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Abstract Parametric nonlinear mixed effects models (NLMEs) ance components. On the other hand, we propose a LASSO-

are now widely used in biometrical studies, especially in
pharmacokinetics research and HIV dynamics models, due
to, among other aspects, the computational advances achieved
during the last years. However, this kind of models may not
be flexible enough for complex longitudinal data analysis.
Semiparametric NLMEs (SNMMs) have been proposed as
an extension of NLMEs. These models are a good compro-
mise and retain nice features of both parametric and non-
parametric models resulting in more flexible models than
standard parametric NLMEs. However, SNMMs are com-
plex models for which estimation still remains a challenge.
Previous estimation procedures are based on a combination
of log-likelihood approximation methods for parametric es-
timation and smoothing splines techniques for nonparamet-
ric estimation. In this work, we propose new estimation strate-
gies in SNMMs. On the one hand, we use the Stochastic
Approximation version of EM algorithm (SAEM) to obtain
exact ML and REML estimates of the fixed effects and vari-
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type method to estimate the unknown nonlinear function.
We derive oracle inequalities for this nonparametric estima-
tor. We combine the two approaches in a general estimation
procedure that we illustrate with simulations and through
the analysis of a real data set of price evolution in on-line
auctions.

Keywords LASSO - Nonlinear mixed-effects model -
On-line auction - SAEM algorithm - Semiparametric
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1 Introduction

We consider the semiparametric nonlinear mixed effects model
(SNMM) as defined by Ke and Wang (2001) in which we
have n individuals and we observe:

&j~N(0,0%)iid., (1)
i=1,....N, j=1,....n,

yij = &(xij, 0, f) + &ij,

where y;; € R is the jth observation in the ith individual,
Xij € R¢ is a known regression variable, g is a common
known function governing within-individual behaviour and
f is an unknown nonparametric function to be estimated.
The random effects ¢, € R” satisfy

¢i :AiB+ni7

where A; € ./, , are known design matrices, B € R? is the
unknown vector of fixed effects and we suppose that &;; and
7, are mutually independent.
The parameter of the model is (8, f), where 8 = (B,I",6?)
belongs to a finite dimensional space whereas f belongs to
an infinite dimensional space of functions denoted .77

Ke and Wang (2001) consider the most common type of
SNMM in practice, in which g is linear in f conditionally

ni~A(0,I)iid.



on ¢;,

g(xij 01, f) = a(@5xi7) +b(d5xi5) f(c(93xi5)), ()

where a, b and ¢ are known functions which may depend
on i.

Different formulations of SNMM’s have been recently
used to model HIV dynamics (Wu and Zhang, 2002; Liu
and Wu, 2007, 2008), time course microarray gene expres-
sion data (Luan and Li, 2004), circadian rhythms (Wang and
Brown, 1996; Wang et al, 2003), as in the following exam-
ple, or to fit pharmacokinetic and pharmacodynamic models
(Wang et al, 2008), among many other applications.

Example 1 The following model was proposed by Wang and
Brown (1996) to fit human circadian rhythms:

€X i
yij = L+ N1 +exp(n) f (Xij - 1—%5)((1?(311)3)> + &ij,
&~ A (0,0%)iid.
n; ~A(0,I) i.id.

fori=1,...,N, j=1,...,n;, where y;; is the physiological
response of individual 7 at the jth time point x;;. This model
can be written in the general form (1) as:

vij = 8(xij, 05, f) + &, &~ A (0,0%)iid,
g(xij>¢i>f) = ¢1i+exp(¢2i)f (xij exp(¢3i) >

" T+exp(93)
¢; = (1,0,0)+mn;, n;~A(0,I)iid.

where (Pi = (¢1i7¢2i;¢3i)/ and n; = (Tlli,nZi,nSi)/- In this
example f represents the common shape of the observed
curves, and ¢y;, exp(¢o;), and exp(@3;)/ (14 exp(¢3;)) stand
for the individual vertical shift, individual amplitude and in-
dividual horizontal shift respectively. Here d = 1, p = 3,
g = 1 and the parameter of the model is (u,I", 62, f). This
model was also used by Ke and Wang (2001) for modeling
Canadian temperatures at different weather stations.

Let us introduce the following vectorial notation: y; =
(yih s 7yiﬂ,')/’ y= (y/l AR ay;\/)/9 (P = ((Pl/v . 'a¢1/\/)/’

N=-1y)" 8i(9: ) = (8(xit, 85, 1), -, 8 (Xini» 9, f))'

g(¢af) = (gl(q)hf)/v'"7gN(¢naf)/)/’A: (A/177A;V)/’F:
diag(T,...,I") andn =YY | n;. Then, model (1) can be writ-
ten as:

o ~ «/V(g(¢,~f),621n)
¢ ~ N(AB,T)

3)

where 1, is the identity matrix of dimension n, and the like-
lihood of observations y is:

p0:(8.0) = [ p010:(60.9)p(6:(6.))d9

:/(chlyz)gexl’{z;lz||y—g(¢af)|2}

g en] S o-ap) ao
en ¥

1
n+Np
2

(2m)"7" (a?)3|T|2

< Jewn{ 5 (el s0. NP+ IF (0 -ap)IR) fao.

where || - || is the L, norm. In their seminal paper, Ke and
Wang consider a penalized maximum likelihood approach
for the estimation of (6, f). That is, they propose to solve
max {{(y; (6, £)) —nAJ(£)} )
where £(y; (0, f)) is the marginal log-likelihood, J( f) is some
roughness penalty and A is a smoothing parameter. More-
over, they assume that f belongs to some reproducing kernel
Hilbert space (RKHS) 57 = 54 @& 4, where J# is a finite
dimensional space of functions, 4 = span{yy,...,¥u},
and 7 is a RKHS itself. Since the nonlinear function f in-
teracts in a complicated way with the random effects and
the integral in (4) is intractable, they replace £(y; (6, f)) by
a first-order linearization of the likelihood with respect to
the random effects. Then, they propose to estimate (0, f) by
iterating the following two steps:

i) given an estimate of f, get estimates of 8 and ¢ by fitting
the resultant nonlinear mixed model by linearizing the
log-likelihood (replacing ¢ by 7). In practice they use the
R-function nlme (Pinheiro and Bates, 2000) to solve this
step.

ii) given an estimate of 0, é, estimate f as the solution to

max {ﬂ%(&f@)) —”Aj(f)}'

fent

Since in ii) the approximated log-likelihood involves a

“4)

bounded linear functional, the maximizer in .7 of #(y; (6, f,)) —

NAJ(f) given 6 and  belongs to a finite dimensional space
and it is estimated as a linear combination of functions from
4 and J7;. Conceptually, the whole approach is equivalent
to solving (5) not on .7 but on a finite-dimensional approx-
imation space of JZ at each iteration. As it is discussed in
that article, despite of the lack of an exact solution, the spline
smoothing method provides good results and its use in this
framework is largely justified. However, the method relies
on prior knowledge of the nonlinear function f and provides



better results when this kind of information is available.

In practice, the Ke and Wang’s method is implemented
in the R package assist (Wang and Ke (2004)) and in parti-
cular in the snm function which is directly related with the
nlme function.

As for the parametric estimation, it is important to point out
some drawbacks of the approximated methods based on lin-
earization of the log-likelihood, such as the first-order lin-
earization conditional estimates (FOCE) algorithm used in
the snm funtion (Wang and Ke (2004)). It has been shown
that they can produce inconsistent estimates of the fixed ef-
fects, in particular when the number of measurements per

subject is not large enough (Ramos and Pantula (1995); Vonesh

(1996); Ge et al (2004)). Furthermore, simulation studies
have shown unexpected increases in the type I error of the
likelihood ratio and Wald tests based on these linearization
methods (Ding and Wu (2001)). In addition, from of statis-
tical point of view, the theoretical basis of this linearization-
based method is weak.

Since estimation in SNMMs is an important problem
and a difficult task from which many challenging aspects
arise, in this paper we propose an alternative estimation pro-
cedure to tackle some of these points. On the one hand, for
the parametric step we will focus on the maximization of
the exact likelihood. We propose to use a stochastic version
of the EM algorithm, the so-called SAEM algorithm intro-
duced by Delyon et al (1999) and extended by Kuhn and
Lavielle (2005) for nonlinear mixed models, to estimate 0
without any approximation or linearization. This stochastic
EM algorithm replaces the usual E step of EM algorithm
(Dempster et al, 1977) by a simulation step and a stochastic
procedure, and converges to a local maximum of the like-
lihood. The SAEM has been proved to be computationally
much more efficient than other stochastic algorithms as for
example the classical Monte Carlo EM (MCEM) algorithm
(Wei and Tanner, 1990) thanks to a recycling of the simu-
lated variables from one iteration to the next (see Kuhn and
Lavielle (2005)). Indeed, previous attempts to perform exact
ML estimation in SNMMs have been discarded because of
the computational problems related to the use of an MCEM
algorithm (see Liu and Wu (2007, 2008, 2009)). Moreover
we use a Restricted Maximum Likelihood (REML) version
of the SAEM algorithm to correct bias estimation problems
of the variance parameters following the same strategy as
Meza et al (2007).

On the other hand, for the nonparametric step we will pro-
pose a LASSO-type method for the estimation of f. The
popular LASSO estimator (least absolute shrinkage and se-
lection operator, Tibshirani (1996)) based on ¢; penalized
least squares, has been extended in the last years to non-
parametric regression (see for instance Bickel et al (2009)).

It has been also used by Schelldorfer et al (2011) in high-
dimensional linear mixed-effects models. In the nonpara-
metric context, the idea is to reconstruct a sparse approxima-
tion of f with linear combinations of elements of a given set
of functions {fi,..., fu}, called dictionary. That is, we are
implicitly assuming that f can be well approximated with
a small number of those functions. In practice, for the non-
parametric regression problem, the dictionary can be a col-
lection of basis functions from different bases (splines with
fixed knots, wavelets, Fourier, etc.). The difference between
this approach and the smoothing splines, is that the selec-
tion of the approximation function space is done automati-
cally and based on data among a large collection of possi-
ble spaces spanned by very different functions. This is par-
ticularly important in situations in which little knowledge
about f is available. This approach allows us to construct
a good approximation of the nonparametric function which
is sparse thanks to the large dictionary. The sparsity of the
approximation gives a model more interpretable and since
few coefficients have to be estimated, this minimizes the
estimation error. The LASSO algorithm allows to use the
dictionary approach to select a sparse approximation, unlike
to wavelet thresholding or ¢y- penalization. Moreover the
LASSO algorithm has a low computational cost since it is
based on a convex penalty.

We can summarize our iterative estimation procedure as:

i) given f, an estimate of f, get estimates of 6 and ¢ by
fitting the resulting NLME with the SAEM algorithm
(using either ML or REML).

ii) given estimates of 0 and ¢, solve the resulting nonpara-
metric regression problem using a LASSO-type method.

The rest of the article is organized as follows. In Sec-
tion 2.1 we describe the SAEM algorithm and its REML
version in the framework of SNMMs. In Section 3 we pro-
pose a LASSO-type method for the estimation of f in the
resulting nonparametric regression problem after estimation
of 8 and ¢. Oracle inequalities and subset selection proper-
ties for the proposed estimator are provided in the Supple-
mentary Material. In Section 4, we describe the algorithm
that combines both procedures to perform joint estimation
of (0, f) in the SNMM. Finally, in Section 5, we illustrate
our method through a simulation study and the analysis of
price dynamics in on-line auction data. We conclude the ar-
ticle in Section 6.

2 Estimation of the finite-dimensional parameters
2.1 SAEM estimation of 0 and ¢
In this subsection we consider that we have an estimate of

f, f , obtained in the previous estimation step that does not
change during the estimation of 0. Thus, we can proceed



as if f was a known nonlinear function and we fall into the
SAEM estimation of nonlinear mixed-effects model frame-
work (see Kuhn and Lavielle (2005)). In this setting, conver-
gence of the algorithm to a local maximum of the likelihood
is guaranteed. In fact, note that since the estimation of f is
performed by solving a nonparametric regression problem
with regression variables c(qAbi;x,-j), i=1,...,N, j=1,....,n
(see Section 3), it will depend on the estimated value of ¢
at the precedent iteration. Then, we will note f, the current
estimated function.

The complete likelihood for model (1) is:

p(y,¢:0) = p(y[9:6)p(¢:0)

_ ! YA AP

Qe e o{ 5 (g2l sto 5
+IF 0 -aB)F)}

where n = Y'¥ | n;. Then, the complete log-likelihood is:

1
logp(y,9;6) = —3 {C+nlog0'2+Nlog|F|

N
+;2||y—g(¢,f)||2+X;(¢i—Atﬁ)’F1(¢,-—Aiﬁ)}
(6)

where C is a constant that does not depend on 6.

The distribution of the complete-data model belongs to
the exponential family, that is logp(y,¢;0) = — ¥(6) +
(S(y,9),P(0)), where (-,-) stands for the scalar product and
S(y, 9) is the sufficient statistics. The EM algorithm in this
framework would involve the computation of E[S(y, ¢)[y; 6]
in the E step, which in our case is intractable. The SAEM al-
gorithm replaces, at each iteration, the step E by a simulation
step (S) of the missing data (¢) and an approximation step
(A). Then, iteration k of the SAEM algorithm writes:

- S step: simulate m values of the random ef-
fects, 0D . ¢*+1m from the conditional law
p(:ly:0%).

- A step: update sy, according to:

l m
Skrl = Skt 2 | Y Sy, %) — g
i=1

- M step: update the value of 6:
(

[0)
6 = argmax{—¥(6) + (s¢+1, 2(6))} 7

where (s;) is initialized at so and () )« is a decreasing se-
quence of positive numbers which accelerates the conver-
gence (Kuhn and Lavielle, 2004). The role of the sequence
(Xx ) is crucial in the SAEM algorithm since it performs a
smoothing of the calculated likelihood values from one it-
eration to another. In practice, this smoothing parameter is

defined as follows. During the first L iterations, y; = 1, and
from iteration (L+ 1) the smoothing parameter starts to de-
crease in order to stabilize the estimates and provide a faster
convergence towards the true ML estimates. For example,
Kuhn and Lavielle (2005) recommend to take j; = (k—L) ™!
for k > (L+ 1). The choices of the total number of itera-
tions, K, and of L are then crucial. In order to define these
constants, following Jank (2006) and Meza et al (2009), we
may use a graphical approach based on the likelihood diffe-
rence from one iteration to the next one and monitor SAEM
by estimating its progress towards 6y, by using the prop-
erty of increasing likelihood of the EM algorithm (see for
more details (Meza et al, 2009)). Then, the total number of
iterations can be fixed and the smoothing step can be de-
fined. However, it is important to note that this procedure
implies to run the SAEM algorithm twice. Furthermore, as
all EM-type algorithms, SAEM is sensitive to the choice of
the initial values.

From (6), the sufficient statistics for the complete model
are given by

SLik+1 = SLik + Xk

(k1)
(]) S1ik| i=1,...,N
=1

il (k+1,0) k+1 1)
Z¢ — Sk

1i=1

[Vjs

1
S2k+1 = S2k+ Xk | —
m

l

. k 11 2
ZHY g (e )|| — 83k -

83 k+1 = S3k+ Xk

Now, 6*+1) is obtained in the maximization step as follows:

-1
N
—1
kH (ZAF i) ZA;F(k) S1i k41
i=1

1 N /
rh = N (Sz,k+1 —Z,Aiﬁ<k+l)s/1,,-,k+1 _;Sl,i,kJrl (Aiﬁ(k+1))
+2Aﬁk+l < ﬁk+1))>
2 (k+1) _ 53,k+1
==

When the simulation step cannot be directly performed, Kuhn
and Lavielle (2004) propose to combine this algorithm with
a Markov Chain Monte Carlo (MCMC) procedure. Then,

the simulation step becomes:
- S step: using ¢ %), draw ¢K+10)

bility Iy (-|¢*D), 1=1,...,m

with transition proba-

that is, (%10, ... (¢%+1™) are m Markov chains with
transition kernels (H o(6) ) In practice, these Markov chains
are generated using a Hastings-Metropolis algorithm (see
Kuhn and Lavielle (2005) for details).

With respect to the number of chains, the convergence of

the whole algorithm to a local maximum of the likelihood is



granted even for m = 1. Greater values of m can accelerate
the convergence, but in practice m is always lower than 10.
This is the main difference with the MCEM algorithm, in
which very large samples of the random effects have to be
generated to obtain convergence of the algorithm.

2.2 REML estimation of variance components

It is well known that the maximum likelihood estimator of
variance components in mixed effects models can be biased
downwards because it does not adjust for the loss of degrees
of freedom caused by the estimation of the fixed effects. This
is also true in the context of SNMMs as Ke and Wang (2001)
point out in their paper.

To overcome this problem we consider restricted maximum
likelihood (REML) estimation. REML, as originally formu-
lated by Patterson and Thompson (1971) in the context of
linear models, is a method that corrects this problem by
maximizing the likelihood of a set of linear functions of the
observed data that contain none of the fixed effects of the
model. But this formulation does not directly extend beyond
linear models, where in general it is not possible to construct
linear functions of the observed data that do not contain
any of the fixed effects. However, in the case of nonlinear
models, other alternative formulations of REML have been
proposed. Here, we will consider the approach of Harville
(1974), that consists in the maximization of the likelihood
after integrating out the fixed effects. To perform this inte-
gration we follow Foulley and Quaas (1995) and consider
the fixed effects as random with a flat prior. The combina-
tion of this REML approach with the SAEM algorithm in
the context of nonlinear mixed effects models has been stud-
ied recently by Meza et al (2007). The authors showed the
efficiency of the method against purely ML estimation per-
formed by SAEM and against REML estimation based on
likelihood approximation methods.

Following these ideas we note z = (¢, 3) the random ef-
fects and @ = (I, 62) the new parameter of the model. As
in the general case, the simulation step is performed through
an MCMC procedure. Here, since we have to draw values
from the joint distribution of (¢, 8)ly; é(k>, we use a Gibbs
scheme, i.e., we iteratively draw values from the conditional
distributions of ¢y, B ®).5% and Bly,o® . Then, we
use again a Hastings-Metropohs algorithm to obtaln approx-
imations of these conditional distributions.

Finally, iteration k of the SAEM-REML algorithm for model
(3) writes:

- S step: using 7K = ((b(k*l),ﬁ(k’l)), simulate
Ll (¢(k+1,l)’ﬁ(k+1,1))’ I = 1.
Metropolis-within-Gibbs scheme.

- A step: update §i4; by Sk+1 = Sk +

Xk [1 )y S(y,z %) — 54 , namely:
miz

.,m with a

S1h+1 = Sk + Xk
[=1i=1

1 N ,
L Zznglﬁ-l,l)ngk—&-l,n _fl.k]

5 - 1
2 k+1 = S2k + Xk

S (k+1D) 7|12
— Y ly-g EELD FOIP = 52

mi3

where nngJ) = ¢l(’<+U) — Ak,

- M step: update O by gty = argmaxg{—%(0) +
(Sk+1,P(0))}, namely:

S1 k41 (k1) 82 k41
= a and o2 = 2

F(k+1) — —
N n

®)

In many situations, it is important to obtain inference on
the fixed effects in the context of REML estimation of vari-
ance components. Following Meza et al (2007), estimation
of fixed effects can be directly obtained as a by-product of
the SAEM-REML algorithm via the expectation of the con-
ditional distribution of the fixed effects given the observed
data, the estimate, f of the unknown function f and the
REML estimates of the variance-covariance components. This
estimator makes sense in an Empirical Bayes framework.

3 Estimation of the function f using a LASSO-type
method

In this part, our objective is to estimate f in the model (1)
using the observations y; ; and assuming thatfori=1,...,N
we have ¢, = ¢, and 6> = 62 where the estimates ¢, and 6>
have been obtained in the precedent SAEM step. Since g
satisfies (2), model (1) can be rewritten as

Bij = b(;5xi)) f(Xij) + &5,

with 3;; = yij—a(@;;xi;) and %;; = c(¢;;x;;). Of course, since
the (fbi’s and 62 depend on the observations, the distribution
of 67§;; is no longer Gaussian and the &;;’s are not i.i.d. but
dependent. But in the sequel, to be able to derive theoretical
results, we still assume that

i=1...,N,j=1,....n

£ N (0,0%), 9)

where the value of 67 is given by 2. Simulation studies of
Section 5 show that this assumption is reasonable. However,
note that (9) is true at the price of splitting the data set into
two parts: the first part for estimating 6 and ¢, the second
part for estimating f. Now, reordering the observations, it is



equivalent to observing (yi,...,y,) with n = Y, n;, such
that

vi=bif(xi)+ &, &~ .A(0,06%)iid. (10)
where the b;’s and the design (x;)i—1,.. , are known and de-

pend on the estimators of the precedent SAEM step and the
&’s are random variables with variance 6 estimated by 62.
Note that the notation y;, i = 1, ..., n, does not correspond to
the original observations in the SNMM or to any of the val-
ues introduced in the previous sections, and it is used in this
section for the sake of simplicity. Without loss of generality,
we suppose that b; =0 foralli=1,...,n.

In the sequel, our objective is then to estimate f nonpara-
metrically in model (10). A classical method would consist
in decomposing f on an orthonormal basis (Fourier basis,
wavelets,...) and then to use a standard nonparametric pro-
cedure to estimate the coefficients of f associated with this
basis ({p-penalization, wavelet thresholding,...). In the same
spirit as Bertin et al (2011) who investigated the problem
of density estimation, we wish to combine a more general
dictionary approach with an estimation procedure leading to
fast algorithms. The dictionary approach consists in propos-
ing estimates that are linear combinations of various types
of functions. Typically, the dictionary is built by gathering
together atoms of various classical orthonormal bases. This
approach offers two advantages. First, with a more wealthy
dictionary than a classical orthonormal basis, we aim at ob-
taining sparse estimates leading to few estimation errors of
the coefficients. Secondly, if the estimator is sparse enough,
interesting interpretations of the results are possible by us-
ing the set of the non-zero coefficients, which corresponds
to the set of functions of the dictionary “selected” by the
procedure. For instance, we can point out the frequency of
periodic components of the signal if trigonometric functions
are selected or local peaks if some wavelets are chosen by
the algorithm. Both aspects are illustrated in the next sec-
tions. {p-penalization or thresholding cannot be combined
with a dictionary approach if we wish to obtain fast and
good algorithms. But LASSO-type estimators based on /-
penalization, leading to minimization of convex criteria, con-
stitute a natural tool for the dictionary approach. Further-
more, unlike ridge penalization or more generally £,,-penali-
zation with p > 1, ¢;-penalization leads to sparse solutions
for the minimization problem, in the sense that if the tun-
ing parameter is large enough some coefficients are exactly
equal to O (see Tibshirani (1996)).

There is now huge literature on LASSO-type procedures.
From the theoretical point of view and in the specific con-
text of the regression model close to (10), we mention that
LASSO procedures have already been studied by Bunea et al
(2006), Bunea et al (2007a), Bunea et al (2007b), Bunea

(2008), Bickel et al (2009), van de Geer (2010), and Biihimann

and van de Geer (2011) among others.

In our setting, the proposed procedure is the following.
For M € N*, we consider a set of functions {@y,...,Qy},
called the dictionary. We denote for A € R¥,

M
=Y Aj0;.
=1

Our objective is to find good candidates for estimating f
which are linear combinations of functions of the dictionary,
i.e. of the form f;. We consider, for A € RM

crit(A) =

-

S| =

i=1

M
i = bifa(x)? 42 Y I,
Jj=1

tlogM

- with 7 > 0 and for a function

where r,, ; = o[|@j]|,

I == Y b3 ).
i=1

We call the LASSO estimator A the minimizer of A —»
crit(2) for A € RM and we denote f = f;.

The function A — crit(A) is the sum of two terms: the
first one is a goodness-of-fit criterion based on the ¢-loss
and the second one is a penalty term that can be viewed as
the weighted £;-norm of A.

Before going further, let us discuss the important issue
of tuning. In our context, the tuning parameter is the con-
stant 7. From a theoretical point of view (see Theorem 1 in
the supplementary material), the benchmark value for 7 is
2. In the sequel, 7 will be chosen satisfying two criteria: to
be as close as possible to this benchmark value and allowing
the stability of the SAEM algorithm. In Section 5, we will
see that sometimes we choose values of 7 smaller than 2 but
relatively close of it, in particular to obtain the convergence
of the variance components estimates, which is always chal-
lenging in NLME models.

Once we have chosen a value for 7 satisfying these two
criteria, the numerical scheme of the nonparametric step is
the following:

- Using the estimates of the ¢;’s and of 6> obtained in the
previous iteration of SAEM, compute fori =1, ...,n, the
observations y;, the constants b; and the design x;.

- Evaluate the dictionary {@;,..., @y} at the design and
calculate ry, ;.

- Obtain the LASSO estimates A and fi-

In practice, there exist many efficient algorithms to tackle
this third point, namely, the minimization on 4 of crit(4).
For the implementation of our estimation procedure we have
considered the approach used by Bertin et al (2011) which
consists in using the LARS algorithm.



Numerical results of our procedure are presented in next
sections but we also validate our approach from a theore-
tical point of view. Theoretical results are presented in the
supplementary material. We prove oracle inequalities and
properties of support for sparse functions under the mild as-
sumption log(M) = o(n). Oracle inequalities ensure that the
LASSO estimator of f behaves as well as the best linear
combination of functions of the dictionnary. Moreover, we
obtain that if the function f is a sparse linear combination
of functions from the dictionnary, then the support of the
LASSO estimator (functions of the dictionary selected in the
LASSO estimator) is included in the support of the function
f- These results are generalizations of the results of Bunea
et al (2006), Bunea et al (2007a), Bunea et al (2007b), van de
Geer (2010) and Bunea (2008) and they are obtained under
more general assumptions on the dictionnary. In particular,
in our results, the functions of the dictionary do not need to
be bounded independently of n and M, which allow us to
take wavelet functions.

4 Estimation algorithm and inferences

We propose the following estimation procedure for semi-
parametric estimation of (8, f) in model (3), combining the
algorithms described in sections 2.1 and 3:

Estimation Algorithm - ML version: at iteration &,

- Given the current estimate of 6, 6% =
(B(k),F ®) 620)) and m sampled values of the
random effects (])(k*’), Il =1,...,m, update the estimates
of f, f& 1 =1,...,m, with the algorithm described in
Section 3.

- Given the current estimates of f, f (k'fl),
sample m values of the random effects ¢
l,...,m, and update the value of 6, 0
(B P ktl) 241 with algorithm (7).

l=1,....m
&) ] =
(k+1) _

a1
Estimation Algorithm - REML version: at iteration k,

- Given the current estimate of 0, é<k) =(r (k),cz(k)),
and m sampled values of the missing data kD =
(d)(k*l),B(k’l)), [ =1,...,m, update the estimates of f,
F&D 1 =1,...,m, with the algorithm described in Sec-
tion 3.

- Given the current estimates of f, f&), [ =1,....m
sample m values of the missing data z*t1) =
(pW+1D) LY p — 1 m, and update the value of

8, Gl (D), 62041 with algorithm (8).  (12)

As it is explained in Section 2.1, for parametric estimation
(SAEM or SAEM-REML algorithms alone) the number of
chains, m, can be set to 1, which still guarantees the con-
vergence towards a local maximum of the log-likelihood.

Higher values of m, may accelerate the convergence of the
algorithms (but in practice, m is always lower than 10).

For the global semiparametric estimation procedure, we ex-
tend this idea of “parallel chains” of values to the estimation
of f. Indeed, at iteration k, the estimation of f depends on
the value of the missing data, and thus, from m sampled val-
ues zK1) |z we obtain m estimates of f, f&1) .. fkm)
(see Section 3). Then, in the second step, we use each one of
these different estimates of f in parallel to perform paramet-
ric estimation (using £ to sample z**') and replacing
f- by f®4 in (8) for the estimation of 8). This is in the case
of the REML version of the algorithm, but the same idea
underlies the ML version.

Inferences on model and individual parameters, B,I", >
and ¢, are performed as in NLMEs (see Kuhn and Lavielle
(2005) and Meza et al (2007)). For inferences on the nonlin-
ear function f, we propose an empirical approach based on
the fact that our algorithm automatically provides large sam-
ples of estimates of f. Indeed, at each iteration of algorithms
(11) and (12) we obtain m estimates of f. The last iterations
of the algorithms typically correspond to small values of y;
in algorithms (7) and (8), see Section 5 for the details. This
can be seen as a phase in which the estimates of parameters
are stabilized since we assume that convergence has been
reached. Let us note by K and L < K the total number of
iterations and the number of iterations in the “stabilization
phase” of the algorithm. Then, by considering the last Ly < L
iterations of the algorithm, we get a large sample of esti-
mates of f: f&) 1=1,...,m,k=K—Lo+1,...,K. These
m X Ly estimates of f are obtained conditionally on values
of 8 which are supposed to be close to the corresponding
ML or REML estimates. Then, we obtain a point estimate
for f as:

1 K

/=

(13)

||[V]§

mXL()k KTgt11

We think that it will be interesting to study how to exploit
the estimates f (k1) to obtain pointwise confidence intervals
for f(x). An intuitive empirical pointwise (1 — &) 100% con-
fidence interval for f(x) could be dfined as follows:

2
Y i)
2\ mxLy

><Lo ):k K— L0+1):1 1(f )( )*f(x))z
and zg isthe 1 — 5 percentlle of a standard normal distri-
bution. This interval is of course not a true (1 — ot)100%
confidence interval for f(x) but constitutes an approxima-
tion of it. It provides a starting point for further research on
how function samples generated by semiparametric stochas-
tic approximation algorithms, such us saem-lasso, can be
used for inference.

(14)

where S2 ) =



5 Application to synthetic and real data

Since our procedure consists in the combination of a para-
metric and a nonparametric estimation algorithm, one may
be interested in evaluating the performance of both com-
ponents separately. In Section 5.1 we provide a simulation
study to compare only the parametric versions of our method
and Ke and Wang’s procedure. In Section 5.2 we compare
both procedures in the whole semiparametric setting.

5.1 Simulation study: parametric estimation

As a first step, we want to validate through simulation our
parametric estimation strategy alone, based on the SAEM
algorithm, and to compare it, in the framework of SNMMs,
to the FOCE method implemented in Ke and Wang (2001)
via the nlme function. In order to be able to assess only the
differences induced by the use of different parametric esti-
mation algorithms, we will use the same nonparametric es-
timation algorithm for the estimation of f, namely the pro-
cedure proposed by Ke and Wang (2001). In Section 5.2, we
compare the whole versions, including nonparametric esti-
mation, of both approaches.

To this end, we performed the following simulation study
based in Ke and Wang (2001) where data were generated
from the model:

yij = 01 +exp(¢2)2f (]<, exp(3;)

 I+exp(¢3)

where Eij ~ JV(O, 62) and d),' = (¢1i7¢2i7¢3i>l ~ JV(,LL,F)
with u = (U, o, H3). The nonlinear function was set to
f(¢) =sin(2xt). As in the original setting, we choose a com-
plex scenario with small sizes of individuals and observa-
tions and with high variance values: N =J =10, u = (1,0,0)/,
02 =1 and I is diagonal with diag(I") = (1,0.25,0.16).

These data were analyzed using two semiparametric pro-
cedures: our SAEM based method combined with the non-
parametric algorithm of Ke and Wang’s (called semi-SAEM)
and Ke and Wang’s procedure for semiparametric models
(called snm). For the SAEM algorithm, we used 80 itera-
tions and the following sequence (Yx): yx = 1 for 1 <k <
50 and x; = 1/(k—50) for 51 < k < 80. We also consid-
ered m = 5 chains in each iteration. For the nonparamet-
ric estimation algorithm common to both procedures, follo-
wing Ke and Wang (2001) we considered that f is periodic
with period equal to 1 and [Olf =0, ie. f € WY(per) =
Wa(per) © span{1} where Wa(per) is the periodic Sobolev
space of order 2 in L% and span{1} represents the set of con-
stant functions. The same initial values were used for both
methods: to = (1,0,0), o5 =2 and diag(Iy) = (W, 1, 7) =
(1,0.3,0.1).

>+6,'j, i=1...,N,

j=1,...J,

Tables 1 and 2 summarize the performance of both meth-
ods over 100 simulated data sets. For each parameter we
show the sample mean, the mean squared error (MSE (é) =

1 A
RZ}Q?(B —6,)%), and a 95% confidence interval com-

puted over the total number of simulations.

We also compared the REML estimates obtained with
our method and with snm (using the REML version of nlme)
for the same simulated data sets. The results are summa-
rized in Tables 3 and 4. It can be seen that the mean val-
ues for the REML estimates obtained with both procedures
were closer to the simulated values, especially for the pa-
rameter ;. Moreover, the individual confidence intervals of
REML estimates of this parameter, at a 95% level, include
the true value for these parameters on the contrary to the
ML estimates, showing that REML versions of the algo-
rithms were able to correct the bias observed with ML. If we
compare our method and snm, for both procedures ML and
REML, we obtained results that are similar but it seems that
our REML estimates are closer to the simulated values than
those obtained with Ke and Wang’s method. Furthermore,
we can observe that our REML version, in comparison with
our ML method, allows to reduce the bias of estimation of
variance components in a better way. For instance, in Tables
2 and 4, we see that, for y;, we reduce the bias in almost
93% with our REML method whereas with Ke and Wang’s
REML method this reduction is only of 27%. Finally, let us
point out that fixed effects estimates are more accurate with
our REML method than with Ke and Wang’s one. Let us re-
mind that for SAEM-REML these estimates are the expec-
tation of the conditional distribution of fixed effects given
the observed data and the REML estimates of the variance-
covariance parameters.

An important issue to discuss is the convergence of es-
timates with this kind of iterative maximization algorithms.
It is well known that approximate methods for maximum
likelihood estimation often present numerical problems and
even fail to converge in the framework of NLME estima-
tion (see (Hartford and Davidian, 2000) for instance). An
advantage of the exact likelihood method is exactly to avoid
those convergence problems as it was established by Kuhn
and Lavielle (2005). In this simulation study, we have to say
that both semi-SAEM and snm achieved convergence for all
the data sets. However, we also tried to fit a nonlinear mixed
effects model to the simulated data, that is, assuming that
f was known and estimating only the fixed and random ef-
fects with SAEM and nime, and in that case the second algo-
rithm failed to converge for several data sets. It seems that
in this case the combination of nlme with a nonparametric
algorithm to perform semiparametric estimation solves the
numerical problems encountered by n/me on its own. How-
ever, this is not true in general as we will see in the next
simulation study.



Table 1 ML procedure: Mean, MSE and 95% confidence interval of mean components.

Method H M U3
True Value 1 0 0
Mean semi-SAEM 1.06 0.31 0.27
snm 1.05 0.26 -0.01
MSE semi-SAEM 0.12 0.16 0.10
snm 0.12 0.11 0.01
95 % C.1. semi-SAEM  [0.99;1.12] [0.27;0.36]  [0.23;0.30]
snm [0.99;1.12] [0.22;0.30] [-0.02;0.01]

Table 2 ML procedure: Mean, MSE and 95% confidence interval of variance components obtained with semi-SAEM and snm.

2

Method " b2 % o
True Value 1 0.25 0.16 1
Mean semi-SAEM 0.86 0.24 0.16 0.95
snm 0.89 0.19 0.14 0.99
MSE semi-SAEM 0.22 0.02 0.01 0.03
snm 0.22 0.02 0.01 0.03
95 % C.1. semi-SAEM  [0.77;0.95]  [0.21;0.27]  [0.14;0.17]  [0.92;0.98]
snm [0.80;0.98] [0.17;0.21]  [0.13;0.16] [0.96;1.02]
Table 3 REML procedure: Mean, MSE and 95% confidence interval of mean components.
Method Hy Mo H3
True Value 1 0 0
Mean semi-SAEM 1.04 -0.01 -0.01
snm 1.05 0.26 -0.01
MSE semi-SAEM 0.03 0.02 0.01
snm 0.12 0.11 0.01
95 % C.1. semi-SAEM  [1.01;1.07]  [-0.03;0.02]  [-0.02;0.01]
snm [0.99:;1.12]  [0.22:0.30]  [-0.02;0.01]
5.2 Simulation study: semiparametric estimation the underlying function is not smooth. Indeed, the defini-
tion of Ke and Wang’s method guarantees that it will achieve
In order to test our LASSO-based estimator we consider the  very good results if the function to be estimated is well ap-
same general model of the previous section proximated by combinations of spline functions. However,
j exp(¢3:) there might be practical situations in which assessing the
vij = ¢1i+exp(¢2)2f ( — ’> +¢&j, i=1...,N, smoothness of the underlying function might not be easy.
N 1+exp(¢s) . . . . .
1 J It is then interesting to investigate the performance of both
J=1L1..J

where &; ~ .#(0,6%) and ¢; = (91, ¢, $3:) ~ A (u,T)
with i = (U, Uz, 43)’. Now, f(-) is supposed to be unknown
and must be estimated. It is generated as a mixture of one

trigonometric function and two Laplace densities (see Fi-
f(t) =0.6 x sin(2mr)

gure 1).
+0.2x ( >+0.2>< (

Data were simulated using the following parameters: N =
10, J =20, u = (1,0,0)", 6> = 0.4 and I is diagonal with
diag(I") = (0.25,0.16,0.04).

The chosen function exhibits two sharp peaks that can not
be clearly distinguished by only looking at the resulting data
(Figure 2). We propose this setting in order to compare the
performance of our method and snm in a situation in which

o—40]t=0.75|

7 % fol e—40[t—0.75]

o—40[t—0.8]

7 % fol e—40[t—0.80]

) |

methods in such cases.

Data were analyzed using the two following semiparametric
procedures: our SAEM and LASSO based method (called
LASSO-SAEM) and Ke and Wang’s procedure for semipara-
metric models, still denoted snm. For both methods we ob-
tained the REML estimates of parameters.

It is necessary to specify several values in order to run our
algorithm, such as the choice of the LASSO’s tuning param-
eter T and the inputs of the SAEM algorithm (initial values,
step sizes Yk, number of chains in the MCMC step, number
of burn-in iterations, and total number of iterations). For the
latter, we used again 80 iterations with y; = 1 for 1 <k <50
and y; = 1/(k—50) for 51 < k < 80, and we considered
m = 5 chains in each iteration. The initial values, which
were also used with snm, were: fy = (1,0,0), of = 2 and
diag(Io) = (7?’73’79) =(1,03,0.1).

The nonparametric LASSO step has been performed with
T = 1/3. For some datasets, larger values of 7 did not lead to
the stabilization of the convergence of some parameters, in
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Table 4 REML procedure: Mean, MSE and 95% confidence interval of variance components obtained with semi-SAEM and snm.

2

Method " o) % o2
True Value 1 0.25 0.16 1
Mean semi-SAEM 0.99 0.25 0.16 0.95
snm 0.92 0.19 0.15 1.02
MSE semi-SAEM 0.21 0.03 0.01 0.03
snm 0.23 0.02 0.01 0.03
95 % C.1. semi-SAEM  [0.89;1.08] [0.22;0.28] [0.14;0.18] [0.92;0.98]
snm [0.83;1.02] [0.17;0.22] [0.13;0.17] [0.98;1.05]
2 T T
Real data
— — — Lasso-saem
----- snm
15 E

Fig. 1 True function f (solid line) and its estimates obtained with LASSO-SAEM (dashed line) and snm (dash-dotted line) for a particular data set

in the semiparametric simulation study.

particular the variance 7>, and smaller values of T provided
similar results to the one presented here. The dictionary cho-
sen combined very different orthonormal families, namely
Fourier functions with Haar wavelets, which ensured a suf-
ficiently incoherent design in the spirit of Section 3. More
precisely, our dictionary was composed by the following

Fourier functions {¢t— 1, cos(7z), 7+ sin(7t), 1+ cos(2wjit),

t—sin(2wjt),j = 1,---,5} and by the Haar wavelet basis
with resolution between 2% and 27, with a total size of 245
functions. Note that the data X;; = c(¢;;x;;) belongs approx-
imately to [—0.4,1.6]. For snm, we took f € W) (per). Of
course, the true function does not belong to that space and
a partial spline model with possible change points would
be more appropriate for modeling it. However, we want to
reflect the fact that in a real situation the only information
available is the one provided by the observed data set. In
this case the simulated data exhibit a clear periodic struc-
ture which we try to capture with a function in W5 (per). In
Figures 1 and 2, we can see the estimates of f compared
with the true function and the fitted data with the two meth-

ods for a specific simulated data set. Results for REML es-
timates obtained with LASSO-SAEM and snm for 100 simu-
lated data sets are summarized in Tables 5 and 6. We can see
that the means of the estimates obtained with our method are
close to their real values except for the variance of the error,
62, since our method tends to overestimate that parameter.
However, we get overall better results than using the snm
methodology (except for 7).

An important issue for this kind of problem is the esti-
mation of the nonlinear function f. Ke and Wang’s method
based on splines works very well for regular functions. So, it
is interesting to study its performance on less smooth func-
tions, which is typically the case with the function f con-
sidered here. Then, to evaluate the accuracy of the estima-
tion, we calculated the Integrated Square Error (ISE) of f for
each simulated data set. Figure 3 provides a summary of es-
timates of f using LASSO-SAEM and snm. We computed the
ISE for each estimate of f and plotted the estimates corres-
ponding to (a) the minimum, (b) 1/4 quantile, (c) median,
(d) 3/4 quantile and (e) maximum ISEs. We can see that our
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Fig. 2 Simulated data and fitted curves obtained with LASSO-SAEM (solid line) and snm (dashed line) for a particular data set in the semiparametric
simulation study.

Table 5 REML procedure: Mean, MSE and 95% confidence interval of means components obtained with LASSO-SAEM and snm.

Method M Mo U3

True Value 1 0 0
Mean LASSO-SAEM 0.97 0.02 0.01
snm 1.09 1.39 -0.01
MSE LASSO-SAEM 0.009 0.009 0.003
snm 0.019 2.035 0.005

95 % CI. LASSO-SAEM  [0.949;0.984]  [0.005;0.041]  [-0.006;0.014]
snm [1.057;1.119] [1.293;1.482] [-0.025;0.015]
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Table 6 REML procedure: Mean, MSE and 95% confidence interval of variance components obtained with LASSO-SAEM and snm.

2

Method " b2 v c
True Value 0.25 0.16 0.04 0.4
Mean LASSO-SAEM 0.18 0.14 0.03 0.69
snm 0.21 0.11 0.03 0.90
MSE LASSO-SAEM 0.01 0.01 4.0e-4 0.12
snm 0.02 0.01 5.9e-4 0.27
95 % C.I.  LASSO-SAEM  [0.16;0.20] [0.12;0.15] [0.030;0.037] [0.66;0.73]
snm [0.18;0.25] [0.09;0.14] [0.028;0.042] [0.86;0.94]

method outperforms snm in the estimation of f, in the sense
that our estimates are able to detect the presence of the peaks
in the original function.

As for the functions of the dictionary selected with our LASSO

method, it is interesting to note that the 100 linear combina-
tions of functions of the dictionary obtained for each one of
the 100 data sets have a length which varies between 10 and
32 functions, with an average length equal to 20. Further-
more, in 98% of the cases, the method selects the function
sin(27t) with the highest coefficient. For the remaining two
data sets, the functions sin(67¢) and sin(107z) are selected.
For all the replicates, in addition to these sine functions, the
rest of the selected functions are related to the Haar wavelets
with smaller coefficients. So, our method is quite robust.

It is important to point out that the results obtained with
snm are based only on 51 data sets since the function did not
reach convergence in 46 data sets and in other 3 data sets
we obtained incoherent estimation of the nonlinear function,
when using the default setup of the snm algorithm (REML
estimation and Generalized Cross Validation for the choice
of the penalized parameter). By contrast, our method achieved
convergence for all simulated data sets with the specific setup
used here (choice of 7, initial values, number of chains, step
sizes Xk, number of iterations, etc ...).

To assess the robustness of the LASSO procedure, we
have also performed an analysis of these data sets with a
dictionary that is composed by the union of the dictionary
defined above (the 245 functions) and the dictionary used
in Section 5.3 (the 64 functions). The results obtained are
very similar to those presented in Tables 5 and 6, so we have
not included them here. Moreover, the estimates of f are
also very similar. In particular, for 50% of the data sets, the
estimates of f select only components in the old dictionary
(with Fourier and wavelet functions) and for all the datasets,
only 7% of the selected functions belongs to the dictionary
defined in Section 5.3. Additionally, the function sin(27¢) is
selected with the highest coefficient in 90% of the cases.

Finally, we compute the confidence intervals defined in
(14) with Ly = 20. We obtained very thin confidence inter-
vals and a poor coverage (less to 40%) with these datasets.
We think that it is a challenging issue to study if an appropri-
ate choice of Ly in (14) may yield to more robust intervals.

5.3 Application to on-line auction data

Modeling of price paths in on-line auction data has received
a lot of attention in the last years (Shmueli and Jank, 2005;
Jank and Shmueli, 2006; Shmueli et al, 2007; Liu and Miiller,
2008). One of the reasons is the availability of huge amounts
of data made public by the on-line auction and shopping
website eBay.com, which has become a global market place
in which millions of people worldwide buy and sell prod-
ucts. The price evolution during an auction can be thought
as a continuous process which is observed discretely and
sparsely only at the instants in which bids are placed. In fact,
bids tend to concentrate at the beginning and at the end of
the auction, responding to two typically observed phenom-
ena, “early bidding” and “bid sniping” (a situation in which
“snipers” place their bids at the very last moment).

To our knowledge, Reithinger et al (2008) provide the first
attempt to model price paths taking into account the depen-
dence among different auctions. This is an important con-
sideration, since in practice bidders can participate in di-
fferent auctions that take place simultaneously. They pro-
pose a semiparametric additive mixed model with a boost-
ing estimation approach. In the same line, but considering a
more complex interaction of the random effects and the un-
known nonlinear function, we propose the following shape-
invariant model for the price paths:

yij = ¢1i+exp(¢a) f(tij — ¢3i) + &j,  i=1,---,N,

j=1,--,n,
where &; ~ .#(0,06%) and ¢; = (91, 92, 93:) ~ A (u,I")
with u = (U, o, 43)". We introduce an individual random
horizontal shift, ¢3;, to model the possible delay of the price
dynamics in some auctions with respect to the rest.
We analyzed a set of 183 eBay auctions for Palm M515 Per-
sonal Digital Assistants (PDA), of a fixed duration of seven
days, that took place between March and May, 2003. This is
the data set used in Reithinger et al (2008) and it is publicly
available at http://www.rhsmith.umd.edu/digits/
statistics/data.aspx. We were interested in modeling
the live bids, that is, the actual prices that are shown by
eBay during the live auction. Note that these are different
from the bids placed by bidders during the auction, which
are the prices recorded in the bid history published by eBay
after the auction closes. Then, a transformation on the bid
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Fig. 3 Estimated functions corresponding to the five quantiles of ISE ((a) minimum, (b) 1/4 quantile, (c) median, (d) 3/4 quantile and (e¢) maximum)
obtained with LASSO-SAEM (dashed line) and snm (dash-dotted line) compared to the true function f (solid line) for the total of the 100 simulated

data sets in the semiparametric simulation study.

records is required to recover the live bids (see Shmueli and
Jank (2005) for details).

The live bids range from $0.01 to $300 and form a sequence
of non decreasing prices for each auction. We typically ob-
serve between 10 and 30 bids per auction, although there
are auctions with only two bids. We have a total of 3280
bids for the 183 auctions. Following Reithinger et al (2008),
we considered the square root of live bids to reduce the price
variability. We run the REML version of our LASSO-SAEM
algorithm, of which we performed 100 iterations with the
following sequence of decreasing steps (Yx)x: Xx = 1 for
1 <k<60and y; =1/(k—60) for 61 < k < 100. We also
considered m = 3 chains in each iteration. The dictionary
for nonparametric estimation was composed by a combina-
tion of B-splines of degrees three and four, with 17 knots
unequally spaced so that most of the knots were in those
places with more data observed (at the beginning, at the
end and at the middle of the interval), 10 power functions,
10 exponential functions and 5 logit functions, with a to-
tal size of 64 functions. The estimate of f is monotone, as

expected by the nature of the data, and presents two steep-
est parts at the beginning and at the end of the interval.
At each iteration of the algorithm the estimated function at
the nonparametric step is a sparse combination of the func-
tions of the dictionary. In fact, the set of functions selected
by the LASSO method at the last iterations of the algo-
rithm is almost constant, containing mainly two functions,
@(x) = x*3% and ¢(x) = exp(0.9x), and in some iterations
a small component of a cubic B-spline around the middle
of the interval. In Figure 4 we present the last 24 estimates
%) from which we have obtained f as in (13), and £, to-
gether with a 95% pointwise confidence band. These results
have been obtained with T = 2 as the value for the tuning
parameter in the LASSO estimation step. The estimates for
u and I" are presented in Table 7.

To assess the robustness of the LASSO procedure, we
have also performed an analysis of this data set with a dic-
tionary that is composed by the union of the dictionary de-
fined above and the dictionary used in Section 5.2 to analyze
the simulated data. That is, we have added Fourier and Haar
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Fig. 4 Left: Estimated nonlinear function f (solid line) and 95% confidence band (gray shadow) in the on-line auction data set. Right: Last 24
LASSO estimates whose empirical mean provides f.
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Fig. 5 Left: Estimates of f obtained with snm (dashed line) and saem-lasso with the large dictionary (solid lines) and 95% confidence bands (gray
shadows). Right: Last 24 LASSO estimates in saem-lasso.
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Fig. 6 Observed live bids (circles) and fitted price curves for a subset of 18 auctions obtained with snm (dahsed lines) and saem-lasso (solid lines)
with the large dictionary.
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Table 7 Estimated mean vector and covariance matrix of the random
effects and estimated error variance in the on-line auction data set.

[l [} 3
Mean 1.04 0.18 -0.06
Correlation 1 (7.68) -0.02 0.41 01
Matrix -0.02 1(0.19) 0.37 [0
(variances) 0.41 0.37 1(0.23) | ¢
o’ 1.93

wavelets bases to the dictionary initially chosen. The results
are very similar to those obtained with the original dictio-
nary. They are shown in Figure 5. In particular, the estimates
of f are almost identical. Among the last 24 estimates of f,
f (k1) obtained with this new dictionary, only two estimates
contain a significant component of functions not included in
the original dictionary.

To compare our method to Ke and Wang’s, in Figures 5 and
6 we also present the results of the analysis of this data set
with snm. We have to mention that we have performed this
analysis with five different function models for f and two
different criteria for the estimation of the smoothing param-
eter, namely, general cross validation (GCV) and general-
ized maximum likelihood (GML). So, we ran snm with ten
different specifications, among which we got convergence
for only six specifications. None of the six estimates of f
is strictly monotone and five of them are extremely rough.
In Figure 5 we present the smoothest snm f-estimate, which
is obtained by modeling f with cubic splines and by using
the GLM criterion, together with the saem-LASSO estimate
obtained with the largest dictionary. In Figure 6 we present
the observed live bids and the model fits for 18 chosen auc-
tions with different price profiles. We can appreciate how
the fitted models provide in general an accurate fit of the
final price, even in the cases when bid sniping is present.
There are some differences between the two fits, mostly at
the beginning of each auction, although the fitted curves are
in general similar with the two methods. For the rest of the
combinations of a function model and a smoothing estima-
tion criterion used with snm, the fits of the data are sub-
optimal. Indeed, the fitted price curves produce almost per-
fect interpolation of the data.

As for the computation time, saem-lasso took 300 seconds
to run on these data on a 2.5 GHz Mac OS X whereas the
average time for snm over the six runs was about six hours
on the same computer.

6 Conclusions and discussion

Semiparametric nonlinear mixed effects models cover a wide
range of situations and generalize a large class of models,
such as nonlinear mixed effects models or self-modelling
nonlinear regression models among others. We have pro-
posed a new method for estimation in SNMMSs combining

an exact likelihood estimation algorithm with a LASSO-
type procedure. Our strategy relies on an iterative procedure
to estimate 6 conditioned on f and vice versa, which al-
low us to tackle the parametric and the nonparametric prob-
lem independently. This makes possible the use of fast algo-
rithms providing an accurate and computationally efficient
estimation method.

Concerning parametric estimation, our simulation results il-
lustrate our method and point out some important advan-
tages of using an exact likelihood estimation algorithm in-
stead of likelihood approximation methods, such as conver-
gence of the estimates. The REML version of our algorithm,
corrects the estimation of variance components accounting
for the loss of degrees of freedom from estimating the fixed
effects and provide satisfactory results. However, as it was
already pointed out in the comments to Ke and Wang (2001),
it will be important to define a REML estimator that can
also take into account the loss of degrees of freedom from
estimating the nonlinear function. As for computational as-
pects, we have to mention that the SAEM algorithm avoids
the convergence problems encountered by nlme based rou-
tines.

For nonparametric aspects, the dictionary approach based
on LASSO algorithms shows, in some situations, some im-
provements when compared with Ke and Wangs’ methodol-
ogy. This is the case for instance for spiky or non-continuous
functions to be estimated. Our dictionary method can adapt
to different features of signals for wealthy enough dictionar-
ies. Furthermore, our methodology allows us to obtain inter-
esting interpretation with respect to the functions of the dic-
tionary selected by the procedure. For instance, we can de-
tect trends, frequencies of sinusoids or location and heights
of peaks of the common shape represented by the estimated
function f. We have observed that our LASSO estimate achie-
ves good theoretical and numerical results if the dictionary is
wealthy and incoherent enough. From the theoretical point
of view, incoherence is expressed, in this paper, by Assump-
tion Al(s) or by the quantity p(S*) defined in the Supple-
mentary Material. These incoherence assumptions are hard
to check in practice and we do not know if they can be re-
laxed in our setting.

We mention that our method can be non robust if the dic-
tionary is not wealthy enough. That is, if the function to be
estimated cannot be well approximated by linear combina-
tions of the functions of the dictionary, the functions that are
selected can vary from one simulation to another, which may
lead to different estimates. However, it the main features of a
signal (periodicity, smoothness, peaks,...) are included in the
dictionary, our method is very robust to the enlarging of the
dictionary with additional functions, as seen in Sections 5.2
and 5.3.

In Section 3, the particular structure of the observations
(where we have n; observations for each individual i) is not
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used for applying the standard LASSO-procedure. But a nat-
ural and possible extension of this work would be to take
into account this structure and then to apply a more sophis-
ticated LASSO-type procedure inspired, for instance, by the
group-LASSO proposed by Yuan and Lin (2006) to achieve
better results. This is a challenging research axis we wish
to investigate from a theoretical and practical point of view.
The LASSO is a very popular algorithm, but Hybrid Adap-
tive Spline, MARS or BSML (see Sklar et al (2012)) could
also be combined with the dictionary approach proposed in
this paper. Since results of our paper show that the dictio-
nary approach seems promising, results of our paper could
be extended by using algorithms mentioned previously from
both theoretical and practical points of view.

Among other possible extensions of this work, a very
promising one would be the use of the nonparametric tech-
niques herein described for density estimation (in the spirit
of (Bertin et al, 2011)) of the random errors, assuming that
they do not need to be normal. Indeed, the recent work of
Comte and Samson (2012) deals with this problem in the
case of a linear mixed effects model. Its generalization to
NLMESs or even SNMMs is a real challenge.
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Suppementary Material

In the supplement available on-line we provide theoretical
results and proofs for the LASSO-type estimator of Section
3.
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1 Theoretical results for the LASSO-type estimator
1.1 Assumptions

As usual, assumptions on the dictionary are necessary to obtain oracle results for LASSO-
type procedures. We refer the reader to van de Geer and Biihlmann (2009) for a good review
of different assumptions considered in the literature for LASSO-type estimators and con-
nections between them. The dictionary approach aims at extending results for orthonormal
bases. Actually, our assumptions express the relaxation of the orthonormality property. To
describe them, we introduce the following notation. For / € N, we denote

/21 12, 1

and Vmax ({) = max max
max( ) ‘J‘SlleRM HAJH%Z 7
Ay #0

Viin (1) = min min
mm( ) [J|<I A crRM HAJ”%Z
Ay #0

where || - ||¢, is the [, norm in RY. The notation A; means that for any k € {1,...,M},
(Aj)k = A if k € J and (A;)x = O otherwise. Previous quantities correspond to the “re-
stricted” eigenvalues of the Gram matrix G = (G; ;) with coefficients

1 &
Gj,j’ = ; ;bl-z(pj(xi)(pj/(x[).

Assuming that Viin (1) and Vimax (1) are close to 1 means that every set of columns of G with
cardinality less than / behaves like an orthonormal system. We also consider the restricted
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Oy = max ma

x —
i<t aarerM (Al Az lle,”
<t /11%0./1,’/%0

JnJ'=0

where (f,g) = 1Y% b2 f(x;)g(x;). Small values of &, means that two disjoint sets of
columns of G with cardinality less than / and I’ span nearly orthogonal spaces. We will
use the following assumption considered in Bickel et al (2009).

Assumption 1 For some integer 1 < s < M /2, we have
Vmin(zs) > 5s,2s- (AI(S))

Oracle inequalities of the Dantzig selector were established under this assumption in the
parametric linear model by Candes and Tao (2007) and for density estimation by Bertin et al
(2011). It was also considered by Bickel et al (2009) for nonparametric regression and for
the LASSO estimate.

Let us denote

5&2& ) 83 2s
s =V Vmin(2 1- - >0, = ———.
. ( S) ( vmin(zs) # Vv Vmin(zs)

We will say that A € R satisfies the Dantzig constraints if for all j = 1,...,M
’(Gl).f—ﬁj‘ < Tnjs )

where
A 1 &
ﬁj = ; sz(Pj(xl)Yt
i=1

We denote  the set of A that satisfies (1). The classical use of Karush-Kuhn-Tucker condi-
tions shows that the LASSO estimator A € 2, so it satisfies the Dantzig constraint. Finally,
we assume in the sequel

M < exp(n®),

for 8 < 1. Therefore, if || ;|| is bounded by a constant independent of n and M, then
rn,j = 0(1) and oracle inequalities established below are meaningful.

1.2 Oracle inequalities

‘We obtain the following oracle inequalities.

Theorem 1 Let T > 2. With probability at least 1 — M2 for any integer s < n/2 such
that (Al(s)) holds, we have for any o > 0,

» . . 205\ 2 A (A, JE)? 11

—fI? < inf f —f? 1 S) Y 6s( =+ — )2

I/ f””ngﬁwhc{lff...,M} Ifa—fllate({l+ < —— +16s o)
[ol=s

(©))

where

'y = Sup ryj,
M



(120 =120, )
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for any x € R x; := max(x,0) and |- |l¢, is the l; norm in RM.

AQT) = gl +

Theorem 2 Let T > 2. With probability at least 1 —M'7/2 for any integer s < n/2 such
that (Al(s)) holds, we have for any o > 0,

2 Aclly
ZLLS) e lley + 11456 e +32S(1 +i) .
S

F—fI2< inf  inf —flP+eall
I.f f\ln_;gg%cm [f2 = £l + + KS

(L. M}
[Jol=s

3

Similar oracle inequalities were established by Bunea et al (2006), Bunea et al (2007a),
Bunea et al (2007b), or van de Geer (2010). But in these works, the functions of the dictio-
nary are assumed to be bounded by a constant independent of M and n. Let us comment the
right-hand side of inequalities (2) and (3) of Theorems 1 and 2. The first term is an approx-
imation term which measures the closeness between f and f; and that can vanish if f is a
linear combination of the functions of the dictionary. The second term can be considered as
a bias term. In both theorems, the term ”)’J(? ¢, corresponds to the cost of having A with a

support different of Jy. For a given A, this term can be minimized by choosing Jj as the set
of largest coordinates of A. Note that if the function f has a sparse expansion on the dictio-
nary, that is f = f3 where A is a vector with s non-zero coordinates, then by choosing Jy as
the set of the s non-zero coordinates, the approximation term and the term ||A i€ ll¢, vanish.

In Theorem 1, the term (||§LH¢1 — HA.H[I> will be smaller as the ¢;-norm of the LASSO
+
estimator is small and this term is equal to O if [|A[|s, < |A4||¢,, which is frequently the case.

In Theorem 2, given a vector A such that f; approximates well f, the term ||§LJOCH ¢ will

be small if the LASSO estimator selects the largest coordinates of A. The last term can be
viewed as a variance term corresponding to the estimation of f as linear combination of s
functions of the dictionary (see Bertin et al (2011) for more details). Finally, the parameter
« calibrates the weights given for the bias and variance terms.

The following section deals with estimation of sparse functions.

1.3 The support property of the LASSO estimate

Let 7 > 2. In this section, we apply the LASSO procedure with 7, ; instead of r, ;, with

. TlogM
i = lgsly| T2, s

We assume that the regression function f can be decomposed on the dictionary: there exists
A* € RM such that

M
f=Y. %0
j=1
We denote S* the support of 1*:

S*={je{l,...M}: A;#0},



and by s* the cardinal of S*. We still consider the LASSO estimate A and, similarly, we
denote S the support of A:

§={jef{l..my: 2X+0}.
One goal of this section is to show that with high probability, we have:
Scs.
We have the following result.
Theorem 3 We define

< Qi Q>
p(S*) — maxmax%
kes* j#k |1jllall ekl

and we assume that there exists ¢ € (0,1/3) such that

sp(S7) <c.
If we have
\/%+\/E<1—c
Vi-yT~ 2
then

P{Sc s} >1-2Mm""72
A similar result was established by Bunea (2008) in a slightly less general model. However,
her result is based on strong assumptions on the dictionary, namely each function is bounded
by a constant L (see Assumption (A2)(a) in Bunea (2008)). This assumption is mild when
considering dictionaries only based on Fourier bases. It is no longer the case when wavelets
are considered and Bunea’s assumption is satisfied only in the case where L depends on M
and n on the one hand and is very large on the other hand. Since L plays a main role in the
definition of the tuning parameters of the method, with too rough values for L, the procedure
cannot achieve satisfying numerical results for moderate values of n even if asymptotic
theoretical results of the procedure are good. In the setting of this paper, where we aim at
providing calibrated statistical procedures, we avoid such assumptions.
Finally, we have the following corollary.

Corollary 1 We suppose that A1(s*) is satisfied and that there exists ¢ € (0,1/3) such that

s*p(8*) <e.
If we have
Vi+/T Jl-c
Vieyt T 2
then, with probability at least 1 —4M"'~%/2,
A 325* 72
_fl? < n
IF -7 < =2
where
Fp= sup Fy;j.
j=1l,..,M

This corollary is a simple consequence of Theorem 2 with A = A* and Jy = §*. Taking
A = A* implies that the approximation term vanishes. Taking Jy = S* implies that the bias
term vanishes since the support of the LASSO estimator is included in the the support of

A*. In this case, assuming that sup; [|@; ||, < o, the rate of convergence is the classical rate
s*logM
—



2 The proofs
2.1 Preliminary lemma

Lemma 1 For 1 < j <M, we consider the event o/; = {\Vj| < r,,_j} whereV; = %Z?:l bi@;(x;)€;.
Then,
P(otj) >1—-M""/2,

Proof of Lemma 1: We have
P (of) <P (Vn|Vj|/(cll@jll) > Vnra,;/(c]|@jlla)
<P (|Z| > \/TlogM)
SM71/2

where Z is a standard normal variable. O

2.2 Proof of Theorem 1

Let A € RM and Jy such that |Jo| = s. We have
A A 2 & A A
o= Sl = 17 = £1R+ 102 = P54 X7 (F ) = f (i) (fa () = F(x)
i=1

We have |3 — fI|2 = || f4]|> where A = A — A. Moreover

M
b7 (Fxi) = f(x)) (fa ) — fx)) =2 Y (A= A)) [(Gi)j - [3,} ;

j=1

A= -
n;

=
Il

Il
-

where .
1
Bi= p Y b7 ;(xi) f(xi).

i=1
Since A satisfies the Dantzig constraint, we have with probability at least 1 — M 1=%/2 for
any j € {l,...,M},

I(GA)j = Bil <1(GA)j = Bjl + 1B = Bjl < 2rn
and |A| < 4r,||A||;. This implies that
1 = £llz < 11 = £1 +4rall ATy = (1 £ 7

Moreover using Lemma 1 and Proposition 1 of Bertin et al (2011) (where the norm || - || is
replaced by || - || 1), we obtain that

(gl = anlle ) <20ggles + (1A = 1215 ), O
and
u
Ifsll > slnlles = —2= (14,1 ~14al)
s

> K[[Aplle, =2—==A(4,J5)-

i



Note that Proposition 1 of Bertin et al (2011) is obtained using Lemma 2 and Lemma 3 of
Bertin et al (2011). In our context, Lemma 2 and Lemma 3 can be proved in the same way
by replacing the norm | - || by || - ||, and by considering Py, as the projector on the linear

space spanned by (@;(x1),...,Q;(x)) e, -
Now following the same lines as Theorem 2 of Bertin et al (2011), replacing kj, by &
and iy, by L, we obtain the result of the theorem.

2.3 Proof of Theorem 2

We consider A2 defined by
AP = argming cpu | A || ¢, such that A satisfies the Dantzig constraint (1).

Denote by f the estimator f3p- Following the same lines as in the proof of Theorem 1, it

can be obtained that, with probability at least 1 — M'~%/2, for any integer s < n/2 such that
(A1(s)) holds, we have for any o > 0,

205 \ 2 A(R,JE)? 11

) 7o 2

Hf f“rzf lnfMJ {llnf {”fl_f|n+a(1+ ) s +16s a_'_ 2 T (o
ol=s

where here
(1321 ~ 121, )
+
2

If the infimum is only taken over the vectors A that satisfy the Dantzig constraint, then, with
the same probability we have

H CH[ 1 1
D 2 . 2 WG Ly 2
f f — 1+ — +16s —+— .
177 =1l < ij C{III}...,M} {”f’l St ( Ks ) s <(x Kf) n

ol=s
. ®)
Following the same lines as the proof of Theorem 1, replacing A by AP, we obtain, with
probability at least 1 —M'~%/2,

AGLIE) = el +

IF= £ < 1P = Fliz+A4rallAll = 1 fallas

withA =24 — AP, Applying (4) where 2 plays the role of A and AP the role of A, the vector
A satisfies

(14l = 1Asl, ), <20hgle-

Following the same lines as in the proof of Theorem 1, we obtain that for each Jy C
{1,...,M} such that [Jy| = s

A el 11
< P14 2) R e (e D)2t @

Finally, (5) and (6) imply the theorem.



2.4 Proof of Theorem 3

We first state the following lemma.

Lemma 2 We have for any u € RM,

crit(A +u) — crit(A

Proof of Lemma 2: Since for any A,

n

1 M
crit(2) = Y (i = bifo () +2 ) Pl

i=1 j=1

crit(A +u) —crit(1) =

M M 2 M
(yz‘ —bi ) (i) —bi Y, Mk(Pk(xi)> +2) FujlAj+ujl

k=1 k=1 j=1

I

S =

ni3

14 M R 2 M .
--Y <yi—bizlk¢k(xi)> =2 FujlAjl
k=1 J=1

=

1 M 2 M R R
SY B L wenw) | +2 ) A (125l — 4]
i3 k=1 j
21 M M
- ) <yi b Y lk(Pk(Xi)> bi Y i (xi)
= -1 =1

I

| —
0-1=
S
~o
N
g
=

RS
=
~

o T

Jr
[\
M
g
>
_l’_
<

|
=
—

Il
|
S
Mx
=
S
S
=
~
(%)
+
_ [\
M= 7
31
&)
—
o>
_l’_
<
~
|
>
C/

S

~.
Il
—_

Since A minimizes A —> crit(A), we have for any k,

21 M .
0=- Z (Pk(xi) <b12 Z lj(pj( 1) bl}’z) +2fn,ks(/1k)a

iz j=1

where |s(A)| < 1 and s(A;) = sign(A) if A # 0. So,

U

3

Mz

SN

M M
up Qi (x;) <b,2 Y Aio(xi) — blyl) =2 weFurs(Ae)
=1

Il
-

k=1



and
R R 18 M 2 M R R
crit(A +u) —crit(A) = — Y257 | ) welxi) | +2 ) T (|7Lj+”j| - |)L,\)
i=1 k=1 j=1
M ~
-2 Z ukfnﬁks(lk)
k=1
1& ) M 2 M R R R
= 7Zb,~ Zuk(pk(xi) —l-ZZf,w' (|7Lj—|—uj|—|lj\—ujs(lj))
ni3 k=1 j=1
12 ) M 2
2 - Zbi Z Ui (xi) |
ni3 k=1
which proves the result. O

Now, still with s* = card(S*), we consider for 4 € R*"

2
- 1y )
critS*(u) = P Z (yi_bi Z ﬂj‘Pj(xi)) +2 Z P15
i=1

jes* jes
and
[l = arg min critS*(u).
ueRrs”
Then we set

1 & -
n Zyibi(Pj(xi) - Z Hie < @j, P >
i=1 keS*

g

Jjgs*

and we state the following lemma.

<Fn,j}

Lemma 3 On the set ., the non-zero coordinates of A are included into S*.

Proof of Lemma 3: Recall that A is a minimizer of A — crit(4). Using standard convex
analysis arguments, this is equivalent to say that forany 1 < j < M,

%er‘l:l y,-bi(pj(x,-) — Zkle ik < ?j; O > = Fmi,‘sign(jtj) if j,j 7& 0,

LY yibig(x) — Tt A < 97, 0 >‘ <P if ;=0.
Similarly, on ., we have
LY yibi@j(xi) — Lies ik < @), @ > = Fy jsign(fi;) if j € S* and fi; # 0,
| Tim i@ (xi) = Liese Bk < @), @k >| < Foj if j€ 5" and fi; =0,

| LY yibi@(xi) — Tres- Bk < @5, @ >| < Fuj if j¢S”.

So, on .7, the vector fi such fi; = fi; if j € §* and fi; = 0if j ¢ S* is also a minimizer of
A —> crit(A). Using Lemma 2, we have for any 1 <i <n:

M ~
Y (A — ) gu(xi) = 0.
=1



So, for j ¢ S*,
n M
Zy,b 0;(x:) Z < Qi >| < T

Therefore, on ., the non-zero coordinates of 2 are included into S*.

Lemma 3 shows that we just need to prove that

P{s}>1—2M""7/?

P{s} <) P{
jgs*
<A+B,

2 %}
> rn.,j}

1 i
~ 2 vibigj (i) = Y B < 9, 0>
i=1

keS*

with

i [yibi (P] X;) ()’ibi(Pj(xi))]

i=
>rn,j}

1
n

—

JgSs*
12
= Z P{ ; Zsibi(pj(xi)
JES* i=1
= Y P{Vj[ = rj}

Jjgs*

(see Lemma 1) and

B=P

2 Tnj— rrw}
= fn,j—rn,j}
2 Fn,j— rn.,j}

P l@jlln Y 14— el ll@elln > Fn,j—rn,j}

kesS*

1
ZE(ylb (Pj X)) Z e < @, 1 >
= kes*

<@ o> =Y, i < 0, 0>

U
{
{

Y A — ) <o 00>
kes*

since

< Qj, >
p(S) :maxmaxw.
kes 2 || @j]lall @l

Using notation of Lemma 3, we have:

I = falla =1 Y (A — ) ol

keS*

=Y K-+ Y Y N -m)@R ) <o e0>,
keS* keS* jeS*, J;ék
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and

Y A —m)Plleels < s —falla+o6) Y Y I =l oelln < 14— 2119l
keS* kES* jeS*, j+k

2
< lfas = fallz +p(57) (Z Ilk*ﬂkllqokln) :

keS*

Finally,

2
(Z 1A —ﬂk|||<Pk||n> Z — )l

keS* keS*

2
<5 Ifz*fn|ﬁ+P(S*)<lezfﬂkIIIquIIn) ,

keS*

which shows that

*

2
. s
(Z |4 _.uk|||(Pk||n> < WHJPA* _qui

keS*
Now,
2
1 & N L~
-y <)’i_bi Y Nj‘Pj(M)) +2) Fujli] <
ni3 jes jes
1 & :
fZ yi—b; Zl ©;(x;) +227n,j|/1j*|~
nia jes jes
So,

1Y Beills - szyz Y mieita)+2 Y Al <

Jjes* = Jjes* jES*
1Y A oilla— szyz Y Ajei(xi)+2 ) T jlAj],
JjeSs* JjES* JjES*

and using previous notation,

Hquﬁ szyz Z Rj@j(xi) +2 Z Fujl ] <

niz JjeS* JES*

pr”n**Zb,y, Z l*(P] xi)+2 Z ”n]|/,L |-

i= jes* jeSs*
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Therefore,

1fas = falls = Ifalls+ /212 =2 < fa, far >

2 ¢ ~ * ~ *
<2llfasllz =2 < fp, far > + Y bvi Y (= AD)@; (i) +2 Y Fu (1271 -

=1 jes jes-
2 & 2 &
= Zibiyi(fﬂ(xi) =) = Y b7 o () (fa (i) = fo (i)
i= i=1

+2 ) (147 = 1is1)

jes*
2
= ;Zibi(}’i*E(yi))(fﬁ(xi) —fr ) +2 Y, T (1271 = |51)
= jese
2 n
=~ Y biei(fp(x) = fas (i) +2 ) T (1271 = 1R1)
i=1 jes*
M
=2 Y Vil =27)+2 }, 7 (1471 = ).
j=1 JjES*

Now let us assume that for any j € §*, V; <y ;. Then,

I = falls <2 Y (rnj+Fu )|y — Af|

jes*

logM — . .
<20\ (VT VA Y N0l =4
jesx

So,

keXS"*Mk Nk|||<Pk||n<2G\/ (\er\[)ﬁ

and for any j ¢ S*,

. . a p(S*)s*
P Mol T 13~ Aellgul < 201/ X gy (va s vy PO
keS* ( )S
20'c(f+\f) logM
- il
logM
< (VE-V1)o il
<r,,7] Tnj-

Therefore,

B< ) P{Vj|=ruj}
jes

and using Lemma 1, since P{.7“} <A+ B,

P{s}>1—-2M"""/2,

|&j1)
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2.5 Proof of Corollary 1

First note that A* satisfies the Dantzig constraint (1) where r, j is replaced by 7, ; with
probability larger than 1 —M'~%/2. On the event § C $*, we have )L(*S*)C = A(g+)c =0, then
applying Theorem 2, we obtain that for any o > 0

] (11
-1 <325 (4 + 4 ) 7

g

which implies the result of the theorem.
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