
PHASE TRANSITION FOR A CONTACT PROCESS WITH
RANDOM SLOWDOWNS

KEVIN KUOCH

Abstract. Motivated by a model of an area-wide integrated pest management, we
develop an interacting particle system evolving in a random environment. It is a gen-
eralized contact process in which the birth rate takes two possible values, determined
either by a dynamic or a static random environment. Our goal is to understand the
phase diagram of both models by identifying the mechanisms that permit coexistence
or extinction of the process.

1. Introduction

In this paper, we consider a generalized contact process describing the evolution on a
lattice of a multitype population. Developed in the fifties by E. Knipling and R. Bush-
land (see [17, 19]), the Sterile insect technique emerged to control the New World screw
worm, a pest threatening livestocks in America. It is a pest control method whereby
sterile individuals of the population, to either regulate or eradicate, are released. While
sterile males compete with wild males, they eventually mate with (wild) females so
that offsprings reach neither the adult phase nor sexual maturity, reducing the next
generation. By repeated releases, we should be able to cause a variety of outcomes
ranging from reduction to extinction.

During the last decades, mosquito-borne diseases have become a serious worldwide
spreading disease affecting millions of people each year. As the main vector of dengue
fever, the mosquito-type Aedes aegypti, adapted its lifestyle from the forests to urban
areas across the world, it is considered as one of the most fastest growing disease. At
short notice with no available cure, population control is the only viable option to stem
the disease.

Female mosquitoes taking a blood meal from a virus-infected person become carriers
of the virus. After some days, the virus spreads to the mosquito’s salivary glands
and is therefore released into its saliva. From then on, this mosquito remains lifelong
infected and transmits the virus to each new person it bites. As of today no cure exists,
tackling the dengue transmission involves eradicating its vector: the mosquito. Lauded
for several aspects and its success, the sterile insect technique is one of today main
actors in this fight, as recent programs launched by Brazilian and European institutions
highlight.

To understand this phenomenon, we construct a stochastic spatial model on a lattice
in which the evolution of the wild population is governed by a contact process whose
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growth rate is slowed down in presence of sterile individuals, shaping a dynamic random
environment.

The contact process with random slowdowns (CPRS) (ηt)t≥0 has state space {0, 1, 2, 3}Zd
.

Each site of Zd is either empty (state 0), occupied by wild individuals only (state 1), by
sterile individuals only (state 2), or by both wild and sterile individuals (state 3). We
only consider the type of the individuals present on each site (and not their number), it
is biologically reasonable to assume enough females are around, not limiting matings.
Sterile males are spontaneously released at rate r. The rate with which wild individuals
give birth (to wild individuals) on neighbouring sites is λ1 at sites in state 1 and λ2 at
sites in state 3. We assume that

λ2 < λ1 (1.1)

to highlight a competition between individuals occurs at sites in state 3 so that the
fertility is decreased. Deaths of each population occur at all sites at rate 1, they
are mutually independent. With no further restriction, this process is called symmetric
while in a so-called asymmetric case, sterile individuals stem births on sites they occupy.

A number of models with dynamic random environment has been investigated (see
Broman [9], Remenik [29], Steif-Warfheimer [32], Garet-Marchand [13]). On the other
hand, identifying mechanisms yielding extinction or coexistence of species from ecology
issues has been devoted in several papers (cf. Schinazi [31], Durrett-Neuhauser [11])
using multitype contact processes. The common feature is a type of individuals evolving
as a contact process coexisting along with an other type evolving independently in a
markovian way and dictating somehow its growth.

The question we address now is for which values of r does the wild population survive
or die out. Along with the monotonicity of the survival probability, we prove the
existence and uniqueness of a phase transition with respect to the release rate r for
fixed growth rates λ1 and λ2.

Denote by λc(d) the critical value of the basic contact process on Zd. By comparing
the process with basic contact processes, we explore in Propositions 2.3 and 2.4 varying
growth parameters where no phase transition occurs i.e. when both λ1 and λ2 are
smaller or larger than λc(d). The most interesting cases are discussed in the following
results,

Theorem 1.1. Suppose λ2 < λc(d) < λ1 fixed. Consider the symmetric CPRS. There
exists a unique critical value rc ∈ (0,∞) such that the wild population survives if r < rc
and dies out if r ≥ rc.

Theorem 1.2. Suppose λc(d) < λ1 fixed. Consider the asymmetric CPRS. There exists
a unique critical value sc ∈ (0,∞) such that the wild population survives if r < sc and
dies out if r ≥ sc.

These results agree with the former conclusions done by E. Knipling (1955) in a
deterministic model. As a consequence, we discuss in Subsection 5.1 the competitive
ability of the sterile individuals: we prove the critical value increases as the competi-
tiveness of the sterilized population decreases or as the fitness of the wild population
increases.

To prove our results, we first construct the graphical representation of the process in
Section 3, setting a percolation structure on which to define the process, lending itself
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to the use of percolation that we shall do in Section 5. Afterwards, we point out general
properties of the system in Section 4, such as necessary and sufficient conditions for the
process to be monotone, then, only sufficient conditions in Propositions 4.2 and 4.3 to
be in line with the construction of the process. It follows that the survival probability
is monotone, see Corollary 4.6. The tricky part to prove these conditions lies in the
definition of an order on the state space {0, 1, 2, 3}Zd

, since an element of {0, 1, 2, 3}
does not correspond to the number of particles but a type.

Then, we use block constructions (see [7]) and dynamic renormalization techniques
(see e.g. [2]) to prove Theorems 1.1 and 1.2 in Section 5.

So far, we were unable to get a hand on bounds for the critical rate. To this purpose,
we first consider the mean-field equations in Section 6, featuring the densities of each
type of individuals, we can explicitly find equilibria yielding numerical bounds on the
phase transition. We derive a rigorous proof of the convergence of the empirical densities
to these equations in [22].

In a very different view, we consider the process (ξt, ω)t≥0, where (ξt)t≥0 is a contact
process on {0, 1}Z with varying growth rate determined by a quenched random envi-
ronment ω initially fixed. In words, it describes an initial release of sterile individuals
within the target area and looking at the induced time-evolution of the wild population.
Using former results obtained by T.M. Liggett [23, 24], we obtain in Section 7 several
survival and extinction conditions for the process. In that way, we consider two kinds
of growth rates in Z: one where the rates depend on the edges and one where the rates
depend on the vertices. This yields numerical bounds on the phase transition for the
process to survive or die out.

Random parameters for the contact process have become a matter of interest by
showing up unexpected behaviours and interesting survival conditions of the process,
see Andjel [1], Bramson-Durrett-Schonmann [8], Klein [18], Newman-Volchan [28].

The paper is organized as follows. We begin by introducing the model and results for
a phase transition in Section 2. In this view, we provide a graphical construction of the
process in Section 3 and stochastic order properties in Section 4. Section 5 is devoted
to prove the phase transition on Zd. After what, we investigate the mean field-model in
Section 6 and the quenched model in Section 7 both exhibiting bounds on the critical
value.

2. Settings and results

2.1. The model. On the state space Ω = F S, where F = {0, 1, 2, 3} and S = Zd,
the contact process with random slowdowns (CPRS) is an interacting particle system
(ηt)t≥0 whose configuration at time t is ηt ∈ Ω, that is, for all x ∈ Zd, ηt(x) ∈ F
represents the state of site x at time t. Two sites x and y are nearest neighbours on
Zd if ‖x − y‖ = 1, also written x ∼ y, and ni(x, ηt) stands for the number of nearest
neighbours of x in state i, i = 1, 3. We define now the symmetric and asymmetric
CPRS we mentioned earlier as follows.
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Definition 2.1 (Asymmetric CPRS). The asymmetric CPRS (ηt)t≥0 has transition
rates in x for a current configuration η :

0→ 1 at rate λ1n1(x, η) + λ2n3(x, η) 1→ 0 at rate 1
0→ 2 at rate r 2→ 0 at rate 1
1→ 3 at rate r 3→ 1 at rate 1

3→ 2 at rate 1

(2.1)

Definition 2.2 (Symmetric CPRS). The symmetric CPRS (ηt)t≥0 has transition rates
in x for a current configuration η given by (2.1), to which one adds the following
transition:

2→ 3 at rate λ1n1(x, η) + λ2n3(x, η). (2.2)

Therefore, the 2’s dictate independently the growth rate of the process, and even
inhibit births in the asymmetric case, so that the 2’s shape a dynamic random environ-
ment for the 1’s.

In both cases, if η ∈ Ω and x ∈ Zd, denote by ηix ∈ Ω, i ∈ {0, 1, 2, 3}, the configura-
tion obtained from η after a flip of x to state i:

η −→ ηix at rate c(x, η, i), where ∀u ∈ Zd, ηix(u) =

{
η(u) if u 6= x
i if u = x

(2.3)

Let L be the infinitesimal generator of (ηt)t≥0, for any cylinder function f on Ω,

Lf(η) =
∑
x∈Zd

3∑
i=0

c(x, η, i)
(
f(ηix)− f(η)

)
(2.4)

with infinitesimal transition rates, common to both cases (see (2.1)),

c(x, η, 0) = 1 if η(x) ∈ {1, 2}, c(x, η, 1) =

{
λ1n1(x, η) + λ2n3(x, η) if η(x) = 0
1 if η(x) = 3

,

c(x, η, 2) =

{
r if η(x) = 0
1 if η(x) = 3

, c(x, η, 3) = r if η(x) = 1

(2.5)
and add the following rate in the symmetric case:

c(x, η, 3) = λ1n1(x, η) + λ2n3(x, η) if η(x) = 2.

Since all the rates in (2.5) are bounded, by [26, Theorem 3.9] there exists a unique
Markov process associated to the generator (2.4). Denote by (ηAt )t≥0 the process starting
from A, i.e. such that η0 = 1A, in other words η0 is the configuration with sites in state
1 in A and empty otherwise. We care about the evolution of the wild population, i.e.
individuals contained in sites in state 1 and 3. Define

HA
t = {x ∈ Zd : ηAt (x) ∈ {1, 3}}, (2.6)

as the set of sites containing the wild population at time t ≥ 0.

Denote by Pλ1,λ2,r the distribution of (η
{0}
t )t≥0 with parameters (λ1, λ2, r). When λ1

and λ2 are fixed, we simply denote this law by Pr instead of Pλ1,λ2,r. The process (ηt)t≥0
with initial configuration η0 = 1{0} is said to survive if

Pλ1,λ2,r(∀t ≥ 0, H
{0}
t 6= ∅) > 0 (2.7)
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and die out otherwise.

Remark when r = 0, the process (ηt)t≥0 is a basic contact process, denoted by (ξt)t≥0,
whose generator, deduced from (2.4) with r = 0, acts on local functions of Ω so that

Lcpf(ξ) =
∑
x∈Zd

{
f(ξ0x)− f(ξ) + λ1

(
f(ξ1x)− f(ξ)

)}
.

It is known the basic contact process exhibits a unique phase transition on Zd, whose
critical value is denoted by λc(d), see [14, 25, 26] for further details.

Define the critical value according to the parameter r by

rc = rc(λ1, λ2) := inf{r > 0 : Pr(∃t ≥ 0, H
{0}
t = ∅) = 1} (2.8)

Indeed, the class {0, 2} is a trap: as soon as Ht = ∅, the wild population is extinct
while sterile individuals (2) are infinitely often dropped along the time.

2.2. Results. As announced in Section 1, we begin by a first set of conditions for the
process to survive or die out, when λ2 < λ1 are both smaller or larger than λc:

Proposition 2.3. Suppose λ2 < λ1 ≤ λc(d). For all r ≥ 0, both symmetric and
asymmetric CPRS with parameters (λ1, λ2, r) die out.

Proposition 2.4. Suppose λc(d) < λ2 < λ1. For all r ≥ 0, the symmetric CPRS with
parameters (λ1, λ2, r) survives.

We now turn to Theorems 1.1 and 1.2, for which we shall prove:

Theorem 2.5. Assume λ2 < λc < λ1 fixed. Let (ηt)t≥0 be the symmetric CPRS. Then,

(i) there exists r0 ∈ (0,∞) such that if r < r0 then the process (ηt)t≥0 survives.
(ii) there exists r1 ∈ (0,∞) such that if r > r1 then the process (ηt)t≥0 dies out.

Theorem 2.6. Assume λc(d) < λ1 and λ2 < λ1 fixed. Let (ηt)t≥0 be the asymmetric
CPRS. Then,

(i) there exists s0 ∈ (0,∞) such that if r < s0 then the process (ηt)t≥0 survives.
(ii) there exists s1 ∈ (0,∞) such that if r > s1 then the process (ηt)t≥0 dies out.

Following Theorems 2.5 and 2.6, monotonicity arguments (given by Corollary 4.6)
yield the existence of the critical value rc (2.8). We complete the study by investigating
the behaviour of the critical process.

Theorem 2.7. In both cases, the critical CPRS dies out: Prc
(
∀t ≥ 0, H

{0}
t 6= ∅

)
= 0.

We shall prove these results in Section 5.

3. Graphical representation

In view of using percolation, we construct the process from a collection of independent
Poisson processes, see [15]. Think of the diagram Zd × R+. For each x ∈ Zd, consider
the arrival times of mutually independent families of Poisson processes: {Axn : n ≥ 1}
with rate r, {D1,x

n : n ≥ 1} and {D2,x
n : n ≥ 1} with rate 1 and for any y such that

y ∼ x, {T x,yn : n ≥ 1} with rate λ1. Let {Ux
n : n ≥ 1} be independent uniform random

variables on (0, 1), independent of the Poisson processes.
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At space-time point (x,Axn), put a “ ” to indicate, if x is occupied by type-1 indi-
viduals (resp. empty), that it turns into state 3 (resp. state 2). At (x,D1,x

n ) (resp.
at (x,D2,x

n )), put an “X” (resp.“ ”) to indicate at x, that a death of type-1 (resp. of
type-2) occurs. At times T x,yn , draw an arrow from x to y and two kinds of actions oc-
cur according to the occupation at x: if x is occupied by type-1 individuals, the arrow
indicates a birth in y of a type-1 individual if y is empty or in state 2 ; if x is occupied
by type-3 individuals giving birth at rate λ2 < λ1, check at (x, T x,yn ) if Ux

n < λ2/λ1 to
indicate, if success, that the arrow is effective so that a birth in y of a type-1 individual
occurs if y is empty or in state 2. In the asymmetric case, births occur only if y is
empty.

See Figure 1 for an example of the time-evolution of both processes starting from an
identical initial configuration, in the space-time picture Z× R+.

For s ≤ t, there exists an active path from (x, s) to (y, t) in Zd × R+ is there exists
a sequence of times s = s0 < s1 < ... < sn−1 < sn = t and a sequence of corresponding
spatial locations x = x0, x1, ..., xn = y such that:

i. for i = 1, ..., n− 1, vertical segments {xi} × (si, si+1) do not contain any X’s.
ii. for i = 1, ..., n, there is an arrow from xi−1 to xi at times si and if xi−1 × si is

lastly preceded by a “ ” this arrow exists only if U
xi−1
si < λ2/λ1.

and in the asymmetric case, substitute ii. by

ii’. for i = 1, ..., n, there is an arrow from xi−1 to xi at times si while {xi} × si is
not lastly preceded by a “ ”, while if xi−1 × si is lastly preceded by a “ ” this
arrow is effective if U

xi−1
si < λ2/λ1.

Consider the process (AAt )t≥0, the set of sites at time t reached by active paths starting
from an initial configuration A0 = A, containing sites in state 1 in A and 0 otherwise:

AAt = {y ∈ Z : ∃x ∈ A such that (x, 0)→ (y, t)}

Then AAt = HA
t , with HA

t defined in (2.6) so that AAt represents the wild population at
time t starting from an initial configuration A of type-1 individuals.

This graphical representation allows us to couple CPRS starting from different initial
configurations by imposing the evolution to obey to the same Poisson processes. Other
kinds of couplings are possible through the analytical construction of the process as
we will see. More generally, graphical representations allow to couple processes with
different dynamics as well, we investigate this in the next section.

4. Stochastic order and attractiveness

The stochastic order between processes is related to the total order defined on the
set of values F = {0, 1, 2, 3}. In a biological context, setting an order between types
of individuals does not make sense, but mathematically it allows us to construct a
monotone model and to compare different dynamics. To avoid confusion, denote by A
the state 2, by B the state 0, by C the state 3 and by D the state 1. For two given
configurations η(2), η(1) ∈ Ω, we have η(1) ≤ η(2), if coordinate-wise

η(1)(x) ≤ η(2)(x) for all x ∈ Zd,



PHASE TRANSITION FOR A CONTACT PROCESS WITH RANDOM SLOWDOWNS 7

-2 -1 0 1 2

time

t

Figure 1. Starting from η0 = 1{0}, following the arrows, if U0
1 <

λ2
λ1

and

U0
2 <

λ2
λ1

, the wild population occupies at time t the set Ht = {−1, 0, 1}
in the asymmetric case and the set Ht = {−2,−1, 0, 1} in the symmetric
case.

with respect to the following order on F :

A < B < C < D (4.1)

It is important to note that this order is the only one possible with which such a
stochastic order for the the process (ηt)t≥0 holds.

We now settle necessary and sufficient conditions, then only sufficient, to obtain
properties of stochastic order which give monotonicity properties and comparisons be-
tween processes. Using Borrello’s results [6], let x, y ∈ Zd be two neighbouring sites
and α, β ∈ F to rewrite the transition rates for k ∈ {1, 2} thanks to

• R0,k
α,β is the birth rate of a type-1 individual in y when η(y) = β and depending

only on the value of η in x given by α. The state in y flips from β to β + k.
• P k

β is the jump rate of a site in state β to state β + k.

• P−kα is the jump rate of a site in state α to state α− k for k ≤ α.

Theorem 4.1. [6, Theorem 2.4] For all (α, β) ∈ F 2, (γ, δ) ∈ F 2 such that (α, β) ≤
(γ, δ) (coordinate-wise i.e. α ≤ γ and β ≤ δ), h1 ≥ 0, j1 ≥ 0, an interacting particle

systems (At)t≥0 with transition rates (R0,k
α,β, P

+k
β , P−kα ) is stochastically larger than an
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interacting particle system (Bt)t≥0 with transition rates (R̃0,k
α,β, P̃

+k
β , P̃−kα ) if and only if

i)
∑

k>δ−β+j1

Π̃0,k
α,β ≤

∑
l>j1

Π0,l
γ,δ and ii)

∑
k>h1

Π̃−k,0α,β ≥
∑

l>γ−α+h1

Π−l,0γ,δ (4.2)

where Π0,k
α,β = R0,k

α,β + P k
β and Π−k,0α,β = P−kα .

One has for the asymmetric CPRS, the following rates.

R0,2
D,B = λ1, R0,2

C,B = λ2, P 1
A = P 1

C = 1,
P−1B = P−1D = r, P−2C = P−2D = 1,

(4.3)

to which, one adds the following rates if we consider the symmetric CPRS,

R0,2
D,A = λ1, R0,2

C,A = λ2. (4.4)

Similarly, for a basic contact process with growth rate λ1 on {0, 1}Zd
, one has

R̃0,2
D,B = λ1, P̃

−2
D = 1. (4.5)

For a basic contact process (ξ̃t)t≥0 with growth rate λ2, defined on {2, 3}Zd
, let

R̃0,2
C,A = λ2, P̃

−2
C = 1. (4.6)

Anticipating forthcoming computations, we expand (4.2) when (At)t≥0 and (Bt)t≥0
correspond to two symmetric CPRS with respective rates (λ1, λ2, r) denoted with upper
indexes (2) and (1). Note that by (4.3)-(4.6), the following inequalities can be used as
well for asymmetric CPRS or basic contact processes. Taking j1, h1 ∈ {0, 1} (one can
check they are the only non trivial possible values), we have respectively from (4.2)(i)-
(ii) applied to our model:

1{j1 = 0}1{k = 2}1{δ − β = 1}
(
1{δ = C, β = B}

(
R

0,2,(1)
D,B 1{α = D}+R

0,2,(1)
C,B 1{α = C}

)
+ 1{δ = B, β = A}

(
R

0,2,(1)
D,A 1{α = D}+R

0,2,(1)
C,A 1{α = C}

))
+ 1{j1 = 0}1{k = 2}1{δ − β = 0}

(
1{δ = β = B}

(
R

0,2,(1)
D,B 1{α = D}+R

0,2,(1)
C,B 1{α = C}

)
+ 1{δ = β = A}

(
R

0,2,(1)
D,A 1{α = D}+R

0,2,(1)
C,A 1{α = C}

))
+ 1{j1 = 0}1{k = 1}1{δ − β = 0}

(
1{δ = β = C}P 1,(1)

C + 1{δ = β = A}P 1,(1)
A

)
+ 1{j1 = 1}1{k = 2}1{δ − β = 0}(

1{δ = β = B}
(
R

0,2,(1)
D,B 1{α = D}+R

0,2,(1)
C,B 1{α = C}

)
+ 1{δ = β = A}

(
R

0,2,(1)
D,A 1{α = D}+R

0,2,(1)
C,A 1{α = C}

))
≤ 1{j1 = 0}1{l = 2}

(
1{δ = B}

(
R

0,2,(2)
D,B 1{γ = D}+R

0,2,(2)
C,B 1{γ = C}

)
+ 1{δ = A}

(
R

0,2,(2)
D,A 1{γ = D}+R

0,2,(2)
C,A 1{γ = C}

))
+ 1{j1 = 0}1{l = 1}

(
1{δ = C}P 1,(2)

C + 1{δ = A}P 1,(2)
A

)
+ 1{j1 = 1}1{l = 2}

(
1{δ = B}

(
R

0,2,(2)
D,B 1{γ = D}+R

0,2,(2)
C,B 1{γ = C}

)
+ 1{δ = A}

(
R

0,2,(2)
D,A 1{γ = D}+R

0,2,(2)
C,A 1{γ = C}

))
(4.7)



PHASE TRANSITION FOR A CONTACT PROCESS WITH RANDOM SLOWDOWNS 9

and

1{h1 = 0}1{k = 1}
(
1{α = D}P−1,(1)

D + 1{α = B}P−1,(1)
B

)
+ 1{h1 = 0}1{k = 2}

(
1{α = D}P−2,(1)

D + 1{α = C}P−2,(1)
C

)
+ 1{h1 = 1}1{k = 2}

(
1{α = D}P−2,(1)

D + 1{α = C}P−2,(1)
C

)
≥ 1{h1 = 0}1{l = 2}1{γ − α = 1}

(
1{γ = D,α = C}P−2,(2)

D + 1{γ = C,α = B}P−2,(2)
C

)
+ 1{h1 = 0}1{l = 2}1{γ − α = 0}

(
1{γ = α = D}P−2,(2)

D + 1{γ = α = C}P−2,(2)
C

)
+ 1{h1 = 0}1{l = 1}1{γ − α = 0}

(
1{γ = α = D}P−1,(2)

D + 1{γ = α = C}P−1,(2)
C

)
+ 1{h1 = 1}1{l = 2}1{γ − α = 0}

(
1{γ = α = D}P−2,(2)

D + 1{α = γ = C}P−2,(2)
C

)
. (4.8)

We are now ready to state and prove the following results.

Proposition 4.2. The symmetric CPRS is monotone, in the sense that one can con-

struct on a same probability space two symmetric CPRS (η
(1)
t )t≥0 and (η

(2)
t )t≥0 with

respective parameters (λ
(1)
1 , λ

(1)
2 , r(1)) and (λ

(2)
1 , λ

(2)
2 , r(2)), such that

η
(1)
0 ≤ η

(2)
0 =⇒ η

(1)
t ≤ η

(2)
t a.s. for all t ≥ 0 (4.9)

if and only if all parameters satisfy

1. λ
(1)
2 ≤ λ

(1)
1 ,

2. λ
(2)
2 ≤ λ

(2)
1 ,

3. λ
(1)
1 ≤ λ

(2)
1 ,

4. λ
(1)
2 ≤ λ

(2)
2 ,

5. r(1) ≥ r(2)

6. λ
(1)
1 ≤ 1,

7. λ
(1)
2 ≤ 1,

8. r(1) ≥ 1.

Remark conditions 1. and 2. are given by assumption (1.1).

Proof. Let (η
(1)
t )t≥0 and (η

(2)
t )t≥0 be two symmetric CPRS with respective parameters

(λ
(1)
1 , λ

(1)
2 , r(1)) and (λ

(2)
1 , λ

(2)
2 , r(2)). By Theorem 4.1, necessary and sufficient conditions

on the rates for (η
(2)
t )t≥0 to be stochastically larger than (η

(1)
t )t≥0 are given with (α, β) ≤

(γ, δ), by (4.7)-(4.8). All different possible scenarios provide the following necessary
conditions:

(I) j1 ∈ {0, 1}, δ = β ∈ {A,B} in (4.7) give

(i) α = C, γ = D: λ
(1)
2 ≤ λ

(2)
1 . This is a consequence of conditions 1. and 3.

or 2. and 4.
(ii) α = γ = C: λ

(1)
2 ≤ λ

(2)
2 stated by condition 4.

(iii) α = γ = D: λ
(1)
1 ≤ λ

(2)
1 stated by condition 3.

(II) j1 = 0, β = B, δ = 1 + β = C in (4.7) give

(i) α = D: λ
(1)
1 ≤ 1 stated by condition 6.

(ii) α = C: λ
(1)
2 ≤ 1 stated by condition 7.

(III) h1 = 0, γ = α ∈ {B,D} in (4.8) give r(1) ≥ r(2) stated by condition 5.
(IV) h1 = 0,α = B, γ = 1 + α = C in (4.8) give r(1) ≥ 1 stated by condition 8.

while in other scenarios, one retrieves redundantly the above conditions or tautological
inequalities such as “1 ≥ 0”. Finally, we obtained the conditions stated 1. to 8. �
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Following Proposition 4.2, we now construct a coupled process (η
(1)
t , η

(2)
t )t≥0 on Ω×Ω

such that η
(1)
0 ≤ η

(2)
0 . According to the given order (4.1) on F , as η

(1)
0 ≤ η

(2)
0 :

n1(x, η
(1)
0 ) + n3(x, η

(1)
0 ) ≤ n1(x, η

(2)
0 ) + n3(x, η

(2)
0 ).

In what follows, we construct the coupling through generators. The three following
tables depict the infinitesimal transitions of the coupled process.

transition rate

(0, 0) −→


(1, 1)
(0, 1)
(2, 2)
(2, 0)

λ
(1)
1 n1(x, η(1)) + λ

(1)
2 n3(x, η(1))

λ
(2)
1 n1(x, η(2))− λ(1)1 n1(x, η(1)) + λ

(2)
2 n3(x, η(2))− λ(1)2 n3(x, η(1))

r(2)

r(1) − r(2)

(1, 1) −→

 (0, 0)
(3, 3)
(3, 1)

1
r(2)

r(1) − r(2)

(2, 2) −→

 (3, 3)
(2, 3)
(0, 0)

λ
(1)
1 n1(x, η(1)) + λ

(1)
2 n3(x, η(1))

λ
(2)
1 n1(x, η(2))− λ(1)1 n1(x, η(1)) + λ

(2)
2 n3(x, η(2))− λ(1)2 n3(x, η(1))

1

(3, 3) −→
{

(1, 1)
(2, 2)

1
1

(2, 0) −→


(3, 1)
(2, 1)
(0, 0)
(2, 2)

λ
(1)
1 n1(x, η(1)) + λ

(1)
2 n3(x, η(1))

λ
(2)
1 n1(x, η(2))− λ(1)1 n1(x, η(1)) + λ

(2)
2 n3(x, η(2))− λ(1)2 n3(x, η(1))

1
r(2)

(2, 3) −→

 (3, 3)
(0, 1)
(2, 2)

λ
(1)
1 n1(x, η(1)) + λ

(1)
2 n3(x, η(1))

1
1

(2, 1) −→


(3, 1)
(2, 0)
(0, 1)
(2, 3)

λ
(1)
1 n1(x, η(1)) + λ

(1)
2 n3(x, η(1))

1
1
r(2)

(3, 1) −→

 (2, 0)
(1, 1)
(3, 3)

1
1
r(2)

(0, 1) −→


(2, 3)
(1, 1)
(2, 1)
(0, 0)

r(2)

λ
(1)
1 n1(x, η(1)) + λ

(1)
2 n3(x, η(1))

r(1) − r(2)
1

Table 1. Coupled transitions of two symmetric CPRS, via a basic cou-
pling, that preserve the partial order.

transition rate

(0, 3) −→


(1, 1)
(0, 1)
(2, 2)
(2, 3)

λ
(1)
1 n1(x, η(1)) + λ

(1)
2 n3(x, η(1))

(1− λ(1)1 )n1(x, η(1)) + (1− λ(1)2 )n3(x, η(1))
1

r(1) − 1

Table 2. Coupled transitions of two symmetric CPRS, not via a basic
coupling, that preserve the partial order.
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transition rate

(1, 0) −→


(1, 1)
(3, 2)
(3, 0)
(0, 0)

λ
(2)
1 n1(x, η(2)) + λ

(2)
2 n3(x, η(2))

r(2)

r(1) − r(2)
1

(0, 2) −→


(1, 3)
(0, 3)
(0, 0)
(2, 2)

λ
(1)
1 n1(x, η(1)) + λ

(1)
2 n3(x, η(1))

λ
(2)
1 n1(x, η(2))− λ(1)1 n1(x, η(1)) + λ

(2)
2 n3(x, η(2))− λ(1)2 n3(x, η(1))

1
r(1)

(1, 2) −→


(1, 3)
(3, 2)
(1, 0)
(0, 2)

λ
(2)
1 n1(x, η(2)) + λ

(2)
2 n3(x, η(2))

r(1)

1
1

(1, 3) −→

 (0, 2)
(3, 3)
(1, 1)

1
r(1)

1

(3, 0) −→


(1, 0)
(2, 0)
(3, 1)
(3, 2)

1
1

λ
(2)
1 n1(x, η(2)) + λ

(2)
2 n3(x, η(2))

r(2)

(3, 2) −→

 (3, 3)
(1, 0)
(2, 2)

λ
(2)
1 n1(x, η(2)) + λ

(2)
2 n3(x, η(2))

1
1

Table 3. Coupled transitions of two symmetric CPRS, via a basic cou-
pling, that do not preserve the partial order. Nevertheless, starting from
an initial configuration that does, the coupled dynamics does not reach
these states.

To verify all the rates above are well defined, one decomposes n1(x, η
(i)) and

n3(x, η
(i)), (i = 1, 2), as follows

n1(x, η
(2)) = |{y ∼ x : η(2)(y) = η(1)(y) = 1}|

+ |{y ∼ x : η(2)(y) = 1, η(1)(y) = 3}|+ |{y ∼ x : η(2)(y) = 1, η(1)(y) ∈ {0, 2}}|,
n3(x, η

(2)) = |{y ∼ x : η(2)(y) = η(1)(y) = 3}|+ |{y ∼ x : η(2)(y) = 3, η(1)(y) ∈ {0, 2}}|,
n1(x, η

(1)) = |{y ∼ x : η(2)(y) = η(1)(y) = 1}|
n3(x, η

(1)) = |{y ∼ x : η(2)(y) = η(1)(y) = 3}|+ |{y ∼ x : η(2)(y) = 1, η(1)(y) = 3}|,

in which case, we decompose the rate

λ
(2)
1 n1(x, η

(2))− λ(1)1 n1(x, η
(1)) + λ

(2)
2 n3(x, η

(2))− λ(1)2 n3(x, η
(1))

= (λ
(2)
1 − λ

(1)
1 )|{y ∼ x : η(2)(y) = η(1)(y) = 1}|+ (λ

(2)
1 − λ

(1)
2 )|{y ∼ x : η(2)(y) = 1, η(1)(y) = 3}|

+ (λ
(2)
2 − λ

(1)
2 )|{y ∼ x : η(2)(y) = η(1)(y) = 3}|+ λ

(2)
1 |{y ∼ x : η(2)(y) = 1, η(1)(y) ∈ {0, 2}}|

+ λ
(2)
2 |{y ∼ x : η(2)(y) = 3, η(1)(y) ∈ {0, 2}}| (4.10)

which is non-negative under conditions 1. to 4. coming from (I) and (III) in inequalities
(4.7)-(4.8).
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Rates of Table 2 are non-negative thanks to conditions 6. to 8., given by inequalities
(II)-(i)(ii) with β = B, δ = C. Condition 5. is used by Tables 1 and 3 that correspond
to a basic coupling while Table 2 uses a different coupling. Table 3 listing transitions
of the coupled process starting from configurations that do not preserve the defined
partial order, nevertheless, starting from an initial configuration that does, dynamics
of the coupling given by Tables 1 and 2 do not reach states of Table 3 so that marginals
are retrieved.

For a coupled process (η
(1)
t , η

(2)
t )t≥0 starting from an initial configuration such that

η
(1)
0 ≤ η

(2)
0 , since transitions of the two first Tables preserve the order on F , the mar-

kovian coupling we just constructed is increasing:

P̃(η
(1)
0 ,η

(2)
0 )(η

(1)
t ≤ η

(2)
t ) = 1 for all t > 0 (4.11)

where P̃(η
(1)
0 ,η

(2)
0 ) stands for the distribution of (η

(1)
t , η

(2)
t )t≥0 starting from (η

(1)
0 , η

(2)
0 ).

We now investigate sufficient conditions for attractiveness, under which we build a
coupled process through a basic coupling as follows.

Proposition 4.3. The symmetric process (ηt)t≥0 is monotone, in the sense that one

can construct on a same probability space two symmetric processes (η
(1)
t )t≥0 and (η

(2)
t )t≥0

with respective parameters (λ
(1)
1 , λ

(1)
2 , r(1)) and(λ

(2)
1 , λ

(2)
2 , r(2)) satisfying η

(1)
0 , η

(2)
0 ∈ {0, 1}Z

d
,

such that

η
(1)
0 ≤ η

(2)
0 =⇒ η

(1)
t ≤ η

(2)
t for all t ≥ 0 a.s. (4.12)

if the parameters satisfy

1. λ
(1)
2 ≤ λ

(1)
1 ,

2. λ
(2)
2 ≤ λ

(2)
1 ,

3. λ
(1)
1 ≤ λ

(2)
1 ,

4. λ
(1)
2 ≤ λ

(2)
2 ,

5. r(1) ≥ r(2)

Remark 4.4. In view of the proof of Proposition 4.3, one can actually relax the admis-

sible initial conditions: it is enough to assume that η
(1)
0 and η

(2)
0 satisfy η

(1)
0 ≤ η

(2)
0 and

for all x ∈ Zd, (η
(1)
0 (x), η

(2)
0 (x)) 6= (0, 3). In particular one could start from η

(1)
0 = η

(2)
0 .

Proof. Given initial conditions, possible states for the coupled process keep laying in
Table 1 of Proposition 4.2 and the coupled process does not reach any state of Tables 2
and 3. One can therefore omit conditions 4. to 6. of the previous Proposition 4.2 and
transition rates from the couple (0, 3) can be defined through a basic coupling even if
it does not preserve the order:

transition rate

(0, 3) −→


(1, 3)
(0, 1)
(0, 2)
(2, 3)

λ
(1)
1 n1(x, η(1)) + λ

(1)
2 n3(x, η(1))

1
1
r(1)

Table 4

in which case, Table 4 substitutes Table 2. �

If (η
(1)
t )t≥0 and (η

(2)
t )t≥0 differ by at most one parameter, one deduces
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Corollary 4.5. Suppose η
(1)
0 , η

(2)
0 ∈ {0, 1}Zd

. Then for the processes (η
(1)
t )t≥0 and

(η
(2)
t )t≥0 with parameters (λ

(1)
1 , λ

(1)
2 , r(1)) and (λ

(2)
1 , λ

(2)
2 , r(2)) respectively, one has

(i) Attractiveness: if (λ
(1)
1 , λ

(1)
2 , r(1)) = (λ

(2)
1 , λ

(2)
2 , r(2)) , then η

(1)
0 ≤ η

(2)
0 ⇒ η

(1)
t ≤

η
(2)
t a.s., for all t ≥ 0.

(ii) Increase w.r.t. λ1: if (η
(1)
t )t≥0 and (η

(2)
t )t≥0 have respective parameters (λ

(1)
1 , λ2, r)

and (λ
(2)
1 , λ2, r) such that λ2 ≤ λ

(1)
1 ≤ λ

(2)
1 , then η

(1)
0 ≤ η

(2)
0 ⇒ η

(1)
t ≤ η

(2)
t a.s.,

for all t ≥ 0.

(iii) Increase w.r.t. λ2: if (η
(1)
t )t≥0 and (η

(2)
t )t≥0 have respective parameters (λ1, λ

(1)
2 , r)

and (λ1, λ
(2)
2 , r) such that λ

(1)
2 ≤ λ

(2)
2 ≤ λ1, then η

(1)
0 ≤ η

(2)
0 ⇒ η

(1)
t ≤ η

(2)
t a.s.,

for all t ≥ 0.

(iv) Decrease w.r.t. r: if (η
(1)
t )t≥0 and (η

(2)
t )t≥0 have respective parameters (λ1, λ2, r

(1))

and (λ1, λ2, r
(2)) such that r(1) ≥ r(2) with λ2 < λ1, then η

(1)
0 ≤ η

(2)
0 ⇒ η

(1)
t ≤ η

(2)
t

a.s., for all t ≥ 0.

A highlighted consequence related to Corollary (4.5)-(iv) is the monotonicity of the
survival probability with respect to the release rate r for fixed λ1, λ2:

Corollary 4.6. Suppose λ2 and λ1 fixed. If (ηt)t≥0 has initial configuration η0 = 1{0},
the mapping

r 7−→ Pr(∀t ≥ 0, Ht 6= ∅)
is a non-increasing function.

Proof. Let (η
(1)
t )t≥0 and (η

(2)
t )t≥0 be two processes such that η

(1)
0 , η

(2)
0 ∈ {0, 1}Zd

, with
respective parameters (λ1, λ2, r

(1)) and (λ1, λ2, r
(2)) such that r(1) ≤ r(2), then by Corol-

lary 4.5, for all t ≥ 0,

H
(2)
0 ⊂ H

(1)
0 =⇒ H

(2)
t ⊂ H

(1)
t .

�

Analogously to Propositions 4.2 and 4.3, we can obtain conditions for the asymmetric
CPRS to be attractive. For the rest of the section, we refer the reader to [21] for more
detailed proofs.

Proposition 4.7. The asymmetric CPRS (ηt)t≥0 is monotone, in the sense that con-
ditions

1. λ
(1)
2 ≤ λ

(1)
1 ,

2. λ
(2)
2 ≤ λ

(2)
1 ,

3. λ
(1)
1 ≤ λ

(2)
1 ,

4. λ
(1)
2 ≤ λ

(2)
2 ,

5. r(1) ≥ r(2),

are sufficient to construct on a same probability space two asymmetric CPRS (η
(1)
t )t≥0

and (η
(2)
t )t≥0 with respective parameters (λ

(1)
1 , λ

(1)
2 , r(1)) and (λ

(2)
1 , λ

(2)
2 , r(2)) and with

initial condition η
(1)
0 , η

(2)
0 ∈ {0, 1}Z

d
, such that

η
(1)
0 ≤ η

(2)
0 =⇒ η

(1)
t ≤ η

(2)
t a.s., for all t ≥ 0. (4.13)

Proof. As in the proof of Proposition 4.3, one applies [6, Theorem 2.4] with j1, h1 ∈
{0, 1} to two asymmetric processes (η

(1)
t )t≥0 and (η

(2)
t )t≥0 with respective parameters

(λ
(1)
1 , λ

(1)
2 , r(1)) and (λ

(2)
1 , λ

(2)
2 , r(2)). Using (4.7)-(4.8) with rates given by (4.3), we de-

duce the following necessary conditions from the first inequality:
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(I) j1 ∈ {0, 1}, δ = β = B in (4.7) give

(i) α = γ = C, β = B, δ = C: λ
(1)
2 ≤ λ

(2)
2 stated by condition 4.

(ii) α = C, γ = D: λ
(1)
2 ≤ λ

(2)
1 stated by conditions 1. and 3.

(iii) α = γ = D: λ
(1)
1 ≤ λ

(2)
1 stated by condition 3.

(II) j1 = 0, β = B, δ = 1 + β = C in (4.7) give

(i) α = D: λ
(1)
1 ≤ 1.

(ii) α = C: λ
(1)
2 ≤ 1.

The relation (4.8) staying unchanged, one has

(III) h1 = 0, γ = α ∈ {B,D} in (4.8) give r(1) ≥ r(2) stated by condition 5.
(IV) h1 = 0,α = B, γ = 1 + α = C in (4.8) give r(1) ≥ 1.

To sum up, the obtained necessary conditions are

1. λ
(1)
2 ≤ λ

(1)
1 ,

2. λ
(2)
2 ≤ λ

(2)
1 ,

3. λ
(1)
1 ≤ λ

(2)
1 ,

4. λ
(1)
2 ≤ λ

(2)
2 ,

5. r(1) ≥ r(2)

6. λ
(1)
1 ≤ 1,

7. λ
(1)
2 ≤ 1,

8. r(1) ≥ 1.

As for Proposition 4.2, these conditions allow us to construct an increasing markovian
coupling and are thus necessary and sufficient. But as in Proposition 4.3, given our
initial configurations, state (0, 3) is not possible for the coupled process. One can thus
dispense conditions 6 to 8. and conditions 1. to 5. are sufficient to construct a basic
coupling. �

We now compare asymmetric, symmetric and basic contact processes.

Proposition 4.8. Let (ηt)t≥0 be an asymmetric CPRS and (χt)t≥0 be a symmetric

CPRS, both with parameters (λ1, λ2, r) and η0, χ0 ∈ {0, 1}Z
d

such that λ2 < λ1, then
for all t ≥ 0,

η0 ≤ χ0 ⇒ ηt ≤ χt a.s. for all t ≥ 0

Proof. Consider a symmetric process with rates (4.3)-(4.4) and an asymmetric process
with rates (4.3). Similarly to the proof of Proposition 4.2, we apply inequalities (4.7)-
(4.8) to these rates so that they give the following necessary conditions:

(I) j1 ∈ {0, 1}, δ = β = B,α = C, γ = D in (4.7) give: λ2 ≤ λ1
(II) h1 = 0, α = B, γ = 1 + α = C in (4.8) give r ≥ 1

As previously, condition r ≥ 1 is necessary to construct an increasing markovian coupled
process in a general framework, but if one restricts the initial conditions to satisfy
η0 ≤ χ0 and η0, χ0 ∈ {0, 1}Z

d
, condition λ2 < λ1 is sufficient and the coupled process

can be constructed through a basic coupling. �

Proposition 4.9. Let (ξt)t≥0 be a basic contact process on {0, 1}Zd
with growth rate

λ1 and let (χt)t≥0 be a symmetric CPRS with parameters (λ1, λ2, r) such that λ2 < λ1.
Then,

χ0 ≤ ξ0 ⇒ χt ≤ ξt a.s. for all t ≥ 0

Proof. Consider a symmetric CPRS with rates (4.3)-(4.4) and a supercritical contact

process (ξt)t≥0 viewed as a symmetric CPRS with parameters (λ
(2)
1 , λ

(2)
2 , r(2)) with λ

(2)
1 =

λ1, λ
(2)
2 = 0, r(2) = 0, that is with rates (4.5). Applying (4.7)-(4.8) to rates (4.3)-(4.4)

and (4.5), since values A and C do not exist for the process ξt, we have the following
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necessary condition: j1 ∈ {0, 1}, β = δ = B, α = C, γ = D in (4.7) give λ2 ≤ λ1.
While relation (4.8) does not give further condition. Condition λ2 ≤ λ1 is sufficient and
allows us to construct a coupled process through basic coupling. �

Proposition 4.10. Let (ηt)t≥0 be a symmetric CPRS with parameters (λ1, λ2, r) and

(ξ̃t)t≥0 a basic contact process on {2, 3}Zd
with rate λ2 such that λ2 ≤ λ1. Then,

ξ̃0 ≤ η0 ⇒ ξ̃t ≤ ηt a.s., for all t ≥ 0.

Proof. For the process (ξ̃t)t≥0, values B and D are not reached so that the necessary
and sufficient conditions on the parameters given by (4.7)-(4.8) exhibit the condition:
j1 ∈ {0, 1}, β = δ = A, α = C, γ = D in (4.7) give λ2 ≤ λ1. Inequality (4.8) gives
no condition on the rates and condition λ2 ≤ λ1 is sufficient to construct the coupled

process (ξ̃t, ηt)t≥0 via a basic coupling. �

5. Phase transition on Zd

Here, we take advantage of all the stochastic order relations established in Section 4
to derive a phase transition for the CPRS, in both symmetric and asymmetric cases.
According to (2.7), assume the process to have initial configuration η0 = 1{0} and note

ηt = η
{0}
t . We first explore cases when λ2 < λ1 are both smaller or larger than λc.

Proof of Proposition 2.3. Let (ξt)t≥0 be a basic contact process with growth rate λ1
and let (ηt)t≥0 be a symmetric CPRS with parameters (λ1, λ2, r) such that η0 ≤ ξ0. By
Proposition 4.9, (ξt)t≥0 is stochastically larger than (ηt)t≥0. Since λ1 ≤ λc, (ξt)t≥0 is
subcritical, thus, the symmetric CPRS dies out.

The extinction of the asymmetric CPRS is a consequence of the extinction of the
symmetric process and Proposition 4.8. �

Proof of Proposition 2.4. Let (ξ̃t)t≥0 be a basic contact process with growth rate λ2 on

{2, 3}Zd
and let (ηt)t≥0 be a symmetric CPRS with parameters (λ1, λ2, r). By Proposi-

tion 4.10, (ξt)t≥0 is stochastically lower than (ηt)t≥0. Since λ2 > λc, the process (ξ̃t)t≥0
is supercritical and therefore, the symmetric CPRS survives. �

Before proving Theorem 2.5 to 2.7 , the following Subsection 5.1 deals with conse-
quences of Theorems 2.5 and 2.6 along with monotonicity results of Section 4.

5.1. Behaviour of the critical value with varying growth rates. Here we prove
monotonicity between growth rates and the release rate in the sense that, the more
competitive the species is (i.e. the higher the parameter λ2 is) or the fitter the species
is (i.e. the higher the parameter λ1 is), the higher the release rate is (i.e. the higher
the critical value rc is).

Proposition 5.1. For j = 1, 2, the function λj 7−→ rc(λj) is non-increasing.

Proof. We consider j = 2, the case j = 1 is similar. Let (ηt)t≥0 and (η′t)t≥0 be two CPRS
with respective parameters (λ1, λ2, r) and (λ1, λ

′
2, r) such that λ2 < λ′2. Existence of rc

and r′c for those processes is given by Theorems 2.5 and 2.6. By contradiction, suppose
rc > r′c. Let r be fixed be such that rc > r > r′c. By Corollary 4.5-(iii), if η0 = η′0 then
ηt ≤ η′t a.s. and by Theorem 2.7 and Corollary 4.5 (iv),

Pr(∀t ≥ 0, H ′t 6= ∅) ≤ Pr′c(∀t ≥ 0, H ′t 6= ∅) = 0
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But since r < rc, the process (ηt)t≥0 survives: Pr(∀t ≥ 0, Ht 6= ∅) > 0. This contradicts
ηt ≤ η′t a.s., hence rc ≤ r′c. �

5.2. Subcritical case. The following proof relies on a comparison with an oriented
percolation process on the grid L = {(x, n) ∈ Z2 : x + n is even, n ≥ 0}. We follow
arguments used in [20] for a spatial epidemic model.

Proof of Theorem 2.5 (i). To simplify notations, choose d = 1 but the proof remains
the same for any d ≥ 2. Introduce the space-time regions,

B = (−4L, 4L)× [0, T ], Bm,n = (2mLe1, nT ) + B
I = [−L,L], Im = 2mLe1 + I

for positive integers L, T to be chosen later, where (e1, ..., ed) denotes the canonical
basis of Rd.

Consider the process (ηm,nt )t≥0 restricted to the region Bm,n, that is, constructed from
the graphical representation where only arrival times of the Poisson processes occurring
within Bm,n are taken into account. Therefore, a birth on a site x ∈ Bm,n from some
site y only occurs if y ∈ Bm,n. By Proposition 4.3 and Remark 4.4, one has

ηm,nt ≤ ηt
∣∣
Bm,n

, (5.1)

for all t > 0 if ηm,n0 = η0
∣∣
Bm,n

.

Let k = b
√
Lc and define C = [−k, k]. One declares (m,n) ∈ L to be wet if for any

configuration at time nT such that there is a translate of C full with 1’s in Im with Im
containing only 0’s and 1’s, the process restricted to Bm,n is such that at time (n+ 1)T
there are a translate of C in Im−1 and a translate of C in Im+1, both full of 1’s, with
Im−1 and Im+1 containing only 0’s and 1’s.

We show the probability of a site (m,n) ∈ L to be wet can be made arbitrarily close
to 1 for L and T chosen sufficiently large. By translation invariance, it is enough to
deal with the case (m,n) = (0, 0).

Suppose I contains only 0’s and 1’s as well as the translate of C full of 1’s and set
r = 0 in B, that is, no more type-2 individuals arrive in the box B after time 0. If type-2
individuals are present on (−4L,−L) ∪ (L, 4L) × {0}, the probability of the event E
“they all die by time T/2” is at least(

1− exp(−T/2)
)6L

which is larger than 1 − ε for T and L large enough. On E, the process restricted
to the box B is now from time T/2 a supercritical contact process (ξm,nt )t≥T/2 with

distribution P̃(ξm,nt ∈ ·). Define τ(`), the hitting time of the trap state 0 of the contact
process starting from [−`, `] and restricted to [−`, `]× [0, T/2]. To ensure there are still
enough 1’s for ξm,nT/2 , T. Mountford [27] has proven

P̃
(
τ(`) ≤ exp(`)

)
≤ exp(−`) for ` large enough (5.2)

Partition C into M = b
√
kc boxes, each of them being a translate of [0,M ]. From each

of these M boxes, say box j ≤ M , run a supercritical contact process (ζjt )t≥0 which
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coincides with the restriction of ξm,nt to this box. Then for the union of these j boxes
the probability there is at least M 1’s within C by time T/2 is after (5.2), with T such
that exp(M) ≤ T/2, at least

P̃(τ(M) ≥ T/2)M ≥ P̃(τ(M) ≥ exp(M))M ≥ (1− exp(−M))M (5.3)

which can be made larger than 1− ε, for M , i.e. L, large enough.

R. Durrett and R. Schinazi [12] have shown that for a contact process (ξt)t≥0, for any
A ⊂ Z, except for a set with exponentially small probability, either ΞA

t = ∅, or ξAt = ξZt
on a linearly time growing set [−αt, αt]: there exists α > 0 such that for all A ⊂ Z,
there exist constants C, γ such that for x ∈ A+ αt,

P̃
(
ΞA
t 6= ∅, ξAt (x) 6= ξZt (x)

)
≤ C exp(−γt) (5.4)

We applied this result with A ⊂ C, the set of 1’s in the box. We just proved that
|A| > |M |. Moreover by attractiveness (i.e. Proposition 4.2), one can choose k, and so
L, large enough so that this supercritical contact process ξAt starting from at least M
1’s survives at time T/2 with probability close to 1, hence ξAt 6= ∅ and (5.4) is valid.
In this situation, taking T/2 = 9L/(2α) with L large enough, the process (ξm,nt )t≥0
starting from at least M 1’s in [−L,L] at time T/2 will be coupled with a process ξZt on
[−3L, 3L] with probability at least 1− ε at time T . Hence, since 3L > αT/2 > 2L, by
time T the contact process ξAt started inside [−L,L] has not reached the boundary of
[−4L, 4L] with probability close to 1. Then, the process ξm,nt and the contact process
ξAt are the same with probability 1− ε in [−4L, 4L] ; this way, the coupling of (ξm,nt )t≥0
with (ξZt )t≥0 works so far with probability 1− ε if L is large enough.

Since the distribution of (ξZt )t≥0 is stochastically larger than the upper invariant
measure ν of the contact process, on the survival event, ν loads a positive density ρ of
1’s. Since ν is ergodic,

lim
L→∞

1

2L+ 1

−L∑
x=−3L

1{η(x) = 1} = ρ ν -a.e.

Then if L is large enough, there are at least k 1’s in any interval of length 2L+ 1 with
ν-probability at least 1 − ε. Since we obtained that (ξm,nt )t≥0 is coupled to (ξZt )t≥0 by
time T with probability at least 1 − 2ε, for L large enough, there are at least k 1’s in
[−3L,−L] at time T with probability at least 1−2ε and similarly, at least k 1’s at time
t in [L, 3L] with probability at least 1− 2ε as well for (ξm,nt )t≥0. Consequently,

P̃((0, 0) wet) > 1− 4ε, if r = 0. (5.5)

Since B is a finite space-time region, for fixed L, T , one can pick r0 > 0 small enough
so that if r ≤ r0

Pr((0, 0) wet) > 1− 6ε.

Now construct a percolation process by defining Gm,n = {(m,n) wet}. Note Gm,n de-
pends only on the process constructed in Bm,n, and for (a, b) ∈ L, events Gm,n and Ga,b

are independent if (m,n) and (a, b) are not neighbours. The events {Gm,n, (m,n) ∈ L}
are thus 1-dependent. By the comparison theorem [10, Theorem 4.3], the process
(ηm,nt )t≥0 restricted to regions Bm,n is stochastically larger than a 1-dependent percola-
tion process with probability 1− ε.
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One can choose ε small enough so that percolation occurs in the 1-dependent perco-
lation process with density 1− ε, see [10, Theorem 4.3]. �

5.3. Supercritical case. In the following, one compares our particle system with a
percolation process on Z2 × Z+ using arguments exposed as in [30].

Proof of Theorem 2.5 (ii). Assume d = 2, the proof can similarly be extended to higher
dimensions. For all (k,m, n) ∈ Z2 × Z+. Introduce the following space-time regions,
for positive L and T to be chosen later.

A = [−2L, 2L]2 × [0, 2T ] Ak,m,n = A+ (kL,mL, nT )
B = [−L,L]2 × [T, 2T ] Bk,m,n = B + (kL,mL, nT )
C = Cbottom

⋃
Cside Ck,m,n = C + (kL,mL, nT )

where Cbottom = {(m,n, t) ∈ A : t = 0} and
Cside = {(m,n, t) ∈ A : |m| = 2L or |n| = 2L}

Consider a restriction of the process (ηt)t≥0 to Ak,m,n, that is, the process (ηk,m,nt )t≥0
constructed from its graphical representation within Ak,m,n.

One declares a site (k,m, n) ∈ Z2 × Z+ to be wet if the process (ηk,m,nt )t≥0 contains
no wild individual in Bk,m,n starting from any configuration in Ck,m,n. Therefore it will
be the same for ηt

∣∣
Ak,m,n

. Sites that are not wet are called dry.

For any ε > 0, we show that for some chosen L and T any site (k,m, n) is wet with
probability close to 1 when r is large enough. By translation invariance, it is enough to
consider (k,m, n) = (0, 0, 0). Set r = ∞ in A. Then, the process (ηk,m,nt )t≥0 contains
only sites in state 2 or 3: sites in state 0 or 1 flip instantaneously into state 2 and 3

respectively. That is, (ηk,m,nt )t≥0 is in fact a contact process (ξ̃k,m,nt )t≥0 on {2, 3}[−2L,2L]
The contact process (ξ̃t)t≥0 on {2, 3}Z2

with growth rate λ2 < λc is subcritical.

If there is some wild individual in B, it should have come from a succession of births
started somewhere in C. Starting from a site in Cside, a path to B should last at least
L sites ; according to C. Bezuidenhout and G. Grimmett [5] there exists such a path
with probability at most C exp(−γL), for some positive constants C, γ. Hence,

P(∃(x, t) ∈ Cside × [0, 2T ] : (x, t)→ B) ≤ 4
(
2T × (4L+ 1)

)
C exp(−γL)

Similarly, starting from the base Cbottom, there exists a path lasting at least T sites with
probability

P(∃(x, t) ∈ Cbottom : (x, t)→ B) ≤ (4L+ 1)2C exp(−γT )

Consequently if r =∞,

P((0, 0, 0) wet ) ≥ 1− 4
(
2L× (4L+ 1)

)
Ce−γL − (4L+ 1)2Ce−γT ≥ 1− ε/2,

for L and T large enough.
Since A is a finite space-time region, one can pick r large enough so that with

probability at least 1 − ε/2, an exponential clock with parameters r rings before any
other so that there are no type-1 individuals in A with probability close to 1:

Pr(k,m, n) wet) ≥ 1− ε
for r large enough.
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To construct a percolation process on Z2 × Z+, one puts an oriented arrow from
(k,m, n) to (x, y, z) if n ≤ z and ifAk,m,n∩Ax,y,z 6= ∅. The eventGk,m,n = {(k,m, n) wet}
depends only on the graphical construction of the process within Ak,m,n, furthermore,
for all (k,m, n) ∈ Z2 × Z+, there is a finite number of sites (x, y, z) ∈ Z2 × Z+ such
that Ak,m,n ∩Ax,y,z 6= ∅. The percolation process is dependent but of finite range. The
existence of a path of wild individuals for the particle system corresponds to a path of
dry sites for the percolation and we proved that dry paths are unlikely. This implies
that for any site, there will be no more wild individual after a finite random time, see
[3, Section 8 p.16]. By translation invariance, this corresponds to the extinction of the
process. �

This proves the existence of a phase transition for the symmetric CPRS. The proof
of Theorem 2.5-(i) only uses that contact process with growth rate λ1 is supercritical,
hence the existence of s0 in Theorem 2.6-(i) as well. By Proposition 4.8, the asymmetric
CPRS dies out if the symmetric one does so that existence of s1 in Theorem 2.6-(ii)
follows from Theorem 2.5-(ii). Though, one remarks conditions of Theorem 2.6 are
milder: one can actually show the existence of s1 in a neater way, assume λ2 > λc:
without transition ”2 → 3” in the asymmetric case and choosing r = ∞, notice for a
subcritical contact process on {2, 3}Z2

, there are no paths of wild individuals created
by the 3’s from the boundary Ck,m,n up to extinction, but this occurs exponentially fast,
see [5].

5.4. Critical case. Note the arguments developed by [4] rely on elementary properties
of the contact process making them robust. They are also valid for the CPRS since it
satisfies the following properties.

(A) contact process-like dynamics: one retrieves the growth rate λ1 or λ2 of a basic
contact process, even if it is determined randomly.

(B) attractiveness, cf. Section 4.
(C) correlation inequalities: such as FKG inequality.

Note that the use of (C) is possible because the proof works in finite space-time regions
and since survival events are monotone functions of Poisson processes (from the graph-
ical representation, see Section 3), correlation inequalities for such Poisson processes
apply, see [16, Lemma 2.1] for instance. We therefore omit the proof of Theorem 2.7
but rather present a brief outline and refer the reader to [4, 25, 32] for further details.

Outline of the proof of Theorem 2.7. The first step consists to observe that if the
process survives in an arbitrary large box, then, that it reaches its boundaries densely.
We shall estimate these densities at each side of a space-time region.

This way, one can repeat this step by running the process in an other adjacent box
starting from the boundary of the previous one and so on, conditionally on the fact
that the starting configuration is dense enough. This is the second step. In connection
with the proofs of Theorems 2.5 and 2.6 where we looked after having translations of
occupied finite intervals at a given fixed time, here we look after having translations of
the densities in some space-time slab.

Now, knowing that at each stage, one can construct overall a path of adjacent boxes
wherein the process survives and reaches the boundaries densely, it remains to compare
the process with an oriented percolation process to extend the arguments to infinite
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space and time. As before, compare a space-time box to a vertex in the even lattice of an
oriented percolation so that one declare a vertex to be wet if some good event associated
to the box is a success. Conclude thanks to well-settled results about percolation theory.

To conclude the section, Theorem 1.1 (resp. Theorem 1.2) follows from Theorem 2.5
(resp. Theorem 2.6) and by monotonicity arguments given by Corollary 4.6.

6. Mean-field model

The mean-field model associated to the CPRS is a deterministic and non-spatial
model where all individuals are mixed up, featuring the densities of each type of indi-
viduals. Such models give rise to differential systems and are interesting to compare
with stochastic behaviours. We investigate here the equilibria, in both asymmetric and
symmetric models, since existence of such equilibria yield the existence of a critical
value. We exhibit conditions on r to deduce bounds on the critical value.

Subsequently, let ui be the density of type-i individuals for i = 1, 2, 3. Overall,
one has u1 + u2 + u3 = 1 − u0. Furthermore, in connection with the definition of
wild and sterile individuals, we consider as well v1, resp. v2, the density of the wild
individuals (type-1 and type-3 individuals), resp. the sterile individuals (type-2 and
type-3 individuals), and the density of empty sites v0 = u0. Relations between the
u-system and the v-system are described by u1 = 1− v0 − v2

u2 = 1− v0 − v1
u3 = v0 + v1 + v2 − 1

. (6.1)

Since we consider densities, both systems satisfy

ui ∈ [0, 1] for i = 0, 1, 2, 3, vi ∈ [0, 1] for i = 0, 1, 2. (6.2)

Following the most suitable case, we investigate either the u-system or both systems.

6.1. Asymmetric CPRS. Assuming total mixing, the mean-field model associated to
the asymmetric CPRS is given by:

v′0 = −2d
(

(λ2 − λ1)v0 + λ2v1 + (λ2 − λ1)v1 + λ1 − λ2
)
v0 − (r + 2)v0 − v1 − v2 + 2

v′1 = 2d
(

(λ2 − λ1)v0 + λ2v1 + (λ2 − λ1)v2 + λ1 − λ2
)
v0 − v1

v′2 = r(1− v2)− v2
(6.3)

This system gives rise to two equilibria:

(v0, v1, v2) =
(

0, 0,
r

r + 1

)
,

(v0, v1, v2) =
( 2 + r

4dλ1r + 2dλ2r
,
r + 2

2(r + 1)
− (r + 2)2

2(4dλ1 + 2dλ2r)
,

r

r + 1

)
.

Note that the first equilibrium gives (u1, u2, u3) =
(

0, r
r+1

, 0
)

, which puts a positive

density on the sterile individuals and none on the others, which corresponds to the
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extinction of the process. By checking conditions (6.2) on the second, we get that: the
density v1 is non-negative as soon as

4dλ1 + 2dλ2r > (r + 1)(r + 2).

which gives the following condition

r >
2dλ2 − 3 +

√
(2dλ2 − 3)2 − 8(1− 2dλ1)

2
(6.4)

This indicates a lower bound for the phase transition.

6.2. Symmetric CPRS. The mean-field equations associated to the symmetric CPRS
are :  u′1 = 2d(λ1u1 + λ2u3)u0 + u3 − (r + 1)u1

u′2 = ru0 + u3 − u2 − 2d(λ1u1 + λ2u3)u2
u′3 = ru1 + 2d(λ1u1 + λ2u3)u2 − 2u3

(6.5)

As previously, this system admits one trivial equilibrium:

(u1, u2, u3) =
(

0,
r

r + 1
, 0
)

retrieving once again a situation related to the extinction of the process, by a positive
density of sterile individuals and none of the wild ones. We derive the non-trivial
equilibrium thanks to the corresponding v-system:

v′0 = −2d
(

(λ2 − λ1)v0 + λ2v1 + (λ2 − λ1)v1 + λ1 − λ2
)
v0 − (r + 2)v0 − v1v2 + 2

v′1 = 2d
(

(λ2 − λ1)v0 + λ2v1 + (λ2 − λ1)v2 + λ1 − λ2
)

)(1− v1)− v1
v′2 = r(1− v2)− v2

(6.6)
Let us determine the non-trivial equilibrium. Last line of (6.6) gives already v2 =
r

r + 1
. Using relations of (6.1) in (6.6), according to v′1 = 0, an equilibrium (v0, v1, v2)

satisfies in particular

v1 = 2d(λ1u1 + λ2u3)(1− v1) (6.7)

checking v1 cannot be equal to 1, one then has

v1
1− v1

= 2d(λ1u1 + λ2u3) (6.8)

and

v1 6= 1. (6.9)

On the other hand, from the u-system (6.5) with relations (6.1) and using condition
(6.9),

u′1 = 0⇔ v1v0
1− v1

+ (2 + r)v0 + v1 −
r + 2

r + 1
= 0

u′2 = 0⇔ (r + 2)v0 + v1 −
r + 2

r + 1
+

v0v1
1− v1

u′3 = 0⇔ (1− v1)2 + (1− v1)(
1

r + 1
− (r + 1)v0)− v0 = 0
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By solving the last line with respect to (1− v1), one has

1− v1 = (r + 1)v0 or 1− v1 = − 1

r + 1
.

But since 1− v1 ∈ [0, 1], necessarily 1− v1 = (r + 1)v0. Using (6.8), v0 solves

2d(λ1 + λ2r)(r + 1)v20 − (2dλ1 + 2dλ2r + r + 1)v0 + 1 = 0.

This implies

v0 =
1

r + 1
or v0 =

1

2dλ1 + 2dλ2r
.

(1) if v0 = 1
r+1

, then by relations (6.1),

u1 = 0, u3 = 1, v2 = 1 + u2,

which is a contradiction.

(2) if v0 =
1

2dλ1 + 2dλ2r
, then

v1 =
r + 1

2d(λ1 + λ2r)
, v2 =

r

r + 1
.

Verifying this v-system to be a set of densities by condition (6.2), one case highlights
a condition on r: v1 ≤ 1 if and only if r(1 − 2dλ2) ≤ 2dλ1 − 1. In the case where
λ2 ≤ 1/(2d), then one has the condition

r ≤ 2dλ1 − 1

1− 2dλ2
. (6.10)

Consequently, a non-trivial equilibrium of (6.6) is given by

(v0, v1, v2) =
( 1

2dλ1 + 2dλ2r
,

r + 1

2dλ1 + 2dλ2r
,

r

r + 1

)
(6.11)

To put in a nutshell, this survey of equilibria associated to both mean-field models,
in symmetric and asymmetric case, gave us the bounds (6.4) and (6.10) for the phase
transition.

7. Quenched random environment on Z1

We now derive bounds on the phase transition by using T.M. Liggett’s results [23, 24]
for the one-dimensional contact process in quenched environment, that we adapt to our
different dynamics. Let p ∈ (0, 1), define a random environment ω ∈ {0, 1}Z where each
site x ∈ Z is either free (0) with probability 1− p or slowed-down (1) with probability
p, independently of any other site.

The contact process in random environment (CPRE) (ξt)t≥0 that we consider has
state space {0, 1}Z with quenched environment ω. Let λ1 and λ2 be growth parameters
such that

λ2 ≤ λc < λ1, (7.1)

where λc is the critical rate of the one-dimensional contact process. Subsequently,

p = r/(r + 1) (7.2)

for r ∈ (0,∞), is the probability a site is slowed down. Deaths occur at rate 1. If
{ω(x), x ∈ Z} is chosen deterministic (hence inhomogeneous), we will refer to it as the
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contact process in inhomogeneous environment (CPIE). Both CPRE and CPIE are still
monotone according to Section 4.

Denote by Pωλ1,λ2,r the distribution of the CPRE with parameters (λ1, λ2, r) and en-
vironment ω. For fixed parameters λ1 and λ2, simplify by Pωr . For any A ⊂ Z, define
ΞA
t := {x ∈ Z : ξAt (x) = 1}, where ξAt denotes the process at time t started from the

initial configuration ξ0 = 1A. If A = {0}, simplify by Ξt ≡ Ξ
{0}
t . For almost-every

realization of ω, the CPRE is said to survive if

Pωr (∀t ≥ 0, Ξt 6= ∅) > 0

and die out otherwise.
Consider subsequently two kinds of random environment: one depending on the

vertices and one depending on the edges of the graph. The following results are adapted
from [23, Theorems 1 and 3] and [24, Theorem 1.4].

7.1. Random growth on vertices. If λv(k) is the growth rate from site k ∈ Z (See
Figure 2): a birth at site k occurs at rate λv(k − 1) if k − 1 is occupied plus at rate
λv(k + 1) if k + 1 is occupied, where

λv(k) = λ1(1− ω(k)) + λ2ω(k) (7.3)

k − 2 k − 1 k k + 1 k + 2

λv(k + 1)

λv(k + 2)

λv(k)

λv(k + 1)

λv(k − 1)

λv(k)

λv(k − 2)

λv(k − 1)

Figure 2. Random environment on vertices

Theorem 7.1. Assume ω is a fixed environment. The CPIE dies out if for all n ∈ Z,∑
k≥n

k∏
j=n

λv(j + 1) <∞ and
∑
k≤n

n∏
j=k

λv(j − 1) <∞. (7.4)

If the family {ω(k), k ∈ Z} is i.i.d. then the family {λv(k), k ∈ Z} is i.i.d as well and

Corollary 7.2. The CPRE dies out if Eωr log λv(0) < 0. That is, if λ2 < 1 and
r > − log λ2/ log λ1.

Theorem 7.3. The CPRE survives if∑
j≥0

Eωr

(
1

λv(j)

j∏
k=1

λv(k) + λv(k − 1) + 1

λv(k)λv(k − 1)

)
<∞.

No independence in the above product disables us to obtain explicit conditions for
survival of the process. Nevertheless, by defining the randomness on the edges rather
than on the vertices, meaning that the growth rates emanating from a site k respectively
to k+1 and to k−1 are randomly chosen for each k ∈ Z, we are able to explicit bounds
on r with respect to λ1 and λ2.
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7.2. Random growth on oriented edges. Let {(ρe(k), λe(k)), k ∈ Z} be an ergodic,
stationary and i.i.d. sequence. Here, given a site k ∈ Z, a birth from k to k + 1 occurs
at rate λe(k+1) and independently of a birth from k to k−1 occuring at rate ρe(k−1).
See Figure 3.

k − 2 k − 1 k k + 1 k + 2

λe(k + 2)

ρe(k + 1)

λe(k + 1)

ρe(k)

λe(k)

ρe(k − 1)

λe(k − 1)

ρe(k − 2)

Figure 3. Random environment on oriented edges

Suppose both rates are i.i.d, defined for all k ∈ Z by

λe(k + 1)
(d)
= ρe(k − 1)

(d)
= λ1(1− ω(k)) + λ2ω(k). (7.5)

Theorem 7.4. The CPRE dies out if

Eωr λe(k) < 1 and 1− Eωr
( 1

λe(k)

)
< Eωr

( 1

λe(k)

)(
1− Eωr λe(k)

)
.

that is, if λ2 < 1 and r >
λ1 − 1

1− λ2
.

Theorem 7.5. The CPRE survives if for all j ≥ 0,

Eωr
( 1

λe(j + 1)

)(
Eωr
λe(0) + ρe(0) + 1

λe(0)ρe(0)

)j
< 1

that is, if λ2 < 1 +
√

2 < λ1 and r < λ2
(
λ1 −

√
2− 1

)
/
(
λ1
(
λ2 −

√
2− 1

))
.

7.3. Numerical bounds on the phase transition. Back to the basic contact pro-
cess, assume r = 0 then for all x ∈ Z, ω(x) = 0 a.s. and λe(x) = ρe(x) = λ1. We thus
recover the one-dimensional basic contact process with growth rate λ1. In this case,
our estimates lead to the following bound for λc.

Corollary 7.6. For the one-dimensional basic contact process,

λc ≤ 1 +
√

2.

Proof. According to Theorem 7.5, if r = 0 the process survives if λ1 > 1 +
√

2. �

This bound is quite rough but we derived it simply. Consequently, one first deduces
a bound on the critical value λc on Z: λc ≤ 1 +

√
2 ' 2.41.

From previous results, let us derive numerical bounds on the segment where the phase
transition occurs. Choosing λ1 and λ2 given by Theorem 7.4 gives us lower bounds on
the phase transition and satisfying condition from Theorem 7.5 gives us upper bounds.

λ1 λ2 phase transition
1000 0.8 [0.49, 4995)
100 0.8 [0.48, 495)
10 0.8 [0.36, 45]
2 0.8 (0, 5]

λ1 λ2 phase transition
1000 1.4 [1.37,∞)
100 1.4 [1.34,∞)
10 1.4 [1.04,∞)
2 1.4 R+



PHASE TRANSITION FOR A CONTACT PROCESS WITH RANDOM SLOWDOWNS 25

Remark that the necessary condition λ2 < 1 disables us to conclude to an upper
bound for values of λ2. In a similar way, Theorem 7.5 imposes λ1 to be larger than
1 +
√

2, disabling us to find an explicit lower bound in such cases.

7.4. Proofs. The contact process in random environment (ξt)t≥0 on {0, 1}Z introduced
by T.M. Liggett [23, 24] has transitions at x ∈ Z given by

0→ 1 at rate ρ(x)ξ(x+ 1) + λ(x)ξ(x− 1)
1→ 0 at rate δ(x)

(7.6)

where the family {
(
δ(x), ρ(x), λ(x)

)
, x ∈ Z} stands for the random environment, which

is an ergodic stationary process. To apply [23, Theorems 1 and 3] and [24, Theorem
1.4] to our case, the link to (7.3) and (7.5) is given by: for all k ∈ Z,

λ(k + 1) = ρ(k − 1) = λv(k) = ρv(k)

λ(k) = λe(k) and ρ(k) = ρe(k)

Proof of Corollary 7.2. By the ergodic theorem,

lim
k→∞

1

k

k∑
j=0

log λv(j) = Eωr logv(0),

where Eω
r logv(0) =

r log λ2 + log λ1
r + 1

, so that by Theorem 7.1 extinction occurs if

r > − log λ1/ log λ2.

�

Proof of Theorem 7.4. Since Eωr λe(k) = λ1(1− p), we have both conditions

λ2 < 1 and r > (λ1 − 1)/(1− λ2). (7.7)

Meanwhile, the second assertion of Theorem 7.4 holds if the polynomial

A(r) := 2r2
1− λ2
λ2

+ r
(2− λ2

λ1
+

2− λ1
λ2

− 2
)

+ 2
1− λ1
λ1

is positive which holds if

r >
(λ1 + λ2 − 2)(λ1 + λ2) + (λ1 − λ2)

√
(λ1 + λ2 − 2)2 + 4λ1λ2

4λ1(1− λ2)
,

but this condition is satisfied as soon as (7.7) are. �

Proof of Theorem 7.5. Condition of Theorem 7.5 is satisfied if the following polynomial

A(r) := r2
[
λ21(2λ2+1)−λ21λ22

]
+rλ1λ2

[
2(λ1+λ2+1)−2λ1λ2

]
+
[
λ22(2λ1+1)−λ21λ22

]
is negative, which holds if

λ1 > 1 +
√

2, λ2 < 1 +
√

2 and r <
−λ2

(
λ1 −

√
2− 1

)
λ1

(
λ2 −

√
2− 1

) .

Since we assumed λ2 < λc, where λc ≤ 1 +
√

2 by Corollary 7.6, only conditions of
Theorem 7.5 remain. �
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Boston, 19, 105–140, (1991).
[24] Liggett,T.M.: The survival of one-dimensional contact processes in random environments. Ann.

Probab., 20, no. 2, 696–723, (1992).

www.theses.fr/2014PA05S020


PHASE TRANSITION FOR A CONTACT PROCESS WITH RANDOM SLOWDOWNS 27

[25] Liggett, T.M.: Stochastic interacting systems: contact, voter and exclusion processes. Springer-
Verlag, Berlin, (1999).

[26] Liggett, T.M.: Interacting particle systems. Springer-Verlag, Berlin, (2005).
[27] Mountford, T.S.: A metastable result for the finite multidimensional contact process. Canad.

Math. Bull., 36, no. 2, 216–226, (1993).
[28] Newman, C.M. and Volchan, S.B.: Persistent survival of one-dimensional contact processes in

random environments. Ann. Probab., 24, no. 1, 411–421, (1996).
[29] Remenik, D.: The contact process in a dynamic random environment. Ann. Appl. Probab., 18,

no. 6, 2392–2420, (2008).
[30] Schinazi, R. and Schweinsberg, J.: Spatial and non spatial stochatic models for immune response.

Markov Processes and its Related Fields, 14, no. 2, 255–276, (2006).
[31] Schinazi, R.B.: Predator-prey and host-parasite spatial stochastic models. Ann. Appl. Probab., 1,

no. 1, 1–9, (1997).
[32] Steif, Jeffrey E. and Warfheimer, M.: The critical contact process in a randomly evolving envi-

ronment dies out. ALEA Lat. Am. J. Probab. Math. Stat., 4, 337–357, (2008).

Kevin Kuoch
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