.

6.4 Qualitative comparison

To keep a critical look at our contribution, Fig. 12 de-

picts typical cases of comparison between the current

approach, the GLAC and the Riverbed algorithm, on a

subset of the Grabcut dataset [37]. The combination of

paths may lead to strong global improvements, or slight

localized improvements, or no improvement when the

edge strength and locations of vertices are favorable to

all segmentation algorithms. For each image, the same

set of initial vertices is used.

The BANANA image (row 1) depicts a situation where

our approach does not improve segmentation over ex-

isting algorithms, for this particular configuration of

initial points. Despite the complex background and ob-

ject containing many inner edges, boundaries are well

defined and vertices are evenly distributed along the

boundary so that the GLAC and Riverbed manage to

extract the object. The FLOWER (row 2) and DOLL

(row 3) images are cases where the GLAC exhibits

strong overlap between geodesics when few vertices are

provided, although the vertices are reasonably well dis-

tributed along the object boundary. Since it does not

u1 u2

u3

u4

Fig. 13 Splitting the ground truth contour into segments of
equal length for random locations of initial vertices: example
with n = 4.

have any non-overlapping constraint, the GLAC sys-

tematically favors portions of contours with the low-

est potential. Hence, smooth boundary segments are

ignored, not because of their length, but because they

may contain sparsely weak edges making the poten-

tial increase in small parts of the contour. Conversely,

these boundary segments, despite from not being part

of the minimal path, create valleys in the distance map

and are very likely to be considered as parts of ad-

missible paths by our approach. This proves the pro-

posed method to be inherently less sensitive to weak

edges. As regards the Riverbed approach, it does not

generate self-overlapping contours, but tends to favor

the sharpest edges in the neighboring structures of the

object.

The CERAMIC (row 4) and TEDDY (row 5) images de-

pict situations where the GLAC takes shortcuts through

the object, due to the presence of inner edges stronger

than the actual boundaries. Both simplicity and region

energies contribute to solve this issue in our algorithm.

The former prevents overlapping while the latter favors

high discrepancy between inner and outer color distri-

butions, hence avoiding to select the undesirable short-

cuts, which would yield less distinct color histograms

than the actual boundaries would. Finally, the MUSH-

ROOM (row 6) combines the issues of inner shortcut

and strong self-overlapping.

6.5 Quantitative comparison with random locations of

vertices

The qualitative study with user-provided initial points

cannot give alone an insight into the robustness of the

compared segmentation algorithms. The experienced

user has the essence of the algorithms in mind, and thus

tends to place initial points in favorable configurations,

such as even spacing of vertices along the boundary, or

dense sampling along blurry edges and sharp turns of

the boundary.

In order to provide an evaluation less dependent on

the user-induced bias, we assess the robustness of our
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Fig. 12 Qualitative comparison with the GLAC and Riverbed on a sample of the Grabcut dataset. Column 1: ground truth
segmentation, Column 2: potential, Column 3: GLAC without deformation (piecewise-geodesic curve), Column 4: Riverbed,
Column 5: combination of paths.

method by running several tests on a subset of the

Grabcut dataset, where initial vertices are selected ran-

domly along the contour. The actual object boundary

is extracted from the available binary ground truth im-

age and a random start position u1 along the curve

is generated. The number of vertices n being fixed for

each image, the ground truth contour is split into n

segments of equal length, starting from u1. Each seg-

ment is subsequently split into two subsegments: a free

subsegment, covering the largest part of the segment,

and a safety margin of a few pixels (typically, in the

order of 10 pixels). Each vertex vi is randomly gen-

erated within the ith free subsegment, the safety mar-

gins preventing two successive vertices from getting ex-

cessively close. In this way, the distribution of vertices

roughly covers the entire contour, without being neces-

sarily evenly spaced. Fig. 13 illustrates the splitting of

a contour with n = 4. Segments are separated by long

dashed lines normal to the curve and free subsegments

are highlighted with dashed blue lines. For each image,

we generate 20 random configurations of vertices. and

the same random configuration is used for initializing

the GLAC, Riverbed and the proposed method. For

each test, segmentation accuracy is assessed by mea-

suring the overlap between regions, using the Jaccard

index

J(S,G) =
|S ∩G|
|S ∪G|

,
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where S and G are the segmented and ground truth

regions, respectively. The mininum, maximum, average

and standard deviation values of the Jaccard segmen-

tation accuracy index, computed over the 20 runs per

image, are listed in Table 1. The best segmentation

for each image, yielding the maximal Jaccard score, is

shown in Fig. 14. Notice the distribution of vertices,

which may be unevenly spaced along the object bound-

ary, thus lending itself to assess the robustness of the al-

gorithm with respect to unfavorable initial conditions.

If one considers the ’Min’ columns in Table 1, it ap-

pears that segmentation accuracy can be almost null

in the least favorable cases, for every algorithm. For

a start, there is no image for which the poorest seg-

mentation obtained with our algorithm is significantly

worse than the poorest segmentations obtained with

the GLAC and Riverbed algorithm. On the contrary,

the combination of paths even guarantees a higher stan-

dard, since there is an important proportion of images

where the worst segmentation is improved by our algo-

rithm. As can be seen by considering simultaneously the

’Max’ columns in Table 1 and the contours in Fig. 14,

Jaccard percentage values around 80% correspond to

segmentations where important parts of the object are

missing or background areas are mistakenly included

into the object. As a general remark regarding the maxi-

mum Jaccard percentages, they are most often obtained

with Riverbed or our algorithm. The improvement in

the maximum quality can be seen on a small subset of

images, such as the BANANA3 and CERAMIC data,

but cannot be generalized to the entire dataset. One

may get an idea of the most significant improvement

brought by our approach by considering the average

Jaccard percentages, both on each image independently

and on the global score. The combination of paths leads

to a better average score than the GLAC and Riverbed

for all tested images, which conveys the overall robust-

ness of our approach with respect to initial conditions.

6.6 Local search versus brute-force search

The search method described in Section 5.2 minimizes

the energy over combinations of admissible paths in a

heuristic way. In order to assess the efficiency of the

local search against exhaustive search, we should de-

termine whether the local minimum obtained is signifi-

cantly worse than the actual optimal solution found by

a brute-force algorithm. As in the previous experiments,

we perform 20 runs per image with randomly selected

initial vertices, reporting the Jaccard index, energy and

computation time obtained with both search methods.

Statistics of Jaccard coefficients are listed in Table 2.

Notice that the Jaccard coefficients for the combination

of paths with local search are not equal to the ones

appearing in Table 1, as they correspond to another

sequence of runs, with different randomly localized ver-

tices. Statistics on Jaccard coefficients show that the

local search does not significantly damage segmenta-

tion quality over the exhaustive search.

As regards combinations of paths and their energies,

on the same dataset, checking final combinations shows

that the local search finds the same combination of ad-

missible paths as the brute-force method in 65% of

the cases. Obviously, for the remaining 35% of cases,

the combinations determined by the local search have

greater energies than the ones found by the brute-force

algorithm. However, it happens that the local search

leads to a better segmentation quality. This is a phe-

nomenon that arises in many optimization-based seg-

mentation methods, such as active contours, as the

global minimum of the energy does not necessarily cor-

respond to the best expected segmentation.

As regards computation time, the generation of admis-

sible paths (i.e. propagating using Fast Marching, de-

tecting saddle points, building paths and sorting them

with respect to their exteriority) is relatively fast. The

major part of the computational cost lies in the search

for the best combination of admissible paths, which

highly depends on the number of initial vertices n

and the upper bound Kmax on the number of admis-

sible paths. This significantly favors the heuristic local

search over the brute-force algorithm. Reported exe-

cution times are obtained with a C++ implementa-

tion running on a standard Intel Core2 Duo 2.8GHz

architecture with 4Gb RAM. The MUSHROOM im-

age, with n = 3 and Kmax = 5, was fully processed

in 3s300ms with the local search method and 12s with

the brute-force search (both including 400ms to gener-

ate admissible paths). The CERAMIC image, with n =

7 and Kmax = 5, was fully processed in 17s with the lo-

cal search method and 1h10mn23s with the brute-force

search (both including 2s to generate admissible paths).

7 Conclusion

The main contributions of the current work, namely the

construction of admissible paths as well as the intro-

duction of the simplicity term, solve important short-

comings of existing interactive path-based segmenta-

tion algorithms. Admissible paths generalize the notion

of geodesic path, and allow to capture relevant image

structures in addition to the most salient contour. By

searching the best paths configuration among sets of

admissible paths, given an energy functional combin-

ing edge and region data terms with a novel term fa-

voring the simplicity of the curve, we addressed the
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GLAC Riverbed Combination of paths
Image Min Max Avg Std Min Max Avg Std Min Max Avg Std

BANANA1 1.0 84.0 23.3 0.21 5.9 88.8 53.5 0.21 17.0 89.3 71.7 0.18
BANANA2 0.8 55.5 11.4 0.14 1.8 84.6 39.5 0.20 0.1 82.9 44.6 0.28
BANANA3 0.2 76.6 32.6 0.25 2.7 72.2 43.3 0.18 1.2 81.5 55.7 0.26
CERAMIC 77.1 89.0 82.2 0.03 59.2 78.8 64.2 0.05 85.3 93.3 88.4 0.02

DOLL 0.3 87.6 45.0 0.40 0.7 90.7 62.0 0.40 78.9 87.6 81.0 0.03
FLOWER 1.0 98.2 20.9 0.39 2.0 98.1 80.3 0.34 1.0 98.3 82.8 0.34

MUSHROOM 1.4 65.3 15.0 0.25 1.5 91.5 37.7 0.33 22.0 91.1 66.4 0.21
MUSIC 0.7 98.6 83.9 0.35 0.9 98.5 47.7 0.47 97.3 98.6 97.9 0.01
SHEEP 1.6 83.9 11.5 0.24 36.5 90.7 54.0 0.14 55.9 89.3 78.2 0.09
TEDDY 2.0 89.2 55.8 0.34 88.5 96.3 90.5 0.03 51.9 96.9 79.3 0.12
Overall 0.2 98.6 38.1 0.38 0.17 98.5 57.3 0.31 0.1 98.6 74.6 0.24

Table 1 Quantitative comparison between the GLAC without deformation (piecewise-geodesic curve), Riverbed and the pro-
posed algorithm: minimum, maximum, average and standard deviation values of the Jaccard segmentation accuracy percentage
computed over 20 runs per image.

Fig. 14 Best segmentations (leading to the maximum Jaccard segmentation accuracy index) over 20 runs per image, with
randomly-located initial vertices, for the GLAC without deformation (piecewise-geodesic curve, left), Riverbed (center) and
the proposed algorithm (right).



20 J. Mille, S. Bougleux and L.D. Cohen

Combination of paths Combination of paths
Local search Brute-force search

Image Min Max Avg Std Min Max Avg Std
BANANA1 20.0 89.1 60.4 0.20 20.0 89.1 59.2 0.20
BANANA2 0.7 88.3 47.3 0.25 0.7 91.1 52.2 0.31
BANANA3 26.1 86.6 62.5 0.15 26.1 86.6 59.7 0.18
CERAMIC 74.8 89.8 85.6 0.03 74.4 88.1 85.0 0.05

DOLL 72.5 87.7 80.8 0.04 78.9 87.7 82.6 0.07
FLOWER 1.4 98.2 88.1 0.29 1.3 98.2 88.4 0.29

MUSHROOM 33.0 91.1 61.3 0.17 25.3 86.3 56.6 0.19
MUSIC 97.3 98.6 97.8 0.01 97.3 98.6 97.9 0.05
SHEEP 4.5 90.2 77.0 0.18 2.9 90.2 76.2 0.19
TEDDY 17.6 96.7 74.9 0.17 17.6 96.7 74.9 0.17
Overall 0.7 98.6 73.5 0.23 0.7 98.6 73.3 0.24

Table 2 Quantitative comparison between the proposed algorithm (with local search) and a modified version with brute-
force search: minimum, maximum, average and standard deviation values of the Jaccard segmentation accuracy percentage
computed over 20 runs per image.

issues raised by minimal paths, namely shortcuts and

self-overlapping or intersecting contours. To some ex-

tent, the proposed approach blends the benefits of min-

imal paths and region-based active contours. Compari-

son against the geodesically linked active contour model

and the Riverbed algorithm, which have similar inputs

and purposes, demonstrated the advantages of the ap-

proach.

A Mathematical derivations of overlap and

exteriority terms

A.1 Overlap term

Let C be a regular curve parameterized over [0, L]. Let φ be
a C1 function defined over [0, L]2 representing the distance
between two positions on the curve:

φ(u, v) = ‖C(u)− C(v)‖p

where p > 1 is a real exponent. The length of the zero level
set of φC ,

|ZC | =
∫ L

0

∫ L

0

δ(φ(u, v)) ‖∇φ(u, v)‖dudv, (19)

quantifies the self-overlap of C.

Proposition:
If C is simple, i.e. without self-intersection and self-tangency,
then |ZC | = L

√
2.

Proof:
As a preliminary calculation, let us express the gradient of φ
(partial derivatives are written using the indexed notation):

∇φ(u, v) = [φu(u, v) φv(u, v)]T

= p ‖C(u)− C(v)‖p−2

[
C′(u) · (C(u)− C(v))
−C′(v) · (C(u)− C(v))

]

If C is regular and simple, varying with respect to u in
range [0, L], φ(u, v) is nowhere zero except when u = v. Hence,
for a fixed v, we have:

δ(φ(u, v)) =
δ(u− v)
|φu(v, v)|

(20)

Integrating (20) into (19) and applying the definition of mea-
sure δ:

|ZC | =
∫ L

0

∫ L

0

δ(φ(u, v)) ‖∇φ(u, v)‖dudv

=

∫ L

0

∫ L

0

δ(u− v)
|φu(v, v)|

‖∇φ(u, v)‖dudv

=

∫ L

0

‖∇φ(v, v)‖
|φu(v, v)|

dv

Expanding the gradient gives:

|ZC | =
∫ L

0

{
p ‖C(v)− C(v)‖p−2

p ‖C(v)− C(v)‖p−2√
2(C′(v) · (C(v)− C(v)))2∣∣C′(v) · (C(v)− C(v))∣∣

}
dv

=

∫ L

0

√
2 dv

= L
√

2

A.2 Exteriority term

Let C be a piecewise-smooth regular curve parameterized
over [0, 1]. If it is simple and positively oriented such that
normal vector C′⊥ points inward, its inner area may be ex-
pressed using Green’s theorem:

|Ωin(C)| =
1

2

∫ 1

0

C⊥(u) · C′(u) du

=
1

2

∫ 1

0

x(u)y′(u)− x′(u)y(u) du

When one calculates the previous expression on a non-simple
closed curve, one gets the signed area, in which positively
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C(1)

C(0)

Fig. 15 The exteriority of an open curve is measured as the
signed area of the multiple connected region that it forms
with the line segment joining its two endpoints.

and negatively oriented connected components have positive
and negative contributions, respectively.

Proposition:

The signed area formed by an open curve C over [0, 1] and the
line segment from C(1) returning to C(0) (see Fig. 15), which
we use to as the exteriority measure in Section 5.2, may be
expressed as:

X [C] =
1

2

∫ 1

0

C⊥ · C′du+
1

2
C⊥(1) · C(0)

Proof:
Let S be the parametrization of the line segment joining C(1)
and C(0), over [0, 1]:

S(u) = (1− u)C(1) + uC(0)

The signed area is then obtained by applying Green’s theorem
on a piecewise basis:

X [C] =
1

2

∫ 1

0

C⊥ · C′du+
1

2

∫ 1

0

S⊥(u) · S′(u)du

=
1

2

∫ 1

0

C⊥ · C′du

+
1

2

∫ 1

0

((1− u)C⊥(1) + uC⊥(0)) · (C(0)− C(1))du

=
1

2

∫ 1

0

C⊥ · C′du

+
1

2

∫ 1

0

(1− u)C⊥(1) · C(0) + uC⊥(1) · C(0)du

=
1

2

∫ 1

0

C⊥ · C′du+
1

2

∫ 1

0

C⊥(1) · C(0)du

=
1

2

∫ 1

0

C⊥ · C′du+
1

2
C⊥(1) · C(0)
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