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Abstract 2 
We propose a simplified dynamic hysteresis model for the prediction of magnetization behavior of 3 

electrical steel up to high frequencies, taking into account the skin effect. This model has the advantage 4 

of predicting the hysteresis loop and loss behavior versus frequency with the same accuracy provided 5 

by the Dynamic Preisach Model with a largely reduced computational burden. It is here compared to 6 

experimental results obtained in Fe-Si laminations under sinusoidal flux up to 2 kHz. 7 
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I. INTRODUCTION 9 

The problem of high frequency behavior of magnetic laminations is of primary importance in 10 

modern electrical engineering problems [1], but difficult problems arise in the prediction and 11 

assessment of magnetization process and losses, because the skin effect compounds with the nonlinear 12 

hysteretic response of the material. In order to cope with the inhomogeneous profile of the flux density 13 

over the lamination thickness, the magnetic loss is generally calculated by numerically solving the 14 

diffusion equation over the sample cross-section, and using a dynamic hysteresis model for the material 15 

constitutive law [2]. The Dynamic Preisach Model (DPM) is the model of choice, because it is accurate 16 

and solidly established from the physical viewpoint [3][4]. Its application is, however, particularly time 17 

consuming, because calculations must be done for each finite element of the spatial mesh until 18 

convergence is reached. A faster approach, preserving the special virtues of DPM, would therefore be 19 

appropriate. We apply in this paper the DPM to the broadband behavior of nonoriented Fe-Si 20 

laminations through a simplified method, drastically reducing computing time and complexity of the 21 

full method, requiring the computation of the dynamics of each elementary hysteron distributed in the 22 

Preisach plane [5]. We start our discussion from the differential relation found by Bertotti [6] (formula 23 

(9), page 4609, of reference [6]) for the excess magnetic field due to the dynamic behavior of the 24 

magnetization process 25 
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where H(t) = Ha(t) – Hcl(t) is the difference between the applied field Ha(t) and the counterfield Hcl(t) 26 

generated by the macroscopic eddy currents (classical field). Hstat(t) is the field that would provide 27 

under static conditions the same irreversible polarization Jirr and kd [A
-1s-1m] is the DPM constant. Eq. 28 

(1) is derived under the simplifying assumptions of triangular Ha(t) and uniform Preisach distribution 29 

function. The extent to which such a restriction can be circumvented and the full DPM approach for 30 
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generic exciting conditions and shape of the Preisach density function can be approximated will be 31 

discussed in the following. We find first that a numerical analysis based on (1) (Model 1) does not lead 32 

to highly accurate dynamic loop shapes, especially at high frequencies. A slight modification of (1) is 33 

therefore proposed (Model 2) and implemented in a non-linear magneto-dynamical model for the 34 

computation of the field distribution inside Fe-Si laminations, taking into account skin effect. The 35 

numerical results are compared with the experiments performed under sinusoidal flux up to 2 kHz. 36 

II. THE SIMPLIFIED MODEL 37 

A.  The simplified DPM-Model 2 38 

The Preisach distribution function, including the reversible contribution, was determined in a 0.35 39 

mm thick Fe-(3.2wt%)Si-(0.5wt%)Al lamination, and the dynamic constant kd=350 A-1s-1m was 40 

identified. The full and the simplified (Model 1) DPM are compared in terms of the excess field. In this 41 

model benchmark, a sinusoidal dynamic field H(t) = Ha(t) – Hcl(t) (peak value Hp = 100A·m-1, 42 

frequency f = 200 Hz) has been applied. For the full DPM case, the excess field Hexc(t) = H(t) - Hstat(t) 43 

is derived applying the DPM to H(t) in order to get the irreversible polarization Jirr(t), and then using 44 

the inverse static Preisach model to compute the static field Hstat(t) from Jirr(t). For the model 1, a 45 

numerical solution of (1) directly provides Hstat(t) from the sinusoidal H(t). A comparison between the 46 

results of two approaches is illustrated in Fig. 1 (the Jirr waveform obtained from the DPM has also 47 

been represented). Discrepancies are found between the two predicted Hexc(t) waveforms, particularly 48 

around the reversal points of the irreversible magnetization Jirr. With the simplified Model 1 the zero of 49 

Hexc is, according to (1), coincident with the maximum of H(t), whereas from the same picture, it 50 

appears that it occurs when Jirr is maximum. Consequently, (1) is formulated as 51 
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(2)

on account of the fact that the sign of statHɺ  is the same as that of irrJɺ . The simplified DPM based on 52 
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(2) (DPM-Model 2) appears now to provide (Fig. 1) an Hexc(t) waveform in good agreement with the 53 

one provided by the full DPM.  54 

Once the static field is known, Jirr(Hstat) is computed by means of the Static Preisach Model, while 55 

the reversible component Jrev(H) is calculated ignoring any dynamic effect linked to the reversible 56 

contribution [1]. This procedure, which permits to obtain the constitutive law of the material J(H), is 57 

summed up in Fig. 2. An example of hysteresis loop prediction (in this case with nested minor loop) is 58 

illustrated in Fig. 3, confirming the good agreement between the results provided by the full DPM and 59 

the simplified DPM-Model 2.  60 

A. Numerical implementation of DPM-Model 2 61 

This model requires solving the non-linear differential equation (2) for Hstat knowing the field H. 62 

This can be done putting (2) under an equivalent canonical form and adding the periodicity conditions 63 

(period T=1/f): 64 
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(3)

and numerically solving it using a Runge-Kutta method. The application of this newly defined 65 

dynamical model to the computation of flux distribution inside the steel lamination can dramatically 66 

reduce the computational burden, as demonstrated in the next section. 67 

III. MAGNETO DYNAMICAL MODELING AND EXPERIMENTAL 68 

A. Magneto-dynamical model of the lamination 69 

The solution of the diffusion equation over the lamination thickness with a dynamic hysteretic 70 

constitutive law requires a special numerical treatment of the non-linearity using the Fixed Point 71 

method [3][7]. The method proposed in [3] has been here implemented. The diffusion problem on the 72 

lamination thickness is one-dimensional, with the spatial coordinate x ranging over the lamination 73 
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cross-section [-e/2; e/2] (where e = 0.35 mm is the lamination thickness). To solve the diffusion 74 

equation, the non-linearity of the material constitutive law J(H) is contained in a spatio-temporal 75 

function R(x,t), called the residual [3] and the relationship between H and J is written as 76 

( ) ( ) ( )FP, , ,H x t B x t R x tυ= ⋅ + , (4)

where FPυ  is a properly chosen constant, ensuring convergence [1]. Using (4), the diffusion equation 77 

can be written, with imposed mean flux density BMEAN(t), in terms of vector potential A on a half 78 

lamination [0; e/2]: 79 
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(5)

The time derivative and the time periodic condition are dealt with using temporal Fourier series [3]. 80 

More precisely, the residual function R(x,t) is decomposed into complex Fourier series for what 81 

concerns the time dependence. Equation (5) is then solved for each time harmonic, the time derivative 82 

becoming an algebraic multiplication by the corresponding harmonic pulsation. An inverse Fourier 83 

transformation permits to retrieve the function A(x,t). For each time harmonic, the spatial second order 84 

derivative and the boundary conditions are dealt with using a numerical finite difference scheme (the 85 

half lamination is subdivided into 50 intervals). At the beginning of the iterative procedure, the residual 86 

R is initialized to zero and at each iteration step (index number i), the following process is performed: 87 

1. Knowing the residual at the previous stage R(i-1)(x,t), the differential equation (5) is solved to 88 

compute the vector potential A(i)(x,t). The magnetic field is obtained as 89 

( ) ( )
( )

( ) ( )1
FP, ,

i
i iA

H x t R x t
x

υ −∂= − +
∂

. 90 

2. A dynamic hysteresis model, providing the dynamic constitutive law J(H), is used to evaluate J(i) 91 
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from H(i) and the new induction value B(i)(x,t)=J(i)(x,t)+µ0·H
(i)(x,t) is calculated. In [3], the dynamic 92 

hysteresis model is the DPM, and is replaced in this paper by the simplified model proposed in Fig. 93 

2. 94 

3. The new residual is then computed by ( ) ( ) ( ) ( ) ( ) ( )FP, , ,i i iR x t H x t B x tυ= − ⋅ . The process is repeated 95 

until convergence of the residuals is obtained. 96 

B. Results 97 

The dynamic hysteretic constitutive law J(H) of the material, which was in [3] given by the full 98 

DPM, has been here replaced by the model proposed in Fig. 2 where the Model 2 of the local excess 99 

field is applied. The Preisach distribution function has been identified following the method proposed 100 

in [1], in the previous 0.35 mm thick Fe-(3.2wt%)Si-(0.5wt%)Al lamination (conductivity σ = 101 

1.773·106 S·m-1, kd=350 A-1s-1m). The magnetic loss and hysteresis loops have been measured under 102 

sinusoidal flux at different frequencies and peak inductions up to 2 kHz. The magnetic flux distribution 103 

and loss have been computed by applying the dynamical model, using both the full and the simplified 104 

DPM (Model 2). Fig. 4 provides an example of computed and experimental loops (Jp = 0.5 T, 105 

frequency f = 1 kHz). In Fig. 5 the comparison is made for energy loss versus frequency behavior. It 106 

shows the good predicting capability of the simplified dynamic Model 2, in spite of a computing time 107 

reduced by a factor around 60 with respect to the full DPM. Fig. 5 also shows the predicted loss 108 

behavior if the skin effect is ignored. In this case the induction is assumed uniform across the sample 109 

thickness and equal to the mean flux density BMEAN(t). The classical loss is thus calculated according to  110 

22
MEAN

class 0
d

12 d

T dBe
W t

t

σ  =  
 

∫  

 

(6)

It is found that ignoring the skin effect brings about a large overestimation of the loss above about f = 111 

400 Hz, for the considered BMEAN(t) peak value of 0.5 T considered in Fig. 5. An example of calculated 112 

induction profile B(x, to) across the lamination thickness at a given instant of time to is shown in Fig. 6. 113 
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It refers to f = 1 kHz and a time to corresponding to the average flux density BMEAN(to) = 0. Again, the 114 

full and simplified DPMs predict very close results.  115 

IV. CONCLUSIONS 116 

In this work we have discussed a novel dynamic model for energy losses and hysteresis loops in soft 117 

magnetic laminations based on simplified treatment of the Dynamic Preisach Model (DPM). It is 118 

applied on experiments performed up to the kHz range in Fe-Si sheets, in the presence of substantial 119 

skin effect, showing good agreement both with the experimental results and the prediction made using 120 

the full machinery of the DPM. A remarkable advantage in computing time, which is reduced by a 121 

factor around 60, is obtained substituting the full DPM with the present model.  122 

 123 
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Figure captions 139 

Fig. 1-  Excess fields provided by the full DPM, Model 1, and Model 2, for a sinusoidal dynamic 140 

field H(t) = Ha(t) – Hcl(t) (frequency f = 200 Hz, field peak value Hp = 100A·m-1) and corresponding 141 

irreversible polarization Jirr provided by the DPM in a 0.35 mm thick Fe-(3.2wt%)Si-(0.5wt%)Al 142 

lamination (dynamic constant kd=350 A-1s-1m). 143 

Fig. 2 - Block diagram of the simplified constitutive law J(H) of the material, using the Model 2 as a 144 

link between the field H and the static field Hstat (computation of the local excess field). 145 

Fig. 3 - Example of the reconstructed J(H) hysteresis loop with nested minor loops (f = 200 Hz, Hp = 146 

150A·m-1) 147 

Fig. 4 – Experimental and theoretical hysteresis loops at f = 200 Hz in the 0.35 mm thick Fe-148 

(3.2wt%)Si-(0.5wt%)Al lamination for sinusoidal induction (Bp=0.5 T). The measurements have been 149 

performed on Epstein strips. Closed results are obtained by the full and the simplified DPM.  150 

Fig. 5 – Same as Fig. 4 for the energy loss versus magnetizing frequency (DC – 2 kHz).  151 

Fig. 6: Instantaneous induction profile B(x,to) across the lamination thickness as obtained by the full 152 

and the simplified (Model 2) DPM (f = 1 kHz, -0.175 mm ≤ x ≤ 0.175 mm).  The time to considered in 153 

this figure is the one for which the mean flux density BMEAN(to) = 0.  154 

155 
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Figures 156 
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