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Semi-analytical and analytical formulae for the classical loss in 
granular materials with rectangular and elliptical grain shapes 

 
O. de la Barrière, M. LoBue, F. Mazaleyrat 

SATIE, ENS Cachan, CNRS, UniverSud, 61 av du President Wilson, F-94230 Cachan, France 
 

Granular soft magnetic materials, such as ferrites or Soft Magnetic Composites, are widely spread in modern electrical engineering 
applications. An important loss contribution is the classical one. It is known that in these materials, two kinds of classical loss must be 
distinguished: eddy currents flowing at the scale of the whole sample (therefore called macroscopic), and current lines inside the grains 
(called microscopic). For the macroscopic eddy currents computation, the sample cross sections are often square or rectangular. For 
eddy currents prediction inside the grains, two cases can be distinguished: the case of low density materials, for which circular or 
elliptical grain shapes are often realistic, and the case of high density materials. In this last class of granular materials, it is more 
difficult to identify a precise grain shape, because the deformations occurring during the compaction process often give to the grains a 
random shape. For carrying out the eddy current computation, rectangular shapes are often considered, because they allow a complete 
filling of the available space. To our knowledge, analytical eddy current formulae only exist for cylindrical or spherical regions. For 
other shapes such as squares, rectangles, or ellipses, the finite element method must be used to compute the eddy current distribution, 
which can be time consuming. This paper overcomes this difficulty by proposing respectively a semi-analytical formula for classical 
loss in rectangular geometries, and an analytical formula for elliptical cases. 

 
Index Terms—classical loss computation, granular materials, rectangular shape, elliptical shape. 
 

I. INTRODUCTION 1 

RANULAR MAGNETIC MATERIALS, such as ferrites [1] or 2 
Soft Magnetic Composites (SMC) [2] are nowadays very 3 

popular in modern electrical engineering applications, such as 4 
electrical machines [3], or power electronics [4]. Indeed, these 5 
magnetic materials, made of magnetic particles coated by a 6 
dielectric insulator, potentially allow a significant reduction of 7 
the classical loss component [5][6], compared to laminated 8 
materials [7], in applications for which a magnetic 9 
permeability decrease is acceptable [8]. 10 

The starting point of the loss separation analysis [9] is an 11 
accurate computation of the classical loss component [10]. 12 
Actually, in granular materials, classical loss computation is 13 
far to be trivial. Indeed, it was shown that in these materials 14 
(ferrites or SMC), two classical loss terms must be 15 
distinguished [5][2][11]. The first one is linked to eddy 16 
currents flowing at the scale of the single particle (therefore 17 
called microscopic). The second term (called macroscopic) is 18 
due to eddy currents flowing at the scale of the whole sample, 19 
because of capacitive effects through the dielectric insulator, 20 
or random contacts appearing between grains during the 21 
compaction process. The two terms can be separately 22 
computed and summed up [12]. 23 

− For the microscopic loss component, analytical 
classical loss formulations are only available for 
cylindrical or spherical grains [2][13]. These 
shapes are realistic for low density materials [2]. 
However, it should be suitable, concerning low 
density materials, to also have formulae for 
elliptical grain shapes which can be encountered 
when dealing with anisotropic media [11]. For 
highly dense materials, such as SMC which 
undergo a high pressure compaction, it is more 
difficult to define a precise grain size. Indeed, the 
grains often take random shapes due to plastic 

deformations occurring during the compaction 
process [14]. For classical loss estimation, square 
or rectangular shapes seem quite realistic, because 
they allow a complete filling of the available 
space. Concerning ferrites, the rectangular shape is 
often taken for the grains when modeling the 
microscopic classical loss [15]. 

− Concerning the macroscopic classical loss 
prediction, the toroidal samples in which typical 
experiments are carried out often exhibit square or 
rectangular cross sections [16]. Therefore, the 
problem of eddy current computation in a square 
or rectangular region still arises (in this case, the 
resistivity to consider is the bulk resistivity of the 
sample, and the dimensions are the ones of the 
cross section). 

This clearly emphasizes the need to accurately and 
efficiently compute the eddy current loss in a square, 
rectangular, or elliptical region. As no analytical classical loss 
formula exists for squares, rectangles, or ellipses, a finite 
element computation is often used to solve the Poisson 
equation [14]. This procedure can be quite cumbersome, and 
does not offer explicit expressions as analytical formulae. 

The purpose of this paper is to propose respectively a semi-
analytical formulation for the eddy current loss problem in a 
rectangular (or square) region, and an analytical solution in the 
elliptical one. This can be useful both for microscopic 
classical loss computation (in this case, the considered region 
is the grain, and the resistivity to consider is the one of the 
grain material), and for macroscopic eddy currents (then, the 
outer geometry of the region is the cross section, and the bulk 
resistivity of the material is used). In this paper, all 
computations are done under the hypothesis of skin depth 
much larger than the region edges. In the first part, the 
analytical method is detailed. In the second part, the results are 
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compared with finite elements, and approximation formulae 
are also worked out. Finally, as an example, these methods are 
applied to the microscopic eddy current computation for a 
SMC. 

II. ANALYTICAL FORMULATIONS  

A. Problem to solve and simplifying assumptions 

The simplifying assumptions are the followings. 
− The eddy current paths are considered as bi-

dimensional, flowing in the plane perpendicular 
to the flux density. The flux density is assumed 
purely alternative, i.e. applied in a given 
direction. 

− The particle is assumed to be small enough to 
neglect skin effect in the range of frequencies of 
interest. 

A Cartesian axis system xyz is introduced. The applied 
induction Ba(t), which is also the local one since skin effect is 
ignored, is directed along the z axis, as well as the magnetic 
field H(x,y,t), that can therefore be considered as a scalar. The 
current density ( ) ( ), , ,x yJ x y t J J=

�

, on the contrary, is a 

vector located in the xy plane. 
Under this set of simplifying assumptions, it has been 

shown in [17] that the equation giving the magnetic field is a 
Poisson equation: 

2 2

2 2
adBH H

H
dtx y

σ∂ ∂∆ = + =
∂ ∂

 (1)

where σ the conductivity of the material. The boundary 
condition on the region edges is H=Ha(t), Ha(t) being the 
external applied field. The problem to solve has been 
represented in Fig. 1. The rectangular has a width L along the 
x axis, and a height l along the y axis. For the elliptical shape, 
we take the major axis A along the x and the minor axis B 
along the y axis. 

 
(a): Case of the rectangular region (width L, height l) 

 

(b): Case of the elliptical region (major axis A, minor axis B) 

Fig. 1: Bi-dimensional Poisson equation to solve, (a): rectangular region, and 
(b): elliptical region. 

Once the magnetic field H(x,y,t) is known, the current 
density can be obtained by the following partial derivations: 

x

y

H
J

y

H
J

x

∂ = ∂


∂ = −
 ∂

 (2)

And the classical loss, in terms of energy lost per cycle of 
period T and per unit volume, is (S is the region cross section): 

( )
( )

2 2
class

0

1 1T

x y

S

W J J dxdydt
S σ

= +∫ ∫∫  (3)

B. Analytical developments 

Expression (3) of the classical loss will be written, 
whatever the shape, under the following form (see the 
Appendix for a detailed explanation): 

[ ]

2

class
a

T

dB
W K S dt

dt
σ  = ⋅ ⋅ ⋅  

 
∫  (4)

In the previous expression, K is a factor depending on the 
region shape only (and not on its absolute dimensions). It can 
be shown that the expression (4) is valid for any region shape 
and size (provided skin effect can be neglected). In the 
following, we will give an analytical, or when not possible a 
semi-analytical (i.e. under the form of a converging infinite 
sum) expression of the shape factor K, for rectangular and 
elliptical grain shapes. 

1) Rectangular and square shapes 
In this case, a semi-analytical expression of the shape 

factor K is searched. 
The solution of (1) is written: 

( ) ( ) ( ) ( )1 2, , , , ,aH x y t H t H x t H x y t= + +  (5)

The term H1(x,t) has been chosen to verify the Poisson 
equation, and only depends on the x coordinate. The following 
expression is proposed (this potential is chosen equal to zero 
on the segments MQ and NP of Fig. 1(a)): 

( )
2

2
1

1
,

2 4
adB L

H x t x
dt

σ  
= − 

 
 (6)

The field H2(x,y,t) is harmonic (i.e. verifies ∆H2=0). It 
should be equal to zero on MQ and NP (Fig. 1(a)), and equal 
to the opposite of H1(x,t) on the segments MN and QP. 
H2(x,y,t) is made fictitiously periodic along the x direction, so 
the following mathematical expression can be proposed (the ak 
functions are a family of unknown functions): 

0 x
z

y

0 x
z

y
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( ) ( ) ( )2
1

, , , cos 2 1k
k

H x y t a y t k x
L

π∞

=

 = − 
 

∑  (7)

Injecting (7) in the Laplace equation ∆H2=0, a second 
order differential equation is obtained for each ak function: 

( ) ( )
22

2
1,  2 1 , 0k

k

a
k k x a y t

Ly

π∂  ∀ ≥ − − = ∂  
 (8)

The solution of this equation is a linear combination of 
hyperbolic functions. The expression of H2(x,y,t) is therefore 
given by: 

( ) ( ) ( )

( ) ( )

2
1

, , sinh 2 1
2

                          sinh 2 1 cos 2 1
2

k
k

L
H x y t h t k y

L

L
k y k x

L L

π

π π

∞

=

   = − −   
  

    + − + ⋅ −    
    

∑
 (9)

The set of functions hk(t) only depends on time. After an 
expansion of the field H1(x,t) into Fourier series of the x 
coordinate, the boundary condition H2(x,y=±l/2,t)=-H1(x,t) on 
the segments MN and QP leads to the following expression, 
for the hk coefficients: 

( ) ( )
( ) ( )

2
1

3 3

4
1

2 1 sinh 2 1

ka
k

dB L
h t

dt
k k l

L

σ
ππ

−= − −
 − − 
 

 
(10)

Knowing the terms H1(x,t) and H2(x,y,t) of (5), the currents 
Jx and Jy can be obtained by the derivation (2). The surface 
integral (3) can then be carried out to obtain the classical loss 
Wclass. All computations made, and given the fact that the 
region cross section S is equal to L.l for rectangular shapes, it 
turns out that the K(RECT) coefficient, which only depends on 
the height to width ratio R=l/L, is given by the following 
infinite series: 

( )

( )

( )
( )( )
( )( )

4 4
1

2

5

8 1

2 1

1 exp 2 12 1
                                

1 exp 2 2 12 1

RECT

k

K
R k

k R

R k Rk

π

π
π π

∞

=

= 
−

 − − −  − 
 − − −−   

∑
 (11)

Equation (11) is an infinite sum. However, its numerical 
computation requires a finite number of terms. Therefore, the 
maximal number of terms is chosen using the following 
method: this number is increased until the partial sum do not 
change anymore, which means convergence of the 
computation (a relative difference of 0.5% is accepted). More 
precisely, calling KN

(RECT) the partial sum of the series (12) 
with N terms, KN

(RECT) is said to be equal to K(RECT) for the first 
number N verifying the condition: 

( ) ( )

( )
1

0.5%

RECT RECT
N N

RECT
N

K K

K

+ −
≤  (12)

Using this criterion, as the series (11) exponentially 
converges, a maximal number of terms inferior to 20 is 
sufficient to compute K(RECT) whatever the R value. This can 
be achieved very rapidly, the computation time being divided 
by more than 100 in comparison with the finite element 
method to solve (1), which requires a cumbersome matrix 
inversion. This coefficient is plotted in Fig. 2 in function of 
R=l/L. This figures illustrates the fact that for a given 
excitation induction Ba(t) and a given cross section S of the 
rectangle, the loss is reduced if the region exhibits a “flat” 
shape, that is to say if its height to width ratio is small. The 
maximal value is obtained for a square shape. Due to the fact 
that square shapes are often adopted in the literature [11], it 
might be interesting to give the numerical value of the 
coefficient for this particular case: K(SQUARE)=3.51·10-2. An 
extended table of the K(RECT) coefficients in function of R is 
given in the Appendix. 

 
Fig. 2: Representation of the K coefficient in function of the ratio R (case of 
the rectangular for which R=l/L, and case of the ellipse for which R=B/A) 

The validity of the previous approach can be also shown if 
the expression (11) asymptotically converges when R→0 
towards the specific loss in a lamination. Indeed, a lamination 
is a rectangular whose width L is much larger than its height l. 
The smallest dimension l is kept constant, and the ratio R=l/L 
tends towards zero. It is well known [9] that the specific loss 
in a lamination without skin effect is equal to: 

( )

[ ]

22
LAM

class 12
a

T

dBl
W dt

dt

σ ⋅  =  
 
∫  (13)

Equation (4), in the case of a rectangular, can be written under 
the following form: 

0.0 0.5 1.0
0.00

0.01

0.02

0.03

0.04
 K

 

(RECT)

 K
 

(ELLIP)

K
(R

)

R



< 
 

4

( )
( ) ( )

[ ]

2RECT
2

class
RECT a

T

K R dB
W l dt

R dt
σ  = ⋅ ⋅ ⋅  

 
∫  (14)

(13) and (14) are in correct agreement if the ratio K(RECT)/R 
converges towards 1/12 when R→0. An asymptotic expansion 
to the third order gives: 

( )( )
( )( )

( ) ( )
2

3

0

1 exp 2 1 2 1 1
2 1

2 241 exp 2 2 1
R

k R k R
k R

k R

π π
π

π →

 − − − −  → − −   − − − 

 (15)

Injecting (15) in (11) and dividing by R, it can be found: 

( )

( )0 2 2
1

2 1

3 2 1

RECT

R
k

K

R kπ→
≥

→
−

∑  (16)

A summation provides: 

( )
2

2
1

1

82 1k k

π∞

=

=
−

∑  (17)

Finally, the following result can be established: 

( )

0

1

12

RECT

R

K

R →→  (18)

(18) demonstrates the consistency between (11) and (13). This 
convergence can also be illustrated in Fig. 3. 

 
Fig. 3: Convergence of the ratio K(RECT)/R towards 1/12 if R→0 

2) Elliptical shapes 
For non isotropic materials, the case of elliptical particles 

for the computation of microscopic classical loss can be of 
interest [11]. A is the major axis of the ellipse, and B is its 
minor axis. The ratio R=B/A represents the shape factor of the 
elliptical particle, analogue to the ratio R=l/L of the 

rectangular one. Calling ( ) ( )2 2

2 2
A Ba = −  and

( )argtanhr R= , the analytical developments are carried out in 

the following ρθ coordinate system: 

( ) ( )
( ) ( )

cosh cos

sinh sin

x a

y a

ρ θ
ρ θ

= ⋅ ⋅


= ⋅ ⋅
 (19)

The Poisson equation becomes: 

( ) ( )
2 2 2

2 2
cosh 2 cos 2

2
adBH H a

dt
σ ρ θ

ρ θ
∂ ∂+ = −  ∂ ∂

 (20)

Separating the variables ρ and θ, and taking into account 
the boundary conditions, the following solution can be found: 

( ) ( ) ( ) ( )

( )
( ) ( )

2

, cosh 2 cosh 2
8

cosh 2
                                             1 cos 2

cosh 2

a
a

dBa
H H t r

dt

r

ρ θ σ ρ

ρ
θ

= + −

 
+ −   

  

 (21)

The derivation of this expression gives the current density 
components of (2) that can be substituted in (3). The integral 
of (3), performed on the elliptical cross-section, takes the 
form: 

( ) ( ) ( ) [ ]

22
ELLIP

class

1
cosh 2

16 cosh 2
a

T

dBa
W r dt

r dt
σ

   = −   
   
∫  (22) 

Therefore, the ellipse cross section being equal to 
S=π/4·A·B, the K(ELLIP) coefficient of formula (4), which is 
only dependant on the ratio R=B/A and not on the absolute 
lengths A and B, has the following expression: 

( )

( ) ( ) ( ) ( )
ELLIP 1 1 1

tanh cosh 2
16 tanh cosh 2

K r r
r rπ

   
= − −   

      

 (23)

The previous expression has been represented in Fig. 2 in 
function of the shape factor R=B/A for the ellipse (it is 
recalled that r=argtanh(R)). It is interesting to notice that for a 
given region cross section S, and for a given shape ratio R of 
the particle (equal to l/L for the rectangular and B/A for the 
ellipse), the loss is approximately 10% higher for the elliptical 
shape than for the rectangular shape. 

It is recalled that for the circular case [13] (radius A/2), the 
loss is equal to: 

( )

[ ]

2 2
CIRCLE

class

1

8 2
a

T

dB A
W

dt
σ    =   

  
 (24) 

This means that the K(CIRCLE) factor for the circle is equal to 
1/(8π)≈3.98·10-2. As shown in Fig. 2, this is the limit of 
expression (23) when R=B/A→1. 
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III.  NUMERICAL RESULTS AND SIMPLIFIED FORMULATIONS 

A. Finite element verification 

The Poisson equation (1) can also be solved by finite 
elements (FEM)1, and the obtained loss or K factor can be 
compared to the one provided by the analytical method. This 
verification is shown in Fig. 4 for what concerns the K(RECT) 
factor of the rectangular. Exact correspondence can be 
observed. However, the computation time is more than 100 
times faster for the semi-analytical method. 

 
Fig. 4: Computation of the K(RECT) coefficient in function of the ratio R=l/L, by 
the semi-analytical formula (11), and by FEM 

The current lines can also be computed by the analytical 
method, and the FEM method (they are the iso-level lines of 
the field H over the cross section). The results are shown in 
Fig. 5 for the rectangular case. The analytical and FEM results 
are also very similar. 

 
(a): Analytical computation 

                                                           
 

1 In this work, the free finite elements code FEMM, provided by the 
Foster-Miller company, has been used. 

 
(b): FEM computation 

Fig. 5: Current lines comparison between the analytical and FEM methods 
(rectangular of normalized absolute dimensions, normalized excitation dBa/dt, 

and shape ratio R=l/L equal to 1/2) 

Similar results and conclusions can be found for elliptical 
regions. 

B. Simplified formulations for the rectangular 

Formula (11) provides an exact semi-analytical 
computation of the K(RECT) coefficient. However, the fact it is 
given under the form of an infinite series can be a limit for its 
practical use. In this section, we propose a very simple 
analytical formula for the loss in rectangular shapes, based on 
a simplification of (11). This simplified formula is compared 
with other existing simplified formulae for the loss in 
rectangular regions available in the literature. 
The simplified formula we propose is based on the fact that 
the ratio K(RECT)/R, represented in Fig. 3 as a function of R, 
looks like a linear curve with negative slope. A slope value 
equal to -1/20 has been empirically determined to fit the ratio 
K(RECT)/R with a satisfying precision on the whole interval 
[0;1] for R. Taking into account, as demonstrated before, that 
when R tends towards 0, the ratio K(RECT)/R tends towards 1/12 
(the lamination case), the following formula is proposed: 

( ) 1 1

12 20

RECTK
R

R
= − ⋅  (25)

Some authors [18] have tried to compute the eddy current 
distribution in rectangular regions using the approximation of 
rectangular eddy current paths. These rectangular paths have 
the same height to width ratio than the region and the same 
center (Fig. 6). 

 
Fig. 6: Derivation of the simplified loss formula in a rectangular region 
presented in [18], based on the approximation of rectangular eddy current 
lines 
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The conductance of an elementary current path as the one 
represented in Fig. 6 has the following expression (the vertical 
portions of this elementary current path are between the 
coordinates x and x+dx): 

2 41

R dx
dG

xR
σ=

+
 (26)

The RMS value of the electromotive force in the elementary 
current path is given by: 

( )
[ ]

2

2 1
4 a

T

dB
E x Rx dt

T dt
 =  
 
∫  (27)

The classical loss in the region is therefore given by 
integration: 

( )
2

BUNET 2
class

0

1
L

W T E dG
S

= ∫  (28) 

After calculation, it is obtained: 

( )

[ ]

2
BUNET

class 2

1

16 1
a

T

dBR
W S dt

dtR
σ  = ⋅ ⋅ ⋅ ⋅  +  

∫  (29) 

This implies a K(BUNET) factor equal to: 

( )BUNET

2

1

16 1

R
K

R
= ⋅

+
 (30)

Although simple, it is clear that the formula (30), contrary 
to (11), fails to reproduce the loss behaviour observed for a 
lamination, i.e. when R→0. Indeed, it has been shown in 
Section II.B.1) that the ratio K/R should tend towards 1/12 
when R→0 to correctly reproduce the lamination behaviour, 
while from formula (30), K(BUNET)/R→1/16. This error comes 
from the fact that the assumption of concentric current lines 
with the same height to width ratio than the region is wrong 
for small ratios R=l/L. 

The exact formula (11), the approximate one (25), and the 
one of Bunet (30) are compared in Fig. 7 (in terms of the K/R 
ratio). Although conceptually and analytically simple, the 
formula of Bunet (30) is quite far from the exact analytical 
result. The linear approximation (25) appears to be accurate on 
the whole range R, which is a clear advantage. 

 
Fig. 7: K/R ratio in function of R obtained for the rectangular (limit case of the 

lamination when R→0, exact formula K(RECT)/R (11), linear approximation 
(25), and K(BUNET)/R ratio obtained by Bunet (30)) 

C. Application: computation of the microscopic classical loss 
in a Soft Magnetic Composite using a statistical model of the 
grain sizes and shapes 

In [19], a method has been proposed to compute the 
classical loss in soft magnetic composites. It is based on a 
statistical analysis of micrographs such as the one shown in 
Fig. 8. As done in [19], the sample size is assumed to be small 
enough to neglect the macroscopic classical loss contribution 
(i.e. the currents flowing from grain to grain at the scale of the 
sample). Only microscopic eddy currents flowing at the scale 
of the grain are taken into account. Therefore, the region to 
consider in the computations is the single grain. As the grains 
are made of pure iron, the conductivity to consider is the one 
of iron σFe=9.93·106 S·m-1. 

 
Fig. 8: Micrograph of a SMC (provided by the Höganäs company) 

Using an image processing software, each grain has been 
isolated, and made equivalent to a rectangular of same cross 
section S, and same height to width ratio R (Fig. 9). The 
reason for choosing a rectangular shape is the important 
material density due to high pressure compaction, which 
cannot be obtained by an array of cylinders. 
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Fig. 9: Equivalence of each grain to a rectangular 

Dealing with several micrographs and using appropriate 
statistical tools [19], a bivariate lognormal distribution 
(parameters (S,R)) has been identified for the material: 

( ) ( )

( ) ( )( )

2

,

2

,

ln1 1
, exp

2 1

2 ln lnln
            

S

SS R S R

S R S RR

R S R

S
f S R

S R

S RR

α
ξπξ ξ χ

χ α αα
ξ ξ ξ

 −= ⋅ − 

− −− + − 


 (31)

The classical loss is computed using the following integral: 

( ) ( )
[ ]

( ) ( ) ( )class p

2
RECT

0 0

, ,SMC a

T

W J f f S R K S dRdS
dB

dt R
dt

σ
∞ ∞

= ⋅ ⋅ ⋅ 
 
∫ ∫ ∫

 (32) 

The double integral in (S,R) has to be computed 
numerically. This can be time consuming if the K(RECT) factor 
is computed using finite elements, because a quite important 
number of shape factor evaluations can be required for an 
accurate integral computation. This was the method followed 
in [19], and several minutes were required. On the contrary, 
using the simplified formula (25) for the K factor, the 
computation becomes instantaneous (less than one second), 
for a similar accuracy (Fig. 10). This case for which a 
statistical distribution of the grain sizes is used is a typical 
case for which a simplified analytical formula for the K(RECT) 
coefficient (like (25)) is valuable from the computational point 
of view. 

 
Fig. 10: Classical loss in the SMC of Fig. 8 in function of the frequency, for a 
peak polarization Jp=1 T (use of the finite element method to compute K [19], 

and use of the simplified formula (25)) 

IV.  CONCLUSION 

In this paper, a semi-analytical formula for the classical 
loss in rectangular-shaped regions and an analytical formula in 

elliptical ones have been proposed. It has been shown that the 
formula for the rectangular tends towards the well-known loss 
expression in laminations if the height to width ratio of the 
rectangular tends towards zero. Finite element validations are 
also proposed. The loss expression in rectangular regions can 
be both used for the computation of the macroscopic classical 
loss component (i.e. currents flowing at the scale of the 
sample which exhibits a rectangular cross section), and for 
microscopic classical loss evaluation for highly compacted 
materials. Elliptical shapes are useful for microscopic loss 
prediction in low density materials with anisotropy. An 
important decrease of the computation time compared to 
conventional methods such as finite elements has been 
observed. 

In the second part of the article, a very simplified linear 
formula has been proposed for the classical loss in rectangular 
regions. This formula has been applied to rapidly and 
accurately compute the microscopic classical loss in a SMC, 
which requires a statistical computation to take into account 
the various shapes and sizes of the grains. The statistical 
properties of the grain have been retrieved by micrograph 
analysis. 

V. APPENDIX 

A. Explanation on formula (4) 

Rather than using the magnetic field H(x,y,t) in this 
section, it is more convenient to use the electric vector 
potential T(x,y,t) chosen as: 

( ) ( ) ( ), , , , ax y t x y tT H H t= −  (33) 

In this way, the Poisson equation (1) written in terms of 
electric vector potential T verifies homogeneous boundary 
conditions on the domain boundary Γ: 

0

adB
T

dt
T

σ

Γ

∆ =

 =

 (34)

The current density is given by the same spatial derivatives 
as with the magnetic field: 

x

y

T
J

y

T
J

x

∂ = ∂


∂ = −
 ∂

 (35)

Consider a region of arbitrary shape Ω (spatial coordinates 
(x,y)), and normalize it to a region Ωn (normalized coordinates 
(xn,yn)), chosen in such a way that the domain cross-section Sn 
in the normalized coordinate system is equal to 1. The 
homothetic factor between the normalized region Ωn and the 
real region Ω has the dimension of a length and is called k 
(Fig. 11). The cross-section of Ω is equal to S=k2. 
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Fig. 11: Definition of a normalized region Ωn chosen in such a way that the 

normalized cross-section Sn is equal to 1 

In the real region Ω, the electric potential T(x,y,t) is 
obtained solving (34) in the (xy) system. In the normalized 
coordinate system (xn,yn), one can find the normalized 
potential t(xn,yn) verifying the following Poisson equation: 

( )

2 2

, 2 2
1

0

n n

n

n n
nx y

n n

t t
t

x y

t
Γ

 ∂ ∂
∆ = + = ∂ ∂
 =


 (36)

The following relation is clear: 

( ) ( ), ,2

1
n nx y x yk

∆ = ∆  (37)

In addition, using the linearity of the Poisson equation, it 
can be obtained: 

( ) ( )2, , ,a
n n

dB
T x y t k t x y

dt
σ= ⋅ ⋅ ⋅  (38)

Thus, the current density components are: 

( )

( )

,

,

a
x n n

n

a
y n n

n

dB t
J k x y

dt y

dB t
J k x y

dt x

σ

σ

∂ = ⋅ ⋅ ⋅ ∂
 ∂ = − ⋅ ⋅ ⋅
 ∂

 (39)

Carrying out the spatial and temporal means of (3), and 
remembering that S=k2, it is found for the specific classical 
loss per cycle: 

( ) [ ]

2 2 2

class

n

a
n n

n nS T

dBt t
W dx dy S dt

x y dt
σ

    ∂ ∂  
 = ⋅ + ⋅ ⋅     ∂ ∂       
∫∫ ∫  (40)

Therefore, noticing that the coefficient K defined as in (41) 
does not depend on the absolute dimensions of the region Ω, 
formula (4) is found. 

( )

2 2

n

n n

n nS

t t
K dx dy

x y

   ∂ ∂= +   ∂ ∂   
∫∫  (41)

For example, for what concerns the lamination with very 
small height to width ratio R=l/L, the classical loss is given by 
(14). An obvious algebraic manipulation gives, since the cross 
section is equal to S=L·l: 

( )

[ ]

2
LAM

class

1

12
a

T

dB
W R S dt

dt
σ  = ⋅ ⋅ ⋅  

 
∫  (42)

The coefficient K in this important case of thin laminations 
is equal to K=1/12·R. 

B. Table of the K(RECT) coefficients in function of R 

An extended table of the K(RECT) coefficients in function of 
R, computed from expression (11), is given in Table I: 

TABLE I 
K(RECT) COEFFICIENTS IN FUNCTION OF R (EXPRESSION (11)) 

R K(RECT) 
0 0 

0.1 7.81·10-3 
0.2 1.46·10-2 
0.3 2.03·10-2 
0.4 2.49·10-2 
0.5 2.86·10-2 
0.6 3.13·10-2 
0.7 3.32·10-2 
0.8 3.43·10-2 
0.9 3.50·10-2 
1 3.51·10-2 
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