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Introduction

The aim of this paper is to give some comments on the construction by H. Hironaka
[H.61] of a holomorphic (in fact ”algebraic”) family of compact complex manifolds
parametrized by C such for all u ∈ C \ {0} the fiber is projective, but such that the
fiber at the origin in non kählerian. We also explain why it is not possible to make
in the same way such a family with fiber at 0 a simpler example of non kählerian
Moishezon manifold which is also due to H. Hironaka (see section 4).
This paper does not give a complete proof of Hironaka’s construction. It only trys to
give some help for the reader of this famous article and trys to explain some points
which are not “explicit” although they are well known to specialists.

∗Invited professor to the KIAS (Seoul), Institut Elie Cartan : Algèbre et Géomètrie,
Université de Lorraine, CNRS UMR 7502 and Institut Universitaire de France.
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1 Some ideas about the construction.

The initial point of H. Hironaka’s construction is to consider in the 3−dimensional
complex projective space P3 the three curves given in the homogeneous coordinates
Y0, Y1, Y2, Y3 by the following equations (see picture 4)

F1 := {Y0 = Y1 = 0} (= C1 on pictures)

F2 := {Y0.Y1 + Y1.Y2 + Y2.Y0 = Y3 = 0} (= C2)

F3(u) := {(Y1 + Y3).(Y0 + u.Y1) + Y1.Y3 = Y2 = 0} (F3(0) = C3)

where u ∈ C is a parameter.
Note that for u = 0 these three smooth curves (a line and two conics) has two
common points P := (1, 0, 0, 0) and Q := (0, 1, 0, 0). For u 6= 0 the conic F3(u) still
contains P but not Q. In a first step we shall consider only the case u = 0.

The first part of the proof is to blow-up in a convenient way the affine open sets
U0 := {Y0 6= 0} and U1 := {Y1 6= 0} and to patch the resulting (smooth) manifolds
in order to produce a compact complex manifold V0 which is not kählerain. So it is
not projective but still a modification of P3. In a second step, the aim is to do such
a construction with the parameter u ∈ C in order to produce an holomorphic family
of compact complex manifolds over C such that the fibers over u 6= 0 are projective
but the fiber over 0 (which is the previouly constructed V0) is not kähler.
The proof will go as follow :
First construct the fiber at u = 0 of this family. It is smooth and obtained by blowing
up in U0 the ideal of the lemma 2.0.3, by blowing up in U1 the product of the reduced
ideals of F1, F2 and F3(0). And then showing that these smooth complex manifolds
patch over the intersection U0∩U1 in a smooth connected complex compact manifold
V0 which is not kählerian. This last fact is proved by showing that there exists a
curve in V0 which is homologous to zero (see the end of section 3).
The second step is performed with the same construction adding the parameter
u ∈ C. This second step is rather analogous to the first one : because on C×U0 we
simply replace the inhomogeneous coordinates x1, x2, x3 on U0 by

x̃1 := (1 + u.x1)(x1 + x2 + x3 + x1.x2) + x1.x3, x̃2 := x2, x̃3 := x3

and follows then the same line than in the absolute case. The projectivity of the
fibers over u 6= 0 is deduced from the fact that the corresponding manifold built
after patching can be obtained directly by blowing up a coherent ideal in {u} × P3.
A delicate point is to verify that the fiber at u = 0 of the family constructed is
precisely the manifold V0 constructed in the absolute case. We explain in section
4 that this point is crucial and not obvious. For that purpose we give an example
where the construction “in family” do not give the expected fiber at u = 0.
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2 Some properties of blowing up coherent ideals.

In the present text, a complex space is always assumed to be reduced and a modi-
fication of a complex space is always assumed to be proper.

When f : Y → X is a morphism of complex spaces and I a sheaf of ideals in OX ,
the pull-back by f of the ideal sheaf I, denoted by f ∗st(I), is the image in OY of the
“usual” pull-back sheaf f ∗(I) := f−1(I) ⊗f−1(OX) OY . If I is locally generated on
an open set U by holomorphic functions g1, . . . , gk then the ideal f ∗st(I) is generated
on f−1(U) by the holomorphic functions g1 ◦ f, . . . , gk ◦ f .

To begin, recall that if X is a complex space and I a coherent ideal sheaf in OX the
blow-up of I is, by definition, the (proper) modification τ : X̃ → X such that the
ideal τ ∗st(I) is locally principal and which satisfies the following universal property:

• For any (proper) modification θ : Y → X such that the ideal θ∗st(I) is a locally
principal ideal sheaf, there exists an unique holomorphic map σ : Y → X̃ such
that τ ◦ σ = θ.

For any coherent ideal I in OX the blow-up exists and is unique. It can be con-
structed as follows :

Assume that I is locally generated on an open set U ⊂ X by holomorphic functions
g1, . . . , gk ; then, if Z is the analytic subset of U defined by {g1 = · · · = gk = 0},
we have a holomorphic map G : U \ Z → Pk−1 defined in homogeneous coordinates
by x 7→ (g1(x), . . . , gk(x)). Then the closure of the graph Γ0 of G in U × Pk−1 is an
analytic subset and its projection on U is a proper modification of U . The easiest
way to prove these assertions is, assuming U irreducible, to consider the irreducible
component Γ of the closed analytic subset

Y := {(x, z) ∈ U × Pk−1 / rk(x, z) = 1}

which contains the graph of G. Then it is easy to see that it coincides with the
closure of Γ0. It is clearly proper over U and the pull-back of I := (g1, . . . , gk) on
Γ is locally principal : if z1, . . . , zk are the homogeneous coordinates in Pk−1, let
Ωi := {zi 6= 0} ⊂ Pk−1. Then on (U × Ωi) ∩ Γ we have gj =

zj
zi
.gi for each j ∈ [1, k].

So I is generated by gi on (U × Ωi) ∩ Γ.

Remarks.

1. For J a coherent ideal sheaf consider I = ϕ.J where ϕ is a holomorphic
function on X; then there is a canonical isomorphism of modifications of X
between the blow-up of I and the blow-up of J .

2. If X is a complex manifold and I is the (reduced) ideal sheaf of a closed
complex submanifold V in X, then the blow-up X̃ of I is a complex manifold
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and the map τ : τ−1(V ) → V is the projection of the projectivized normal
bundle of V in X.

3. The modification τ : X̃ → X associated to the blow-up of a coherent ideal
sheaf is always a projective morphism. Then ifX is projective (resp. kählerian)
so is X̃.

Proposition 2.0.1 Let X be a complex manifold and let I and J be two coher-
ent ideals in OX . Then, assuming that the blow-up of the ideal I.J is a complex
manifold, it is isomorphic to the fiber product of the blow-up of I and J .

Proof. Denote respectively by σ1 : X̃1 → X the blow-up of I and by σ2 : X̃2 → X
the blow-up of J . Denote by θi : Y → X̃i, i = 1, 2 the projection of the fiber product
of σ1 and σ2. As both sheaves π∗st(I) and π∗st(J ) are locally principal on Y , where
π : Y → X is given by π := σ1 ◦ θ1 = σ2 ◦ θ2, the pull-back ideal π∗st(I.J ) is locally
principal also. Then the universal property of the blow-up η : T → X of the sheaf
I.J gives a holomorphic map f : Y → T such that π = f ◦ η.
Now on T the ideal η∗st(I.J ) = η∗st(I).η∗st(J ) is locally principal. The lemma 2.0.2
below implies that η∗st(I) and η∗st(J ) are locally principal on T , so we obtain two
holomorphic maps i : T → X̃1 and j : T → X̃2 such that η = θ1 ◦ i = θ2 ◦ j. The
universal property of the fiber product shows that the map (i, j) : T → X1 × X2

factors through Y giving the holomorphic inverse to f . �

As a consequence, under the hypothesis of the proposition, to blow-up the product
I .J of two ideals in a complex manifold X is equivalent to successively blow-up I
and then to blow-up (τI)

∗
st(J ) in XI where τI : XI → X is the blow-up of I.

Lemma 2.0.2 Let X be a complex manifold and let I and J be two coherent ideals
in OX . Assume that the ideal I.J is locally principal on X. Then I and J are
locally principal on X.

Proof. The problem is local, so we may assume that X is an open neighbourhood
of 0 in Cn and I.J = (ϕ). We shall prove that the germs I0 and J0 are principal
ideals in OX,0 by induction on the number q of irreducible factors of the germ ϕ0.
As the case q = 0 is trivial, assume q ≥ 1 and the assertion proved for integers less
or equal to q − 1. Let π be an irreducible factor of ϕ0. Assume that there exists
s ∈ I0 with s 6∈ (π). Then any t ∈ J0 have to be in (π) so we conclude that either
I0 or J0 is contained in (π). Assume for instance that I = π.I ′ near 0. Put ϕ = π.ψ
near 0. Then we have I ′.J = (ψ) and by the induction hypothesis we conclude that
I ′ and J are locally principal near 0. So is I. �

Of course we have the same result than in proposition 2.0.1 assuming that the blow-
up of the product ideals is smooth, for a finite product of coherent ideals.
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Remark. The hypothesis of smoothness for the blow-up of the product of ideals
may be weakened to the factoriality of the local rings of the corresponding complex
space.
I dont know if some weaker hypothesis can also work but note that it is not true in
general that on a reduced complex space X if the product of two coherent ideals is
locally principal, then both ideals are locally principal as one can see on the following
example :

Example. Consider in C4 with coordinates (x, y, u, v) the ideal generated by

x.u− y.v, x.v − y.u, y.u− y.v.

It define a surface S which is the union of three 2−planes :

P1 := {u = v = 0}, P2 := {x = y = 0}, P3 := {x = y and u = v}.

The intersection P1 ∩ P2 is reduced to {0} but P3 meets P1 and P2 respectively in
the lines {u = v = x − y = 0} and {u − v = x = y = 0}. Moreover, it is easy to
verify that the given ideal is reduced, so S is a reduced complex surface (but not
irreducible). It is immediate to see that the ideals I := (x, y) and J := (u, v) are
not principal in the ring OS,0 but that their product is principal and generated by
the element ϕ := x.u = x.v = y.u = y.v in the ring OS,0.

Now we come back to the example of [H.61]. An important point is to blow-up ideals
which are product of (simple) ideals in order to use the proposition 2.0.1. The ideal
which appears in the next lemma is precisely the ideal which is used in the first
chart for the construction of the manifold V0.

Lemma 2.0.3 [see [H.61]] Let (x1, x2, x3) the coordinates in C3. then we have the
equality of ideals in OC3 :

(x2, x3)
5 ∩ (x1, x3)

4 ∩ (x1, x2)
4 ∩ (x1, x2, x3)

7 =

(x1.x2, x2.x3, x1.x3).(x1, x2.x3).(x2, x1.x3)
2.(x3, x1.x2)

2.

Proof. It is enough to compare monomials in these ideals. A necessary and
sufficient condition for xa1.x

b
2.x

c
3 to be in the left-handside is given by the following

inequalities :

a+ b+ c ≥ 7, a+ b ≥ 4, a+ c ≥ 4, and b+ c ≥ 5. (@)

So listing the cases for a = 0 to a = 4 gives the following generators for the left-
handside :

m0 := x42.x
4
3, m1 := x1.x

3
2.x

3
3, m2 := x21.x

3
2.x

2
3, m′2 := x21.x

2
2.x

3
3,

m3 = x31.x
4
2.x3, m′3 := x31.x2.x

4
3, m4 := x41.x

5
2, m′4 := x41.x

5
3.
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Now it is rather easy to verify (and this will be indicate in the verification of the
opposite inclusion) that each of these monomials is in the right-handside:

m0 = x42.x
4
3 = (x2.x3).(x2.x3).x

2
2.x

2
3

m1 = x1.x
3
2.x

3
3 = (x2.x3).x1.x

2
2.x

2
3

m2 = x21.x
3
2.x

2
3 = (x1.x2).x1.x

2
2.x

2
3

m′2 = x21.x
2
2.x

3
3 = (x1.x3).x1.x

2
2.x

2
3

m3 = x31.x
4
2.x3 = (x1.x2).x1.x

2
2.(x1.x2.x3)

m′3 = x31.x2.x
4
3 = (x1.x3).x1.(x1.x2.x3).x

2
3

m4 = x41.x
5
2 = (x1.x2).x1.x

2
2.x

2
3

m′4 = x41.x
5
3 = (x1.x3).x1.(x1.x3)

2.x23

For a ≥ 5, as we have b + c ≥ 5, it is easy to check that we obtain multiples of the
eight monomials above : if b or c is 0, a multiple of m4 or m′4 respectively, if b or c
is equal to 1 a multiple of m3 or m′3 respectively and if b or c is at least 2 a multiple
of m2 or m′2.

It is a little more painful to verify the opposite inclusion because there are a priori
54 monomials in the generator of the right-handside.
We shall use the symbol (@) to indicate when we find one of the eight monomials
above in the list of these 54 monomials.

The maximal degree in x1 for such a monomial is 6. In degree 6 there are only two:

(x1.x2).x1.(x1.x3)
2.(x1.x3)

2 = x61.x
3
2.x

2
3

and the one obtain by exchanging x2 and x3 (we note this by (ex-2-3)). They are
multiples of m2 and m′2 respectively.

In degree 5 in x1 we have

(x2.x3).x1.(x1.x3)
2.(x1.x2)

2 = x51.x
3
2.x

3
3 ∈ (m1)

(x1.x2).(x2.x3).(x1.x3)
2.(x1.x2)

2 = x51.x
4
2.x

3
3 (ex− 2− 3) ∈ (m1)

(x1.x2).x1.(x1.x2.x3).(x1.x2)
2 = x51.x

4
2.x3 (ex− 2− 3) ∈ (m3) and (m′3)

(x1.x2).x1.(x1.x3)
2.(x1.x2.x3) = x51.x

2
2.x

3
3 (ex− 2− 3) ∈ (m′2) and (m2)

Now consider the monomial of degree 4 in x1. First consider these where we have
two x21 coming from one of the four terms.

(x2.x3).(x2.x3).(x1.x3)
2.(x1.x2)

2 = x41.x
4
2.x

4
3 ∈ (m1)
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Now if we have only one x21 coming for one four terms

(x2.x3).x1.(x1.x2.x3).(x1.x2)
2 = x41.x

4
2.x

2
3 ∈ (m2)

(x1.x2).(x2.x3).(x1.x2.x3).(x1.x2)
2 = x41.x

5
2.x

2
3 (ex− 2− 3) ∈ (m2) and (m′2)

(x1.x2).x1.x
2
2.(x1.x2)

2 = x41.x
5
2 (ex− 2− 3) ∈ (m4) and (m′4) (@) + (@)

(x1.x2).x1.(x1.x3)
2.x23 = x41.x2.x

4
3 (ex− 2− 3) ∈ (m′3) and (m3)

(x2.x3).x1.(x1.x3)
2.(x1.x2.x3) = x41.x

2
2.x

4
3 ∈ (m′2)

(x1.x2).(x2.x3).(x1.x3)
2.(x1.x2.x3) = x41.x

3
2.x

4
3 (ex− 2− 3) ∈ (m1) and (m1)

If we choose one x1 in each term we find only

(x1.x2).x1.(x1.x2.x3).(x1.x2.x3) = x41.x
3
2.x

2
3 (ex− 2− 3) ∈ (m2) and (m′2)

In degree 3 in x1 if we take x21 in one term we will get

(x1.x2).(x2.x3).x
2
2.(x1.x2)

2 = x31.x
6
2.x3 (ex− 2− 3) ∈ (m3) and (m′3)

(x2.x3).x1.x
2
2.(x1.x2)

2 = x31.x
5
2.x3 ∈ (m3)

(x2.x3).(x2.x3).(x1.x2.x3).(x1.x2)
2 = x31.x

5
2.x

3
3 ∈ (m1)

(x1.x2).(x2.x3).(x1.x3)
2.x23 = x31.x

2
2.x

5
3 (ex− 2− 3) ∈ (m′2) and (m2)

(x2.x3).x1.(x1.x3)
2.x23 = x31.x2.x

5
3 ∈ (m′3)

(x2.x3).(x2.x3).(x1.x3)
2.(x1.x2.x3) = x31.x

3
2.x

5
3 ∈ (m1)

For the degree 3 in x1, if we take at most one x1 in each term, we have four places
where to avoid x1 :

(x2.x3).x1.(x1.x2.x3).(x1.x2.x3) = x31.x
3
2.x

3
3 ∈ (m1)

(x1.x2).(x2.x3).(x1.x2.x3).(x1.x2.x3) = x31.x
4
2.x

3
3 (ex− 2− 3) ∈ (m1)

(x1.x2).x1.x
2
2.(x1.x2.x3) = x31.x

4
2.x3 (ex− 2− 3) ∈ (m3) and (m′3) (@) + (@)

(x1.x2).x1.(x1.x2.x3).x
2
3 = x31.x

2
2.x

3
3 (ex− 2− 3) ∈ (m′2) and (m2)

In degree 2 there are 8 choices, modulo exchanging x2 and x3:

(x1.x2).x1.x
2
2.x

2
3 = x21.x

3
2.x

2
3 (ex− 2− 3) ∈ (m2) and (m′2) (@) + (@)

(x1.x2).(x2.x3).(x1.x2.x3).x
2
3 = x21.x

3
2.x

4
3 (ex− 2− 3) ∈ (m1)

(x1.x2).(x2.x3).x
2
2.(x1.x2.x3) = x21.x

5
2.x

2
3 (ex− 2− 3) ∈ (m2) and (m′2)

(x2.x3).x1.(x1.x2.x3).x
2
3 = x21.x

2
2.x

4
3 ∈ (m′2)

(x2.x3).x1.x
2
2.(x1.x2.x3) = x21.x

4
2.x

2
3 ∈ (m2)

(x2.x3).(x2.x3).(x1.x2.x3).(x1.x2.x3) = x21.x
4
2.x

4
3 ∈ (m1)

(x2.x3).(x2.x3).(x1.x3)
2.x23 = x21.x

2
2.x

6
3 ∈ (m′2)

(x2.x3).(x2.x3).x
2
2.(x1.x2)

2 = x21.x
6
2.x

2
3 ∈ (m2)
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In degree 1 there are 4 choices, modulo exchanging x2 and x3:

(x1.x2).(x2.x3).x
2
2.x

2
3 = x1.x

4
2.x

3
3 (ex− 2− 3) ∈ (m1)

(x2.x3).x1.x
2
2.x

2
3 = x1.x

3
2.x

3
3 ∈ (m1) (@)

(x2.x3).(x2.x3).(x1.x2.x3).x
2
3 = x1.x

3
2.x

5
3 ∈ (m1)

(x2.x3).(x2.x3).x
2
2.(x1.x2.x3) = x1.x

5
2.x

3
3 ∈ (m1)

For the degree 0 there is only one possibility : x42.x
4
3 which is m0 (@). So the verifi-

cation for the 54 monomial is over. �

3 Smoothness.

As explained in the previous section, it is important to know that the blow-up of the
product of two ideals is smooth in order to compare it with the successive blow-up
of these two ideals.

We shall consider the blow-up X of the ideal (x1.x2, x2.x3, x3.x1) in C3 and then the
blow up Y of the ideal (x3, x1.x2).(x1, x2.x3).(x2, x3.x1) in X. This corresponds to
the blow-up of the ideal described in the lemma 2.0.3 which gives the first piece in
the construction of the manifold V0.

In C3 × P2 we look for the irreducible component of the analytic subset

Z := {((x1, x2, x3), (a, b, c)) / x1.x2.b = x2.x3.a x1.x2.c = x3.x1.a x2.x3.c = x3.x1.b}

which dominates the graph of the corresponding map. By circular permutation on
x1, x2, x3 we can restrict our study to the chart a 6= 0 in P2. Then let u := b/a and
v := c/a be the corresponding coordinates. As x1, x2, x3 are not zero at the generic
point of the graph, the equations simplify in

x3 = u.x1 x3 = v.x2 x2.v = x1.u

and this show that this Zariski open set X ′ in X is isomorphic to the hypersurface
H := {x2.v = x1.u} ⊂ C4 where the coordinates in C4 are (x1, x2, u, v). So we have
an unique singular (Morse) point : the origin.

Note that the pre-image of 0 in X ′ is the plane defined by x1 = x2 = 0.
In this chart, isomorphic to the hypersuface H note

P1 := {x2 = v = 0}, P2 := {x1 = v = 0}, P3 := {x1 = x2 = 0}.

We have P1 ∩ P2 = {0}, P1 ∩ P3 = {x1 = x2 = u = 0}, P2 ∩ P3 = {x1 = x2 = v = 0}.
The pull back of the curves C1 = {x1 = x2 = 0} is P1∪P3, the pull-back of the curve
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C2 = {x1 = x3 = 0} is P2 ∪ P3 and the pull-back of the curve C3 = {x1 = x2 = 0}
is P3. See the picture 0.

Remark now that the ideals (x1, x2.x3) and (x2, x1.x3) are principal on X ′ as we
have x3 = u.x1 = v.x2. So the only blow-up to perform in X ′ is now the blow up
of the ideal (x3, x1.x2). Using x3 = u.x1 this is the same as the blow-up of (u, x2).
Then it is given in X ′ × P1 by the equation u.β = x2.α. Let z := β/α for the first
chart in P1. Then we have in this chart X ′′1 of this blow-up

x2 = u.z, x2.v = x1.u x3 = v.x2 = u.x1

which give, as x2 is generically non zero, x1 = v.z, x2 = u.z, x3 = u.v.z and
then we have a copy of C3 with coordinates (u, v, z). The computations on the other
charts are analogous as x1 and x2 have symetric roles in X ′ and in the ideal blown up.

So we conclude that the blow-up of C3 by the ideal

(x1.x2, x2.x3, x3.x1).(x1, x2.x3).(x2, x3.x1)
2.(x3, x1.x2)

2

is a smooth quasi-projective manifold.

Remark that the pull-back of the maximal ideal of C3 on X ′ is the ideal (x1, x2) in
X ′ which is a copy of C2 with coordinnates (u, v). Now, it becomes the ideal z.(u, v)
in X ′′ which is the union of a C2 := {z = 0} and a transversal line which has only
its intersection with this plane over the origin in C3.
So our exceptionnal divisor is just this plane C2. Now, as u = b/a and v := c/a it
is easy to see that the global exceptionnal divisor for the final modification of C3 is
a copy of P2. This divisor is called E0 in the pictures 1.
The intersection, in this chart, of this P2 which is view as C2 = {z = 0}, with the
strict transform of the curve {x1 = x3 = 0} is {z = v = 0}, and with the strict
transform the curve {x2 = x3 = 0} is {z = u = 0}.
Using the six charts for the blow-up, we find that each strict transform of the curve
{x3 = x1 = 0} cuts (generically transversally) the exceptionnal divisor in 3 lines in
general position. This corresponds to the picture 1. The visible part in the chart
X ′′ is given by the picture 2.
The pictures 3 explains the situation near the point Q and the picture 4 the global
situation in P3 before the blowing-up.

Why V0 is not kählerian. We can read on pictures 1 and 3 the following
algebraic equivalence of curves in V0 :

L1 ∼ L′1 + L2 + L3 on picture 3

L1 ∼ L1,2 + L0,1 + L1,3 on picture 1

L2 ∼ L2,3 + L1,2 + L0,2 on picture 1

L3 ∼ L3,1 + L2,3 + L0,3 on picture 1
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and this implies,
L0,1 ∼ L′1 + 2L2,3 + L0,3.

Now the curve L0,1, L0,2, L0,3 are lines in E2 ' P2 so they are algebraically equiva-
lent. This implies that L′1 + 2L2,3 + L0,2 ∼ 0 in V0 and prove our claim.

Remark that for u 6= 0 the curve F3(u) no longer meets F1 at Q so the first relation
above becomes L1 ∼ L′1 + L2 and now the computation analog to the computation
above only gives L′1 + L2,3 ∼ L1,3 which does not contradict the projectivity of the
fiber at u of the family.

4 Simpler examples.

Let B a ball in C3 with center 0 and let C1 and C2 be smooth connected curves
defined in B and meeting transversaly at 0 and nowhere else. Let X1 the blow-up of
B along the reduced ideal of C1 and denote by C ′2 the strict transform of C2 in X1

and E1 the exceptionnal divisor in X1. If τ1 : X1 → B is the blow-up map, we have
E1 = τ−11 (C1) and it is a reduced smooth divisor isomorphic to the projectivized
normal bundle to C1 in B. The curve C ′2 meets E1 transversally in a (unique) point
P̃ which belongs to the curve A := τ−11 (0) which is a smooth rational curve (the
projectif space of the fiber at 0 of the normal bundle of C2 at the origin).
Now we blow-up C ′2 in X ′ to obtain a modification σ1,2 : X1,2 → X1. Then the strict
transform of C ′2 is a smooth divisor E2 in X1,2 and the strict transform E ′1 of E1

is, via the map σ1,2, isomorphic to the blow-up of E1 at the point P̃ . Let B be the
smooth rational curve σ−11,2(P̃ ). Denote by Z1 the generic fiber on E1 (or of E ′1) over
C1. Then in X1,2 we have Z1 ∼ A′ +B, where A′ is the strict transform of A in E ′1
by the blow-up of P̃ in E1. So A′ ∪ B is the pull back of A in X1,2. Remark also
that B is homologous in X1,2 to the generic fiber Z2 of E2 over C ′2 (or C2).

Let C be a connected curve in P3 with an ordinary double point P and which is
smooth outside P . Consider now B as an open neighbourhood of P in P3 and as-
sume that C1 and C2 are the two branches of the curve C near P . In the complex
manifold V := P3\B′, where B′ ⊂⊂ B is an open ball with a smaller radius, consider
the blow-up σ : Y∞ → V of the smooth connected curve C ∩ V . Then on the open
set B \ B′ we have a natural identification between σ and τ1,2, because, outside the
origin, it is the same thing to blow-up successively C1 and C2 or to blow-up C.
So we can glue these two maps to obtain a complex manifold Y and a modification
τ : Y → P3. Now in Y we have Z1 ∼ A′+B and also Z2 ∼ B. But the generic fiber
of the gluing of E ′1 ∪E2 with the blow-up of C in V implies that Z1 = Z2. Then the
curve A′ is homologuous to 0 in Y . See picture 5.

If we consider a holomorphic family (Cs)s∈D of curves parametrized by the unit disc
in C such that C0 = C and such that for s 6= 0 the curve Cs has no singular point, it
seems interesting to blow-up (in a suitable way) the graph Γ of this family of curve
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in D × P3 in order to obtain an holomorphic family of complex manifolds (Ys)s∈D
such that for s 6= 0 the manifold Ys is projective, and such that Y0 is not Kähler.
Of course this would give a much more simple example of such a family than the
previous example of H. Hironaka from his paper [H.61] ”explained” above.
Let me explain why this does not work.
The graph Γ ⊂ D × P3 is a complex submanifold excepted at the point {0} × {P}
where we have a normal crossing point for a surface in C4. In order to perform a
blowing-up “in family” for the curve Cs, we want to separate the two branches of this
surface near {0}×{P}. Of course, this is possible set theoretically, but we want that
the fiber at s = 0 of this ”family blow-up” will give us the previous construction
at t = 0. This essentially means that we want that the projection Γ→ D, which is
is flat when we consider the reduced structure for Γ, has a reduced fiber at s = 0.
But we shall show now that this is not the case in our situation. So it is not
possible to separate the two irreducible branches of the fiber at 0 near 0 keeping the
non reduced structure of this fiber !

Lemma 4.0.4 Let X ⊂ D × M be an analytic subset where D ⊂ C is the unit
disc and M a complex manifold. Assume that X is reduced and flat on D. Let X0

be the fiber at 0 of the projection π : X → D with its “fiber structure” meaning
that IX0 := IX

/
s. IX ⊂ OM . Assume that this fiber is contained in a smooth

hypersurface H0 in M near a point p ∈ X0
1. Then there exists near (0, p) in D×M

a smooth hypersurface H such that for each s near enough 0 the fiber Xs is also
contained in H in a fixed open set around (0, p).

Proof. Let f0 be a holomorphic function in an open neighbourghood U of p such
that (df0)p 6= 0 and f0 is a section of IX0 on U and define H0 := {x ∈ U / f0(x) = 0}.
Then for 0 ∈ D′ ⊂ D small enough there exist f ∈ Γ(D′ × U, IX) inducing f0 on
U . Then we have df0,p 6= 0 and H := {(s, x) ∈ (D ×M) ∩ (D′ × U)} is a smooth
hypersurface near (0, p) which contains X so Xs ∩ (D′ × U) for s ∈ D′. �

Application. Assume that in the situation of the previous lemma we know that
red(X0), the reduced fiber of π at 0, is contained near p in a smooth hypersurface
in M2, and that X is not contained in a smooth hypersurface in D×M near (0, p).
Then the fiber X0 cannot be reduced.

Example. Let M := C3 and define X := {x = y = 0} ∪ {x − s = z = 0} with
its reduced structure in D×M . Then X is not contained in a smooth hypersurface
near (0, (0, 0, 0)) because if ϕ is an holomorphic function near (0, (0, 0, 0)) vanishing
on X we have ϕ = a.x+b.y = c.(x−s)+d.z with holomorphic functions a, b, c, d and
as x, y, z, s is a regular sequence, it implies that ϕ is in the square of the maximal
ideal at the origin. This implies that the Zariski tangent space to X at the origin

1This precisely mean that there exists a holomorphic function f0 in an open neighbourhood U
of p such that (df0)p 6= 0 and f0 is a section of IX0

on U . Then H0 := {x ∈ U / f0(x) = 0}
2this is equivalent to the fact that its Zariski tangent space at p has codimension 1 in TM,p.
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is C4. But remark that red(X0) is contained in {x = 0}. So we conclude that the
fiber X0 is not reduced. A direct (and easy) calculation gives that x is a non trivial
nilpotent element in sheaf OX0 ' OC3

/
(x2, x.y, x.z, y.z).

Remark. For any pair of smooth families of smooth curves in C3 parametrized
by D such that the graph Γ and Γ′ are smooth surfaces in D × C3 which meets
transversally in a point (0, p) the same phenomenon occurs because in C4 the union
of two transversal 2−planes at 0 (with its reduced structure) is not locally contained
in a smooth hypersurface near 03 and the Zariski tangent space of two transversal
curves in C3 has always codimension 1 in C3. So the union of two transversal curves
at 0 in C3 is always locally contained in a smooth (hyper-)surface.

Three curves example. Consider the analytic set

Y := {x = y = 0} ∪ {y = z = 0} ∪ {x− s = z = 0}

in C4 with its reduced structure. We have IY = (y.(x − s), x.z, y.z) and the ideal
IY0 = (x.y, x.z, y.z) is clearly the reduced ideal of the fiber Y0 for the projection on
D corresponding to the coordinate s.
We want to prove that the map π : Y → D given by the s−projection is flat and
has a reduced fiber at s = 0. So let us prove that OY has no s−torsion. Consider a
holomorphic function ϕ near 0 in C4 such that s.ϕ is in IY near 0. Then modulo (z)
we have s.[ϕ] ∈ [y.(x− s)], and, as s, y(x− s) is a regular sequence in C3 we obtain
that ϕ = a.y.(x − s) + z.b where a, b are holomorphic. Now we have s.z.b ∈ IY
and this gives modulo (y) that s.[z.b] = c.[x.z]. But z does not divide 0 modulo
(y) so s.[b] = c.[x] and then, as s, x, y is a regular sequence b = u.x + v.y and
ϕ = a.y.(x − s) + u.z.x + v.z.y ∈ IY . So Y is flat on D and its fiber at s = 0 is
reduced because its ideal is generated by x.y, x.z, y.z.
This enlight why H. Hironaka considers 3 transversal curves at the point Q and
let one of the 3 curves moving outside this point; this allows to preserve in such a
family the construction given at s = 0. Of course, this does not replace the proof of
the section 4 in [H.61] but explains that with three curves it is possible, although it
does not work with two.

5 A last example.

Choose now in P3 two smooth connected curves C1 and C2 meeting transversally at
two points P and Q and perform for each point the previous construction consisting
in the blowing-up of one branch after the other in a small ball around each point,

3Two surfaces in a smooth 3−fold which meet, meet in codimension at most equal to 2.
But remark that in the case we are interested with, they are locally contained in a (singular)
hypersurface like x.u = y.v where (x, y, u, v) are local coordinates near the origin.
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but reversing the order : at P we blow-up first C1 and after the strict transform of
C2 but near Q we blow-up first C2 and then the strict transform of C1. Of course,
outside the two balls we just blow-up C1 and C2 which are disjoint. So the all
thing patch in a complex manifold Y and in a modification π : Y → P3. We shall
denote by L1 the generic fiber of E1 := π−1(C1) on C1 and L2 the generic fiber of
E2 := π−1(C2) on C2.
Then we find over P two smooth rational curves A and B and we have L1 ∼ A+B
and L2 ∼ B. In a similar way, we find over Q two smooth rational curves C and D
which satisfy L2 ∼ C + D and L1 ∼ D. This gives A + C ∼ 0 in Y . So we have
again a non kähler smooth Moishezon manifold. See picture 6.

The main interest in this example is that we have two disjoint curves, such that the
blow-up of one of the two gives back a projective manifold.

Lemma 5.0.5 If we blow-up A or C in the manifold Y defined above we obtain a
projective manifold.

Proof. In fact, as A is the pull-back of the point P in the first blow-up, to blow-
up Y along A will give the same result than to begin by the blow-up of P and then
to blow-up the strict transform of C1 and then the strict transform of C2. But after
blowing-up P the strict transforms of C1 and C2 are disjoint in the pull-back of a
small ball around P and the order does not matter then. So after the blow-up of
P we can simply blow-up in a global manner the strict transform of C2 and then
the strict transform of C1 respecting the order choosen in the ball around Q. So we
have performed globally 3 blow-up of smooth projective subvarieties and the result
is projective. The situation is analog for C. �

This example shows that, in some sense, the non kählerianity of this manifold is
“concentrated around A” or “around C” but A and C are disjoint ...
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6 Pictures

Remember that these pictures try to represent subsets in a 3−dimensional complex
space. So they are necessarily “false” and can only help to understand using imagi-
nation.
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Figure 1.

L1 ∼ L1,2 + L0,1 + L1,3

L2 ∼ L2,3 + L1,2 + L0,2

L3 ∼ L3,1 + L2,3 + L0,3
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Figure 2.

Figure 3.

L1 ∼ L′1 + L2 + L3
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Figure 4.

Figure 5.
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Figure 6.


