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The similarity equations for the Bödewadt flow of a non-Newtonian Reiner-Rivlin fluid, subject to uniform suction/injection, are
solved numerically.The conventional no-slip boundary conditions are replaced by corresponding partial slip boundary conditions,
owing to the roughness of the infinite stationary disk. The combined effects of surface slip (𝜆), suction/injection velocity (𝑊), and
cross-viscous parameter (𝐿) on the momentum boundary layer are studied in detail. It is interesting to find that suction dominates
the oscillations in the velocity profiles and decreases the boundary layer thickness significantly. On the other hand, injection has
opposite effects on the velocity profiles and the boundary layer thickness.

1. Introduction

The problem of Newtonian and non-Newtonian swirling
flows near a rotating or stationary disk has occupied a central
position in the field of fluid mechanics due firstly to the fact
that similarity solutions to the Navier-Stokes equations may
be found in some idealized infinite configurations and sec-
ondly to its industrial and technical applications in rotating
machinery (centrifugal pumps, turbines, or computer stor-
age devices), chemical engineering (spinning disk reactors,
crystal growth processes, or rheometers), or oceanography
among other things.

Recently, Sahoo [1] and Sahoo and Poncet [2] have
obtained numerical solution to similarity equations arising
due to steady revolving flow (known as Bödewadt flow [3]) of
a non-Newtonian Reiner-Rivlin fluid near an infinite rough
stationary disk. In this short note, the flow problem studied
by Sahoo and Poncet [2] has been reconsidered, including
uniform suction/injection at the surface of the stationary
disk. Knowledge of the flow structure close to a porous disk
is of practical significance with regard to problems of lubri-
cation of porous bearings or gaseous diffusion among other

things. Suction or injection at the surface of a porous disk is
also commonly used in chemical engineering to increase the
electrochemical reaction time during electrolytic processes
[4] or for control purpose as, under given conditions, it
delays the transition to turbulence [5]. There are only few
attempts in the literature to consider suction/injection at
the disk surface. Kelson and Desseaux [6] revisited the von
Kármán flow problem over a rotating disk including mass
transfer through the disk. Attia [7] extended their work by
considering the unsteady flow over an infinite rotating disk
with uniform suction and injection and heat transfer effects.
Ashraf et al. [8] considered the flow of a micropolar fluid
between two stationary disks with constant injection velocity
at the surface of one disk. Domairry and Aziz [9] investigated
by a homotopy perturbation method the MHD flow between
twoparallel stationary diskswith suction or injection through
one of the two disks.

None of these previous works considered the Bödewadt
flow of a non-Newtonian fluid over a stationary rough disk
withmass transfer through it.This paper is then an endeavour
to fill this gap. A second-order finite difference method has
been adopted here to solve the resulting system of fully
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coupled and highly nonlinear similarity equations arising
due to Reiner-Rivlin swirling flow over an infinite stationary
porous disk. The objective is to check if suction or injection
is an effective way to reduce the chances of separation of the
boundary layer.

2. Formulation of the Problem

One considers an incompressible non-Newtonian Reiner-
Rivlin fluid, whose constitutive equation is given by

T = −𝑝I + 𝜙
1
D + 𝜙

2
D2, (1)

whereD = (1/2)[∇k+ (∇k)𝑇] [10].The response functions 𝜙
1

and 𝜙
2
are functions of the scalar invariants (trD)2, tr(D2),

and detD [11]. The fluid occupies the space 𝑧 > 0 over
an infinite stationary disk, which coincides with 𝑧 = 0.
The motion is due to the rotation of the fluid like a rigid
body with constant angular velocity Ω at large distance from
the stationary disk. Let k = (𝑢, V, 𝑤) be the fluid velocity
vector in a (𝑟, 𝜃, 𝑧) stationary reference frame (see [2] for
a schematic view of the flow configuration). Using the von
Kármán transformations [12],

𝑢 = 𝑟Ω𝐹 (𝜁) , V = 𝑟Ω𝐺 (𝜁) , 𝑤 = √Ω]𝐻(𝜁) ,

𝑧 = √
]
Ω
𝜁,

𝑝

𝜌
= −]Ω𝑃 (𝜁) +

1

2
Ω
2
𝑟
2
,

(2)

where ] is the fluid kinematic viscosity. By considering
the usual boundary layer approximations, the equations of
continuity and motion take the following forms [1, 2]:
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+ 2𝐹 = 0, (3)
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where 𝐿 = 𝜙
2
Ω/𝜙
1
corresponds to the non-Newtonian cross-

viscous parameter. The above system of equations has to be
solved subject to following partial slip boundary conditions:

𝐹 (0) = 𝜆 [𝐹
󸀠
(0) − 𝐿𝐹 (0) 𝐹

󸀠
(0)] ,

𝐺 (0) = 𝜂 [𝐺
󸀠
(0) − 2𝐿𝐹 (0) 𝐺

󸀠
(0)] ,

𝐻 (0) = 𝑊,

𝐹 (∞) 󳨀→ 0, 𝐺 (∞) 󳨀→ 1,

(7)

where 𝜆 and 𝜂 are nondimensional slip coefficients and𝑊 =
𝑊
0
/√Ω] is the uniform suction (𝑊 < 0) or injection (𝑊 > 0)

velocity.
The expression of the nondimensional moment coeffi-

cient 𝐶
𝑚
is given by

𝐶
𝑚
=
−𝜋 [𝐺

󸀠
(0) − 2𝐿𝐹 (0) 𝐺

󸀠
(0)]

√R
, (8)

where R = 𝑅2Ω/] is the Reynolds number based on the disk
radius and the fluid velocity far from the disk surface. 𝐶

𝑚

represents the torque required to maintain the disk at rest.

3. Numerical Solution of the Problem

In this section, we will present briefly the finite difference
method that has been used to solve the system of coupled,
nonlinear equations (3)–(5) subject to slip boundary con-
ditions (7). It is customary to mention that similar scheme
has been used by Sahoo et al. [13] to solve the Bödewadt
flow problem for a viscous fluid with Navier’s slip boundary
conditions. In this problem, as 𝐻

0
̸= 0, a slightly modified

scheme has been used in order to get diagonally dominant
matrix while using generalized Gauss-Seidel method. The
semi-infinite integration domain [0,∞) is replaced by a
finite domain [0, 𝜁

∞
). In practice, 𝜁

∞
should be chosen to

be sufficiently large so that the numerical solution closely
approximates the terminal boundary conditions and takes
into account the asymptotical behavior far from the disk
(see Appendix 1 in [14] for the asymptotical behavior of the
solutions for large 𝜁). One approximates the functions and
their derivatives by their finite difference counterparts and
eventually solves a sequence of linear systems as explained
below.

(1) One first solves

[1 + 𝐿𝐹
(𝑘)
] 𝐹
󸀠󸀠
− 𝐻
(𝑘)
𝐹
󸀠

= (𝐹
(𝑘)
)
2

− (𝐺
(𝑘)
)
2

+
1

2
𝐿 [(𝐹
󸀠(𝑘)
)
2

− 3 (𝐺
󸀠(𝑘)
)
2

] + 1

(9)

using mixed boundary conditions (7) and calls the
solution of (9) as 𝐹(𝑘+1), with 𝑘 being the iteration
index. To obtain convergence, one defines 𝐹(𝑘+1) by
the smoothing formula:

𝐹
(𝑘+1)
= 𝛼
1
𝐹
(𝑘+1)
+ (1 − 𝛼

1
) 𝐹
(𝑘)
, 0 ≤ 𝛼

1
≤ 1. (10)

(2) Then, one solves

[1 + 𝐿𝐹
(𝑘+1)
] 𝐺
󸀠󸀠
+ [𝐿𝐹
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− 𝐻
(𝑘)
] 𝐺
󸀠
= 2𝐹
(𝑘+1)
𝐺
(𝑘) (11)

using derivative boundary conditions (7) and calls the
solution of (11) as 𝐺(𝑘+1). To obtain convergence, one
defines 𝐺(𝑘+1) by the following smoothing formula:

𝐺
(𝑘+1)
= 𝛼
2
𝐺
(𝑘+1)
+ (1 − 𝛼

2
) 𝐺
(𝑘)
, 0 ≤ 𝛼

2
≤ 1. (12)
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(3) In this step, one solves

𝐻
󸀠
= −2𝐹

(𝑘+1) (13)

and calls the solution as 𝐻̃(𝑘+1). To obtain conver-
gence, one defines𝐻(𝑘+1) by the smoothing formula:

𝐻
(𝑘+1)
= 𝛼
3
𝐻̃
(𝑘+1)
+ (1 − 𝛼

3
) 𝐻̃
(𝑘)
, 0 ≤ 𝛼

3
≤ 1. (14)

(4) The iterations start with suitable initial guesses
𝐹
(0)
, 𝐺
(0), 𝐻(0), 𝐹󸀠(0), and 𝐺󸀠(0), borrowed from

the work by Sahoo and Poncet [2]. If 𝐹(𝑘+1), 𝐹(𝑘),
𝐺
(𝑘+1)
, 𝐺
(𝑘), and𝐻(𝑘+1), 𝐻(𝑘) are close enough to each

other, iterations are stopped; otherwise one sets 𝑘 =
𝑘 + 1 and goes to step (1).

In order to solve the above system of equations by finite
difference method, a uniform grid in 0 ≤ 𝜁 ≤ 𝜁

∞
is

introduced by dividing it into 𝑛 equal parts with a mesh size
ℎ equal to 0.01. One approximates the derivatives by their
finite difference counterparts using second-order schemes as
follows:

𝐹
󸀠
(𝜁
𝑖
) =
𝐹
𝑖+1
− 𝐹
𝑖−1

2ℎ
,

𝐹
󸀠󸀠
(𝜁
𝑖
) =
𝐹
𝑖+1
− 2𝐹
𝑖
+ 𝐹
𝑖−1

ℎ2
,

𝑖 = 1, 2, . . . , 𝑛 − 1.

(15)

In order to obtain a diagonally dominant linear algebraic
system for (9) and (11), 𝐹󸀠 and𝐺󸀠 are discretized by backward
difference approximations as 𝐻(𝑘+1)

𝑖
> 0 for Bödewadt flow.

Finally, (13) is discretized by the central difference approx-
imation. The above algebraic system of equations is solved
by generalized Gauss-Seidel method [15].The convergence of
the generalizedGauss-Seidelmethod for the above diagonally
dominant system of equations is quite fast. About 19–21
iterations are necessary to achieve an accuracy of 10−6. The
Fortran 90 code was compiled and run using one of the
NIT Rourkela high-end Linux servers. The typical time per
iteration for a givenmesh distribution (𝜁

∞
= 20 and ℎ = 0.01)

and 𝐿 = 𝜆 = 1 is 32.9 seconds for𝑊 = 0 and increases up to
45.4 seconds for𝑊 = 1.

4. Results and Discussions

The effects of slip (𝜆) and cross-viscous parameter (𝐿) on
the momentum boundary layer have been already precisely
discussed in [2]. This short communication focuses only on
the effects of the suction/injection velocity on themomentum
boundary layer for fixed values of 𝐿 = 1 and 𝜆 = 𝜂 = 1.

The velocity profiles for the Bödewadt problem exhibit
oscillations unlike von Kármán flow. The oscillations occur-
ring in the boundary layer when the fluid rotates near a
stationary disk can be explained in the followingmanner.The
radial inflow, induced in the vicinity of the stationary disk,
tends to conserve angular momentum and thus to increase
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Figure 1: Variation of 𝐹 with𝑊.

the tangential velocity when the local radius is decreased. For
an overshoot, radial convection of the angular momentum
near the diskmust be strong enough tomore than balance the
dissipation of angular momentum caused by the wall shear.
This inward radial convection of surplus angular momentum
is possible as long as the distribution of circulation in the
outer flow increases with increasing radius. A local overshoot
in the tangential velocity increases the centrifugal force
locally, which tends to induce a radial outflow. This radial
outflow convects an angular momentum defect to force an
undershoot in the tangential velocity profile, and the above
process is repeated to yield oscillatory approach to infinity.
It is interesting to observe that the oscillations in the three
velocity components reduce as 𝑊 changes its sign from
positive (injection) to negative (suction), as seen in Figures
1 to 3. The boundary layer thickness decreases significantly
when suction is applied. In fact, there is no oscillation in the
velocity profiles for𝑊 = −1. From Figure 1, it is clear that the
intensity of the back flow near the disk surface decreases as
𝑊 changes sign from positive to negative. Suction decreases
the amplitude of the oscillations, whereas injection enhances
them. To summarize, suction has a stabilizing effect on the
velocity profiles, while injection destabilizes the flow. The
influence of 𝑊 on the components 𝐹 and 𝐺 confirms the
previous results of Attia [7], in the case of a rotating disk
in a porous medium. On the contrary, the effect of 𝑊 on
𝐻 has an opposite behavior. The axial velocity component
𝐻 is relatively constant whatever the distance from the disk
is when suction is applied. For future comparisons, the
variations of 𝐻

∞
, 𝐹(0), and 𝐺(0) for different combinations

of the flow parameters are provided in Table 1. The velocity
gradients close to the disk are more interesting. Suction tends
to diminish them, which means that the shear stresses may
be reduced by decreasing 𝑊. From Figure 2, it can be seen
that the boundary layer thickness is also reduced when 𝑊
decreases. With injection𝑊 = 1, the fluid is pushed towards
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a larger distance from the disk, which induces a thickening
of the boundary layer. The injection velocity𝑊 may be then
used to adjust both the shear stress and the boundary layer
thickness (and as a consequence the velocity profiles) in given
engineering applications.

Finally, Figure 4 shows the variation of the moment
coefficient𝐶

𝑚
with the suction/injection velocity𝑊 for three

different sets of values of 𝐿 and 𝜆. Note that the Reynolds
number has been fixed to R = 1. The moment coefficient
𝐶
𝑚

remains negative for all values of 𝑊. It is interesting
to observe that 𝑊 has a significant effect on the moment
coefficient for a viscous (𝐿 = 0) Bödewadt flow with no-slip

Table 1: Variations of 𝐻
∞
, 𝐹(0), and 𝐺(0) with different flow

parameters.

𝐿 𝜆(=𝜂) 𝑊 𝐻
∞

𝐹(0) 𝐺(0)

0.0
1.0 1.0

2.070589 −0.393258 0.510032
1.0 1.899414 −0.261875 0.409946
2.0 1.800522 −0.195825 0.345059

1.0
1.0

1.0
1.899414 −0.261875 0.409946

2.0 1.522734 −0.091550 0.311701
3.0 1.372901 −0.048644 0.239897

1.0 1.0
−1.0 −0.760271 −0.066407 0.593022
0.0 0.561328 −0.140015 0.497071
1.0 1.899414 −0.261876 0.409946
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Figure 4: Variation of 𝐶
𝑚
with𝑊.

(𝜆 = 0) boundary conditions. In this case, the torque required
tomaintain the disk at rest is high when there is suction at the
disk surface and it decreases in magnitude as𝑊 changes its
sign from negative to positive. The rate of decrease of 𝐶

𝑚
as

𝑊 changes sign from negative to positive for the other two
cases (𝐿 = 0, 𝜆 = 1; 𝐿 = 1, 𝜆 = 1) is not significant. It is
also observed that, for the Reiner-Rivlin fluid (𝐿 ̸= 0), 𝐶

𝑚

decreases in magnitude when 𝑊 varies in the range [−1, 1]
up to a critical value𝑊∗. For 𝐿 = 1 and 𝜆 = 1,𝑊∗ ≃ 0.75.

5. Conclusions

In this short communication, we have investigated the effects
of suction and injection on the momentum boundary layer
arising due to the swirling flow of a non-Newtonian Reiner-
Rivlin fluid over an infinite rough stationary disk. A second-
order finite difference method has been adopted to solve
the resulting system of fully coupled and highly nonlinear
similarity equations. It is observed that suction suppresses
the oscillations in the velocity profiles, whereas injection
enhances it. The boundary layer thickness decreases as the
suction increases. Injection has an opposite effect on it.
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