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Semi-analytical and analytical formulae for the classial loss in
granular materials with rectangular and elliptical grain shapes

O. de la Barriére, M. LoBue, F. Mazaleyrat
SATIE, ENS Cachan, CNRS, UniverSud, 61 av du PeggiWilson, F-94230 Cachan, France

Granular soft magnetic materials, such as ferriteor Soft Magnetic Composites, are widely spread in ndern electrical engineering
applications. An important loss contribution is theclassical one. It is known that in these materiaJgwo kinds of classical loss must be
distinguished: eddy currents flowing at the scalefahe whole sample (therefore called macroscopicand current lines inside the grains
(called microscopic). For the macroscopic eddy cuents computation, the sample cross sections are @fit square or rectangular. For
eddy currents prediction inside the grains, two cass can be distinguished: the case of low density tedals, for which circular or
elliptical grain shapes are often realistic, and te case of high density materials. In this last clasof granular materials, it is more
difficult to identify a precise grain shape, becaus the deformations occurring during the compactiorprocess often give to the grains a
random shape. For carrying out the eddy current corputation, rectangular shapes are often consideretecause they allow a complete
filling of the available space. To our knowledge, realytical eddy current formulae only exist for cylindrical or spherical regions. For
other shapes such as squares, rectangles, or elégsthe finite element method must be used to comuthe eddy current distribution,
which can be time consuming. This paper overcomesis difficulty by proposing respectively a semi-anlgtical formula for classical
loss in rectangular geometries, and an analyticabfmula for elliptical cases.

Index Terms—classical loss computation, granular materials, retangular shape, elliptical shape.

deformations occurring during the compaction
|. INTRODUCTION

RANULAR MAGNETIC MATERIALS, such as ferritesl] or

Soft Magnetic Composites (SMQJ][are nowadays very
popular in modern electrical engineering applicaiosuch as
electrical machines3], or power electronics4]. Indeed, these
magnetic materials, made of magnetic particlesetbdty a
dielectric insulator, potentially allow a signifitareduction of
the classical loss componer8][], compared to laminated
materials ], in applications for which a magnetic
permeability decrease is acceptal@e [

The starting point of the loss separation analf@jss an
accurate computation of the classical loss compofHd.
Actually, in granular materials, classical loss paotation is
far to be trivial. Indeed, it was shown that ind@ematerials
(ferrites or SMC), two classical

loss terms must be

process 14]. For classical loss estimation, square
or rectangular shapes seem quite realistic, because
they allow a complete filling of the available
space. Concerning ferrites, the rectangular stape i
often taken for the grains when modeling the
microscopic classical losd9).

Concerning the macroscopic classical loss
prediction, the toroidal samples in which typical
experiments are carried out often exhibit square or
rectangular cross sectiond6]. Therefore, the
problem of eddy current computation in a square
or rectangular region still arises (in this cases t
resistivity to consider is the bulk resistivity thfe
sample, and the dimensions are the ones of the
cross section).

distinguished $][2][11]. The first one is linked to eddy This clearly emphasizes the need to accurately and

currents flowing at the scale of the single pagtittherefore efficiently compute the eddy current loss in a sgqua
called microscopic). The second term (called mawp) is rectangular, or elliptical region. As no analyticissical loss
due to eddy currents flowing at the scale of thelisample, formula exists for squares, rectangles, or ellipsedinite
because of capacitive effects through the dieledtsulator, element computation is often used to solve the $Bois
or random contacts appearing between grains dutliteg equation 14]. This procedure can be quite cumbersome, and
compaction process. The two terms can be separatelyes not offer explicit expressions as analytioahiulae.
computed and summed u?]. The purpose of this paper is to propose respeygtavelemi-
- For the microscopic loss component, analyticahnalytical formulation for the eddy current losslgem in a
classical loss formulations are only available forectangular (or square) region, and an analytiglaition in the
cylindrical or spherical grains 2[[13]. These elliptical one. This can be useful both for microgic
shapes are realistic for low density materigls [ classical loss computation (in this case, the cmsd region
However, it should be suitable, concerning lows the grain, and the resistivity to consider is tne of the
density materials, to also have formulae fograin material), and for macroscopic eddy currétien, the
elliptical grain shapes which can be encountereduter geometry of the region is the cross sectiod, the bulk
when dealing with anisotropic medidl]. For resistivity of the material is used). In this papell
highly dense materials, such as SMC whicltomputations are done under the hypothesis of dkinth
undergo a high pressure compaction, it is moremuch larger than the region edges. In the firstt, ptre
difficult to define a precise grain size. Indedug t analytical method is detailed. In the second plae results are
grains often take random shapes due to plastic



compared with finite elements, and approximationmigae (b): Case of the elliptical region (major akisminor axisB)
are also worked out. Finally, as an example, thesthods are Fig. 1: Bi-dimensional Poisson equation to sol; tectangular region, and
applied to the microscopic eddy current computationa (b): elliptical region.

SMC. Once the magnetic fieldH(x,y,t) is known, the current

density can be obtained by the following partiaiiions:
II. ANALYTICAL FORMULATIONS

A. Problem to solve and simplifying assumptions J, :%_H
The simplifying assumptions are the followings. y (2)
— The eddy current paths are considered as bi- J __oH
dimensional, flowing in the plane perpendicular ! ox

to the flux density. The flux density is assumed
purely alternative, i.e. applied in a given
direction.
— The particle is assumed to be small enough to T
neglect skin effect in the range of frequencies of chlasszj.g
interest. 0
A Cartesian axis systemyz is introduced. The applied
inductionBy(t), which is also the local one since skin effect ig. Analytical developments

ignored, is directed along theaxis, as V\_/ell as the magnetic Expression (3) of the classical loss will be writte
field H(x,y,t) that can therefore be considered as a scalar. Tvr?/ﬂatever the shape, under the following form (ske t

current density J(x, y, t):(Jx, Jy)v on the contrary, is a Appendix for a detailed explanation):
vector located in they plane.
Under this set of simplifying assumptions, it haset W

shown in [L7] that the equation giving the magnetic field is a cass
Poisson equation:

And the classical loss, in terms of energy lost @eie of
periodT and per unit volume, iS(s the region cross section):

(Jf + Jj) dxdyd (3)

:JD<ESDI(dB
m\ dt

dajz di 4)

In the previous expressioH, is a factor depending on the
AH = 9°H , 0°H - 3B ) region shape only (and not on its absolute dimesidt can
x> 0y’ dt be shown that the expression (4) is valid for agian shape
and size (provided skin effect can be neglected).tHe
where ¢ the conductivity of the material. The boundaryfollowing, we will give an analytical, or when npbssible a
condition on the region edges H=Hj(t), Hyt) being the semi-analytical (i.e. under the form of a convegginfinite
external applied field. The problem to solve haserbe sum) expression of the shape fackgr for rectangular and
represented in Fig. 1. The rectangular has a widilong the elliptical grain shapes.

x axis, and a heightalong they axis. For the elliptical shape, 1) Rectangular and square shapes
we take the major axié along thex and the minor axi8 In this case, a semi-analytical expression of thaps
along they axis. factorK is searched.
X The solution of (1) is written:
M 15 N H (% ¥, = H () + H (x 9+ H(x v 5)
dB
AH=0c—>* The termHy(x,t) has been chosen to verify the Poisson

Sx eqguation, and only depends on theoordinate. The following
-L/2 0 L2 expression is proposed (this potential is choseraletp zero
on the segments MQ and NP of Fig. 1(a)):

-1/2 p
Q H=H(?) on|the boundary 1 _dB ( 2 _I_zj

(a): Case of the rectangular region (witttheightl) 2 dt

(6)

The field Hx(x,y,t) is harmonic (i.e. verifiestH,=0). It
B/2 should be equal to zero on MQ and NP (Fig. 1(a)}, equal
to the opposite ofH;(x,t) on the segments MN and QP.
H,(x,y,t) is made fictitiously periodic along thedirection, so
the following mathematical expression can be pregddsheay
functions are a family of unknown functions):

N

H=H(?) on the boundary |-B/2



Hz(x,y,t):Zq((y,t)co{( 2 )7 ] @

k=1
Injecting (7) in the Laplace equatiofH,=0, a second
order differential equation is obtained for eagliunction:

Ok =21,

%Zya; —((Zk—J)lfx] a(y.)=C )

The solution of this equation is a linear combioatiof
hyperbolic functions. The expression l8j(x,y,t) is therefore

given by:
h (t){sinh[( x- :1)’{( y—;D
. sir(l( e )%(w;mD c[o(s @)%

H,(x y.t)=
k=1

9
X

J

K (RECT) -K ( RECY
‘ N+L N ‘

<0.5% (12)

‘KN(RECﬂ‘

Using this criterion, as the series (11) expondpgtia
converges, a maximal number of terms inferior to i&0
sufficient to computeK ®ESD whatever theR value. This can
be achieved very rapidly, the computation time gadivided
by more than 100 in comparison with the finite etain
method to solve (1), which requires a cumbersomérixna
inversion. This coefficient is plotted in Fig. 2 fanction of
R=l/L. This figures illustrates the fact that for a give
excitation inductionB,(t) and a given cross secti@of the
rectangle, the loss is reduced if the region exhibi “flat”
shape, that is to say if its height to width rasosmall. The
maximal value is obtained for a square shape. Dubd fact
that square shapes are often adopted in the literdt1], it
might be interesting to give the numerical value thé
coefficient for this particular casd{?""RF=3 5110% An

The set of function$,(t) only depends on time. After an extended table of th&®ECD coefficients in function oR is

expansion of the fieldH,(x,t) into Fourier series of the&
coordinate, the boundary conditiefy(x,y=4/2,t)=-H;(x,t) on

given in the Appendix.

the segments MN and QP leads to the following essiom, — K®ECT
for theh, coefficients: 0.04 - ELLP) U
,,,,,, K //,,."
2 -
R e e AT
(2k-2° 77 sinr(( x- 1{ |j 0.03 |- 1
~ L //
Knowing the termdd,(x,t) andH,(x,y,t) of (5), the currents Q:_ L ./
J, andJ, can be obtained by the derivation (2). The surface< 0.02 - B .
integral (3) can then be carried out to obtaindlassical loss i J
Weass All computations made, and given the fact tha th H /
region cross sectio8is equal ta_.| for rectangular shapes, it 0.01 L / i
turns out that th&K®=°" coefficient, which only depends on il
the height to width ratidR=Il/L, is given by the following
infinite series: i
0.00 ‘
 (Rec :ii 1 0.0 0.5 1.0
AR (2k-1)° | | R |
i’ (12) Fig. 2: Representatlor_\ of the coefficient in funct!on of the r_at|62 (case of
5 1 [1_ exp(—( XK - :)HR)] the rectangular for whicR=I/L, and case of the ellipse for whiBsB/A)

The validity of the previous approach can be alswng if
the expression (11) asymptotically converges wlier0
towards the specific loss in a lamination. Indesethmination
is a rectangular whose widthis much larger than its height

computatlon requires a finite _number of terms. Elure, the_ The smallest dimensidnis kept constant, and the raisl/L
maximal number of terms is chosen using the follgui tends towards zero. It is well knowg] [that the specific loss
method: this number is increased until the pasgiah do not . ) P

. in a lamination without skin effect is equal to:
change anymore, which means convergence of the

computation (a relative difference of 0.5% is a¢edp More ( jz
| dt

precisely, callingky®5°" the partial sum of the series (12)
with N terms,KyFEP is said to be equal ®®EP for the first 12 4

Equation (4), in the case of a rectangular, cawiiten under
the following form:

7R (2k-1)° [1-exp(-{ X~ }7R)]

Equation (11) is an infinite sum. However, its nuice

dB,
dt

(LAM) _ J[I]Z

W,

class

(13)

numberN verifying the condition:



K(RECT) R 2
W, R = JH() ajis] [dBaJ dt
R m\ dt

(14

(13) and (14) are in correct agreement if the r&f&“"/R

converges towards 1/12 wh&r»0. An asymptotic expansion

to the third order gives:

[1-exp(-(x- }7R)] (k-)7R_ 1
[1-exp(-2 x- }7R)| DRe 2 24

(2k-1) 7R’

Injecting (15) in (11) and dividing bi, it can be found:

K(RECT)

Qél3

Moy

A summation provides:

S

k=1 (2k - 1)2

oo|:L,

Finally, the following result can be established:

K (RECT)

QE**

(19

(16)

€Yy

()

(18) demonstrates the consistency between (11J%8)d This

convergence can also be illustrated in Fig. 3.

0.10 [

K(RECT) I R

[ 1/ 12 (lamination)
0.02 -

0.00 .

|
0.0 0.5
R=l/L

Fig. 3: Convergence of the ratic“"/R towards 1/12 iR—0

2) Elliptical shapes

=
o

For non isotropic materials, the case of elliptipafticles

for the computation of microscopic classical loss de of

interest [L1]. A is the major axis of the ellipse, afdis its
minor axis. The rati®R=B/A represents the shape factor of the
elliptical particle, analogue to the rati®=I/L of the

rectangular one. Calling a= (%)2_(%)2

and

x = altosh( o) Cco$d) 10
y = alsinh(p) Csin(6) (19)
The Poisson equation becomes:
2 2
OH, 0H_,d8 a’ =-[cosh( )~ cof 8)] (20)

7p 08 C dt 2

Separating the variablgsand 8, and taking into account
the boundary conditions, the following solution d@nfound:

a2
+—

H(p.6)= )~ cosh 2)

The derivation of this expression gives the curdstsity
components of (2) that can be substituted in (B ihtegral
of (3), performed on the elliptical cross-sectidakes the
form:

W, () = [cosr() & ] d (22)

cosh Z)L[ dt

Therefore, the ellipse cross section being equal to
S=r/4-AB, the KE''® coefficient of formula (4), which is
only dependant on the ratieR=B/A and not on the absolute
lengthsA andB, has the following expression:

K (ELLP) :1277{ tanlr(r) —tanh(r)}{ coslf ©)- c051(1 Q)} (23)

The previous expression has been represented ir2Hig
function of the shape factdrR=B/A for the ellipse (it is
recalled that=argtankfR)). It is interesting to notice that for a
given region cross sectid® and for a given shape rati®vof
the particle (equal t&/L for the rectangular anB/A for the
ellipse), the loss is approximately 10% highertfo elliptical
shape than for the rectangular shape.

It is recalled that for the circular cases] (radiusA/2), the
loss is equal to:

1/(dB Y\ (AY
W (CRCLE) _ .+ A [7j
class 0-8<( dt j >[T] 2 (24)

This means that th€©'R"® factor for the circle is equal to
1/(81)~3.9810°. As shown in Fig. 2, this is the limit of
expression (23) wheR=B/A—1.

r =argtani{R) , the analytical developments are carried out in

the followingpf coordinate system:



Ill.  NUMERICAL RESULTS AND SIMPLIFIED FORMULATIONS

A. Finite element verification

The Poisson equation (1) can also be solved byefini
elements (FEM) and the obtained loss @ factor can be
compared to the one provided by the analytical ot his
verification is shown in Fig. 4 for what concertee K®ED
factor of the rectangular. Exact correspondence ban
observed. However, the computation time is mora thao
times faster for the semi-analytical method.

—
Semi-analytical

o FEM

0.03

000
0.0 05 1.0

R=l/R
Fig. 4: Computation of th&®ED coefficient in function of the ratiB=I/L, by
the semi-analytical formula (11), and by FEM

The current lines can also be computed by the toaly
method, and the FEM method (they are the iso-lbnebk of
the field H over the cross section). The results are shown
Fig. 5 for the rectangular case. The analytical BEW results
are also very similar.

=

(a): Analytical computation

»In this work, the free finite elements code FEMptovided by the
Foster-Miller company, has been used.

Z——

(b): FEM computation

Fig. 5: Current lines comparison between the aitalyand FEM methods
(rectangular of normalized absolute dimensionsmadized excitatiorB,/dt,
and shape ratiB=I/L equal to 1/2)

Similar results and conclusions can be found ftptetal
regions.

B. Simplified formulations for the rectangular

Formula (11) provides an exact semi-analytical
computation of th&K®ED coefficient. However, the fact it is
given under the form of an infinite series can bindt for its
practical use. In this section, we propose a vempk
analytical formula for the loss in rectangular stgased on
a simplification of (11). This simplified formula icompared
with other existing simplified formulae for the #sin
rectangular regions available in the literature.

The simplified formula we propose is based on tha that

the ratioK®E“T/R, represented in Fig. 3 as a functionRyf
looks like a linear curve with negative slope. Ap# value
equal to -1/20 has been empirically determinedttthé ratio
KIREST/R with a satisfying precision on the whole interval
[0;1] for R. Taking into account, as demonstrated before, that
whenR tends towards 0, the ratid"*“"JR tends towards 1/12
(the lamination case), the following formula is posed:

(RECT)
K1 1g (25)
R 12 20

Some authors1B] have tried to compute the eddy current
distribution in rectangular regions using the appmation of
rectangular eddy current paths. These rectangaldrsphave
the same height to width ratio than the region tred same
center (Fig. 6).

Rectangular eddy
A current paths
_ /2 _
~ OB~
[0) SX
-L/2 10 L2

72 Domain boundary

Fig. 6: Derivation of the simplified loss formula ia rectangular region
presented in 18], based on the approximation of rectangular eddgiyenit
lines



The conductance of an elementary current path esotte 0.10
represented in Fig. 6 has the following expresgiba vertical
portions of this elementary current path are betwéee
coordinatex andx+dx): 008 Tttt
R dx
dG= — 26
Ul+ R? 4x (26) Q- 0.06 ===
The RMS value of the electromotive force in themadatary Et\ """""
current path is given by: N3
0.04 - TS S
L (dB YV ---- 1/Ric2T(Iam|natlon) _______ >~
E(x)=4R% —j( J dt 27 [ — &R ]
Tml dt 002 ---112-120.R ]
' [ KEUINED | o J
The classical loss in the region is therefore ginmn I
integration: 000 ‘ ‘ ‘ ‘
L2 0.0 0.5 1.0
W™ =T [ EdG (28) R
S ° Fig. 7:K/Rratio in function ofR obtained for the rectangular (limit case of the

lamination wherR—0, exact formuld&®E°T/R (11), linear approximation

After Ca|cu|ati0n’ it is obtained: (25), andK®YNED/R ratio obtained by Bunet (30))

C. Application: computation of the microscopic classioss

VVCIaSS(BUNET) :U[-)];EI R i EBI]J'(dBa jz d (29) in a Sc_>ft Magnetic Composite using a statisticaeimf the
16 #+R° gl dt grain sizes and shapes
In [19], a method has been proposed to compute the
This implies aK®NED factor equal to: classical loss in soft magnetic composites. It ésed on a
statistical analysis of micrographs such as the simavn in
K (BUNET) :ig% (30) Fig. 8. As done in19], the sample size is assumed to be small
16 1+R

Although simple, it is clear that the formula (36pntrary
to (11), fails to reproduce the loss behaviour oles for a

enough to neglect the macroscopic classical lossribation

(i.e. the currents flowing from grain to grain hetscale of the
sample). Only microscopic eddy currents flowinghe scale
of the grain are taken into account. Therefore, rdggon to

I;1m|trjat|c>lr|1,Blie. t;/]vlle[hR—»O.t.dI;/céeeg, |';dhtas dbeien Sgov‘i?l'znconsider in the computations is the single grais tiie grains
ﬁc 'Olg 0 t. ) tha { € ral d S '([)hu | en tpwatr) ?1 = are made of pure iron, the conductivity to considethe one
whenR—0 to correctly reproduce the lamination behaviour iron 6-=9.9310° Sm™.

while from formula (30)K®NET/R—1/16. This error comes
from the fact that the assumption of concentricrenir lines
with the same height to width ratio than the reg®nvrong
for small ratiosR=I/L.

The exact formula (11), the approximate one (269, the
one of Bunet (30) are compared in Fig. 7 (in teohtheK/R
ratio). Although conceptually and analytically siep the
formula of Bunet (30) is quite far from the exaciabtical
result. The linear approximation (25) appears tad®irate on
the whole rang®, which is a clear advantage.

icrograph of a SMC (provided by the Hogaram|

9. pany)

Using an image processing software, each grainbkas
isolated, and made equivalent to a rectangularofescross
section S, and same height to width ratR (Fig. 9). The
reason for choosing a rectangular shape is the riaumo
material density due to high pressure compactiohjchv
cannot be obtained by an array of cylinders.

Fi



-Same cross section Equlvalent rectangular
-Same thickness to

Fig. 9: Equivalence of each grain to a rectangular

Dealing with several micrographs and using appateri
statistical tools 19], a bivariate lognormal distribution
(parameters§R)) has been identified for the material:

1 (In S—a's)2
(s R)-sszmseR¢1—x5ReXp{ ‘s (31)
,(in R-a,)" 2x..(InS-aJ)(lnR-a)

$r {lr

|

The classical loss is computed using the followittggral:

2 0 00

W (3, f):amj[dBa] dtf [ (s, R K*™"(R) s1dRd (32)
[ dt 00

The double integral in SR) has to be computed

numerically. This can be time consuming if ti€=" factor
is computed using finite elements, because a guoiportant
number of shape factor evaluations can be requivedan
accurate integral computation. This was the metioddwed

in [19], and several minutes were required. On the copntra

using the simplified formula (25) for th& factor, the
computation becomes instantaneous (less than awnde
for a similar accuracy (Fig. 10). This case for ethia
statistical distribution of the grain sizes is useda typical
case for which a simplified analytical formula fitve K(*5¢T)
coefficient (like (25)) is valuable from the comatibnal point

of view.
800 [
[ 1T] g
- ®/:
[ - O-- Finite element [19] L ]
__ 600 - --*-- simplified formula (24) /@’ 5
£ ; &
=) 7
- 400 : //@(
g 3 & ]
S &
L //
v
200 - ® ]
A
&
O k& \/\ PRI P P E S NI N Y L
0 2 4 6 8 10

Frequency 7 (kHz)
Fig. 10: Classical loss in the SMC of Fig. 8 indtian of the frequency, for a
peak polarizatiod,=1 T (use of the finite element method to comp{@9],
and use of the simplified formula (25))

IV. CONCLUSION

In this paper, a semi-analytical formula for thasslical
loss in rectangular-shaped regions and an andlyticaula in

elliptical ones have been proposed. It has beewrshiat the
formula for the rectangular tends towards the Wetiwn loss
expression in laminations if the height to widthioaof the
rectangular tends towards zero. Finite elementatibns are
also proposed. The loss expression in rectangaioms can
be both used for the computation of the macroscojissical
loss component (i.e. currents flowing at the scafethe
sample which exhibits a rectangular cross sectianyl for
microscopic classical loss evaluation for highlymmacted
materials. Elliptical shapes are useful for micogsc loss
prediction in low density materials with anisotroppn
important decrease of the computation time compdwed
conventional methods such as finite elements hasn be
observed.

In the second part of the article, a very simptifienear
formula has been proposed for the classical losedtangular
regions. This formula has been applied to rapidhd a
accurately compute the microscopic classical lasa SMC,
which requires a statistical computation to taki® iaccount
the various shapes and sizes of the grains. Thestistal
properties of the grain have been retrieved by ogiaph
analysis.

V. APPENDIX

A. Explanation on formula (4)

Rather than using the magnetic fiek(x,y,t) in this
section, it is more convenient to use the electrgctor
potentialT(x,y,t)chosen as:

T(xy.0)=H(x%)-H,(t) (33)

In this way, the Poisson equation (1) written inme of
electric vector potentiall verifies homogeneous boundary
conditions on the domain bounddry

dB,
dt
|, =0

(34)

The current density is given by the same spatial/deves
as with the magnetic field:

0
dy

__oT

Y ox

(39)

Consider a region of arbitrary sha@gspatial coordinates
(x,y)), and normalize it to a regia®, (normalized coordinates
(XYn)), chosen in such a way that the domain crossesesti
in the normalized coordinate system is equal toThe
homothetic factor between the normalized regijnand the
real regionQ has the dimension of a length and is caked
(Fig. 11). The cross-section &fis equal taS=k%.



Homothetic factor & y=k.y,

“““-......d /\
Yo
Q
o) 7
>X, >
0 0 x=k.x,
Fn
r

Fig. 11: Definition of a normalized regid®, chosen in such a way that the

o

12

W (LAm)

class

2
e e
The coefficien in this important case of thin laminations

is equal tadk=1/12-R.

B. Table of the KE°Tcoefficients in function of R

An extended table of tH€®E<T coefficients in function of
R, computed from expression (11), is given in Tdble

RDSJJ
]

lized cross-sectich i Ito 1 TABLE |
normalized cross-sectidi is equal to K®ECD COEFFICIENTS IN FUNCTION OIR (EXPRESSION(11))
In the real region®?, the electric potentiall(x,y,t) is R KREeT
obtained solving (34) in théy) system. In the normalized 0 0 .
coordinate system(x,Y.), one can find the normalized g-% 172?6%22
potentialt(x,,y,) verifying the following Poisson equation: 0.3 5 03102
0.4 2.49107
9%t, 9%, 1 0. 2.861C?
v = = 0.6 3.1310?
Lo 0x oy, (36) 0.7 3.32102
tt =0 0.8 3.421C°
o 0.9 3.5010?
) o 1 3.51102
The following relation is clear:
1 VI. REFERENCES
Dny=17 (37
(¥ 7 |2 " 06) [1] A. Magni et al., "Domain wall processes, rotatioasd highfrequenc

In addition, using the linearity of the Poisson &tipn, it
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Carrying out the spatial and temporal means of By
remembering thaS=I’, it is found for the specific classical
loss per cycle:
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Therefore, noticing that the coefficieitdefined as in (41)
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formula (4) is found.
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small height to width rati®=I/L, the classical loss is given by

(14). An obvious algebraic manipulation gives, sitite cross
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