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Robust compensation of a chattering time-varying input delay

We investigate the design of a prediction-based controller for a linear system subject to a time-varying input delay, not necessarily causal. This means that the information feeding the system can be older than ones previously received. We propose to use the current delay value in the prediction employed in the control law. Modeling the input delay as a transport Partial Differential Equation, we prove asymptotic tracking of the system state, providing that the average L 2norm of the delay time-derivative is sufficiently small. This result is obtained by generalizing Halanay inequality to timevarying differential inequalities.

I. INTRODUCTION

Time-delays are ubiquitous in engineering systems, which often involve either communication lags or a physical deadtime which reveals troublesome in the design and tuning of feedback control laws. The latter occurs, e.g., for processes including transportation of material, such as mixing plants for liquid or gaseous fluids [START_REF] Chèbre | Feedback control and optimization for the production of commercial fuels by blending[END_REF] [START_REF] Petit | Motion planning for two classes of nonlinear systems with delays depending on the control[END_REF], automotive engine and exhaust line [START_REF] Depcik | One-dimensional automotive catalyst modeling[END_REF] or heat collector plant [START_REF] Sbarciog | Nonlinear Predictive Control of processes with variable time delay. A temperature control case study[END_REF], among others. In all these examples, the dead-time is therefore a transport delay, which satisfies inherently a causality property. However, this does not hold in general, as, e.g., communication delays can be subject to sudden variations and therefore do not vary according to the "First-In-First-Out" principle. This noncausality phenomenon can also occur for input-dependent input delay systems [START_REF] Dieulot | Tracking control of a nonlinear system with input-dependent delay[END_REF], in which the delay variations can be related to the input in a very intricate manner, like, e.g., for crushing mill devices [START_REF] Richard | Time-delay systems: an overview of some recent advances and open problems[END_REF].

In this paper, we consider a time-varying input delay which can violate this causality principle. We investigate the design of a prediction-based control law [START_REF] Artstein | Linear systems with delayed controls: a reduction[END_REF] [START_REF] Kwon | Feedback stabilization of linear systems with delayed control[END_REF] [START_REF] Manitius | Finite spectrum assignment problem for systems with delays[END_REF] [START_REF] Smith | A controller to overcome dead time[END_REF], which is state-of-the-art for constant input delays [START_REF] Bresch-Pietri | Adaptive control scheme for uncertain time-delay systems[END_REF] [START_REF] Gu | Survey on recent results in the stability and control of time-delay systems[END_REF] [14] [START_REF] Mazenc | Generating positive and stable solutions through delayed state feedback[END_REF] [21] [START_REF] Moon | Robust stabilization of uncertain input-delayed systems using reduction method[END_REF] but is still not of general use for time-varying delays (see [START_REF] Nihtila | Finite pole assignment for systems with time-varying input delays[END_REF] or, more recently, [START_REF] Krstic | Delay Compensation for Nonlinear, Adaptive, and PDE Systems[END_REF]). In such cases, to compensate the varying input delay, the prediction has to be calculated over a time window of which length matches the value of the future delay. In other words, one may need to predict the future variations of the delay to compensate it. For example, this is the approach followed in [START_REF] Witrant | Stabilisation des systèmes commandés par réseaux[END_REF] for a communication time-varying delay, the variations of which are provided by a given known model. It has also been used in [START_REF] Bekiaris-Liberis | Compensation of state-dependent input delay for nonlinear systems[END_REF] for a state-dependent delay or in [START_REF] Bekiaris-Liberis | Nonlinear control under delays that depend on delayed states[END_REF] for a delay depending on delayed state, where variations are anticipated by a careful prediction of the system state. However, it may not be possible in general to compute such For this reason, in this paper, in lieu of seeking exact delay compensation, we consider a prediction horizon equal to the current delay value, which is assumed to be known. The delay itself is not necessarily causal, i.e., it can be such that Ḋ(t) > 1 for some t ≥ 0. The meaning of this condition is that the delay can vary more rapidly that the absolute time for some instants. In other words, older information can temporally feed the system. Up to the authors' knowledge, this situation has never been studied, as all previous works consider that Ḋ(t) ≤ 1 for t ≥ 0 (see [START_REF] Bekiaris-Liberis | Nonlinear Control Under Nonconstant Delays[END_REF] [10] [START_REF] Mazenc | Lyapunov-Krasovskii Functionals and Application to Input Delay Compensation for Linear Time-Invariant Systems[END_REF] [30] for instance). This is the main contribution of the paper. As a first step in the design of prediction-based control law for systems subject to chattering input delay, we consider the delay function to be continuously differentiable, which is a demanding assumption from a practical point of view and should be relaxed in future works. Recasting the problem as an Ordinary Differential Equation (ODE) cascaded with a transport Partial Differential Equation (PDE), we use a backstepping transformation recently introduced in [START_REF] Krstic | Boundary Control of PDEs: a Course on Backstepping Designs[END_REF] to analyze the closed-loop stability. Extending Halanay inequality [START_REF] Bresch-Pietri | Prediction-based stabilization of linear systems subject to input-dependent input delay of integral-type[END_REF], [START_REF] Halanay | Differential Equations: Stability, Oscillations, Time Lags[END_REF], [START_REF] Ivanov | Halanay inequality, yorke 3/2 stability criterion, and differential equations with maxima[END_REF], [START_REF] Wansheng | A generalized halanay inequality for stability of nonlinear neutral functional differential equations[END_REF] to the linear time-varying framework, we prove asymptotic convergence of the system state provided that the delay time-derivative is sufficiently small in average, in the sense of an average L 2 -norm.

The paper is organized as follows. In Section II, we introduce the problem at stake, before designing our control strategy and stating our main result. The latter is proved in Section III and its merits are illustrated in Section IV with a simulation example. We conclude with directions of future work.

Notations. In the following, | • | is the usual Euclidean norm and, for a signal u(x, •) for x ∈ [0, 1], u(•) denotes the spatial L 2 -norm., i.e.,

u(t) = 1 0 u(x,t) 2 dx
We write ∂ x f the partial derivative of a function f with respect to a variable x; x t refers to the function x t : s ∈ [-D, 0] → x(t + s) for a given function x and a constant D > 0. Finally, λ (M) and λ (M) refer to the minimal and maximal eigenvalues of a matrix M.

II. PROBLEM STATEMENT AND CONTROL DESIGN

We consider the following (potentially) unstable linear dynamics

Ẋ(t) = AX(t) + BU(t -D(t)) (1) 
in which the delay is a known continuously differentiable function such that

D(t) ∈ [D, D ] ⊂ [D, D] with D > 0.
Note that no assumption is made a priori on the time-derivative of D. In particular, it is possible that Ḋ(t) > 1 for certain intervals of time.

The control objective is to design a prediction-based controller stabilizing the plant (1), taking advantage of the fact that the current value of the delay is known for all time. With this aim in view, consider the following control law

U(t) =K e AD(t) X(t) + t t-D(t) e A(t-s) BU(s)ds (2) 
in which the feedback gain K is such that A + BK is Hurwitz. This controller aims at forecasting values of the state over a time window of varying length D(t) 1 . Of course, exact compensation of the delay is not achieved with this controller. To do so, one would need to consider a time window of which length would exactly match the value of the future delay, as it is made in [START_REF] Nihtila | Finite pole assignment for systems with time-varying input delays[END_REF] and [START_REF] Krstic | Delay Compensation for Nonlinear, Adaptive, and PDE Systems[END_REF]. In details, defining η(t) = t -D(t) and assuming that its inverse exists, exact delay-compensation is obtained with the feedback law U(t) = KX(η -1 (t)). Yet, implementing this relation requires to predict the future variations of the delay via η -1 (t). This may not be achieved in practice, when no delay model is available. Further, note that the inverse function η -1 (t) may not exist for all time, if Ḋ(s) > 1 for some instants as η may then be non-monotonically increasing. This motivates our choice of the prediction-based controller (2). 

∀t ≥ 0 1 t -h i t h i Ḋ(s) 2 ds ≤ δ , t ∈ [h i , h i+1 ] (3) 
for an ordered sequence

(h i ) i∈N such that h 0 = t 0 , lim i→∞ h i = ∞ and ∆h i = h i+1 -h i ∈ [∆, ∆] for i ∈ N. Define the functional Γ(t) = |X(t)| 2 + t t-D U(s) 2 ds
There exists δ * ∈ (0, 1) such that, if δ < δ * , there exist γ, R > 0 such that

Γ(t) ≤ R max Γ D e -γ(t-D) , t ≥ D (4) 
1 Note that this controller does not exactly match the predicted system state on a time-horizon D(t). Indeed, using the variation of constant formula

∀t ≥ 0 , X(t + D(t)) = e AD(t) X(t) + t t-D(t) e A(t-s) BU(s + D(t) -D(s))ds
However, the integral in this prediction may not be implementable as it is not necessarily causal (in details, this is the case when there exists s ∈ [t -D(t),t] such that s -D(s) ≥ t -D(t), i.e., when the delay D(t) is suddenly high and the signal received at time t is older then those previously received) while the one employed in (2) always is.

Further, even if one can implement this prediction, the involved integral can be approximated by the one used in (2) if D(t) -D(s) ≈ 0 for "most" instant t, i.e., under the assumption that the variations of the delay are sufficiently small in average. As this assumption is the one which is required in the following in Theorem 1 to robustly compensate the delay, we rather use the prediction form (2) which is always causal and easier to implement.

Condition (3) allows the delay time-derivative to be quite large for some time instants, but requires it to be sufficiently small in average to guarantee stability, that is in the sense of the average L 2 -norm given in condition [START_REF] Bekiaris-Liberis | Nonlinear control under delays that depend on delayed states[END_REF]. In particular, the delay function can be non-causal for some time instants, as long as it is not most of the time (i.e. as δ * < 1).

Note that, as our prediction employs the current delay value D(t) instead of the time horizon η -1 (t) to estimate the future system state, it can be highly inaccurate when the delay is fast varying. In this context, the requirement δ < δ * with δ introduced in (3) can also be interpreted as a condition for robust delay compensation achievement: if the delay varies sufficiently slowly most of the time, its current value D(t) used for prediction will remain sufficiently often close enough to its future values for the corresponding prediction to guarantee closed-loop stabilization.

We now detail the proof of this theorem.

III. PROOF OF THEOREM 1 A. Backstepping transformation and target system

As a fist step in our analysis, we introduce the two distributed actuators

u(x,t) =U(t + D(t)(x -1)) (5) v(x,t) =U(t -D + x(D -D(t))) (6) 
to reformulate (1) into the following PDEs-ODE cascade

Ẋ(t) =AX(t) + Bu(0,t) (7) 
D(t)∂ t u =(1 + Ḋ(t)(x -1))∂ x u (8) u(1,t) =U(t) (9) (D -D(t))∂ t v =(1 -x Ḋ(t))∂ x v (10) v(1,t) =u(0,t) (11) 
In details, the input delay is now represented as the cascade of an ODE [START_REF] Chèbre | Feedback control and optimization for the production of commercial fuels by blending[END_REF] fed by the output of a transport PDE [START_REF] Depcik | One-dimensional automotive catalyst modeling[END_REF], with time-and space-varying propagation velocity. The first transport PDE ( 8) is cascaded with a second transport PDE [START_REF] Figueredo | Robust stability criteria for uncertain systems with delay and its derivative varying within intervals[END_REF] with space-and time-varying propagation velocity. Together, ( 8)- [START_REF] Gu | Survey on recent results in the stability and control of time-delay systems[END_REF] simply account for the input propagation over a time window of length D. Note that, as no assumption is made a priori on the existence of a upper-bound of the delay derivative, the pointwise velocities in ( 8) and ( 10) can be positive or negative depending on the spatial variable.

To analyze this closed-loop system, following [START_REF] Krstic | Boundary Control of PDEs: a Course on Backstepping Designs[END_REF], we define the following backstepping transformation w(x,t) =u(x,t) -K e AD(t)x X(t)

+ D(t)
x 0 e AD(t)(x-y) Bu(y,t)dy [START_REF] Halanay | Differential Equations: Stability, Oscillations, Time Lags[END_REF] Lemma 1: The infinite-dimensional backstepping transformation [START_REF] Halanay | Differential Equations: Stability, Oscillations, Time Lags[END_REF] together with the control law (2) transform the plant (1) into the target system

Ẋ(t) =(A + BK)X(t) + Bw(0,t) (13) D(t)∂ t w =(1 + Ḋ(t)(x -1))∂ x w -D(t) Ḋ(t)g(x,t) (14) w(1,t) =0 (15) 
(D -D(t))∂ t v =(1 -x Ḋ(t))∂ x v (16) v(1,t) =u(0,t) (17) 
with g(x,t) = Ke AD(t)x (AX(t) + Bu(0,t))

Proof: Taking time-and space-derivative of ( 12), one gets, using integration by parts for the second equation, )x AxX(t)

∂ t w = ∂ t u -K Ḋ(t) e AD(t

+

x 0 e AD(t)(x-y) (I + AD(t)(xy))Bu(y,t)dy -K e AD(t)x (AX + Bu(0,t)) + D(t)

x 0 e AD(t)(x-y) B∂ t u(y,t)dy )x AD(t)X + D(t)e AD(t)x Bu(0,t)

∂ x w = ∂ x u -K e AD(t
+ D(t)
x 0 e AD(t)(x-y) B∂ x u(y,t)dy Matching these two expressions and using (8), one easily gets (14) with g(x,t) = K e AD(t)x AxX(t)

+ x 0 e AD(t)(x-y) (I + AD(t)(x -y))Bu(y,t)dy + K(1 -x)
× e AD(t)x (AX + Bu(0,t)) +

x 0 e AD(t)(x-y) B∂ x u(y,t)dy + K

x 0 e AD(t)(x-y) B(y -1)∂ x u(y,t)dy which, using the integration by part

x 0 e AD(t)(x-y) B(yx)∂ x u(y,t)dy = e AD(t)x xBu(0,t) -x 0 e AD(t)(x-y) (I + AD(t)(xy))Bu(y,t)dy can simply be expressed as in Lemma 1. The boundary condition [START_REF] Krstic | Boundary Control of PDEs: a Course on Backstepping Designs[END_REF] follows from the choice of the control law (2) and the backstepping transformation definition [START_REF] Halanay | Differential Equations: Stability, Oscillations, Time Lags[END_REF].

As the target system presents the suitable boundary condition w(1,t) = 0, this the one which is used in the Lyapunov analysis.

B. Stability analysis

Consider the following Lyapunov functional candidate

V (t) =X(t) T PX(t) + b 1 D(t) 1 0 (1 + x)w(x,t) 2 dx + b 2 (D -D(t)) 1 0 (1 + x)v(x,t) 2 dx (18)
in which P is the symmetric positive-definite solution of the Lyapunov equation P(A + BK) + (A + BK) T P = -Q, for a given symmetric definite-positive matrix Q and b 1 , b 2 are positive constant parameters. Note that, using Young and Cauchy-Schwartz inequalities, together with the inverse Backstepping transformation u(x,t) =w(x,t) + K e (A+BK)D(t) X(t)

+ D(t)
x 0 e (A+BK)D(t)(x-y) Bw(y,t)dy [START_REF] Mazenc | Generating positive and stable solutions through delayed state feedback[END_REF] one gets the existence of constants r 1 , r 2 , s 1 , s 2 > 0 such that 20)

u(t) 2 ≤r 1 |X(t)| 2 + r 2 w(t) 2 (
w(t) 2 ≤s 1 |X(t)| 2 + s 2 u(t) 2 (21)
and hence, observing that t t-D(t) U(s) 2 ds = D(t) u(t) 2 and that t-D(t) t-D U(s) 2 ds = (D -D(t)) v(t) 2 , one obtains the existence of µ 1 , µ 2 > 0 such that

µ 1 Γ(t) ≤ V (t) ≤ µ 2 Γ(t) (22) 
Now, taking a time-derivative and using integrations by parts, one gets

V (t) = -X T QX + 2X T PBw(0,t) + b 1 -(1 -Ḋ(t))w(0,t) 2 -w(t) 2 -2 Ḋ(t) 1 0 xw(x,t) 2 dx -2D(t) Ḋ(t) 1 0 (1 + x)w(x,t)g(x,t)dx + b 2 2v(1,t) 2 -v(0,t) 2 -v(t) 2 -2 Ḋ(t)v(1,t) 2 + Ḋ(t) 1 0 (2x + 1)v(x,t) 2 dx + Ḋ(t) 1 0 (1 + x)[b 1 w(x,t) 2 -b 2 v(x,t) 2 ]dx
in which, from [START_REF] Gu | Survey on recent results in the stability and control of time-delay systems[END_REF] and [START_REF] Halanay | Differential Equations: Stability, Oscillations, Time Lags[END_REF],

2v(1,t) 2 ≤ 4(w(0,t) 2 + |K| 2 |X(t)| 2 ) ( 23 
)
Using the fact that, from (2) with Young and Cauchy-Schwartz inequalities,

u(0,t) 2 = U(t -D(t)) 2 ≤ M(|X(t -D(t))| 2 + u(t -D(t)) 2 ) , t ≥ D (24)
for a given positive constant M, together with [START_REF] Mazenc | Lyapunov-Krasovskii Functionals and Application to Input Delay Compensation for Linear Time-Invariant Systems[END_REF] and Young and Cauchy-Schwartz inequalities, one obtains the existence of a constant M > 0 such that

2D(t) 1 0 (1 + x)w(x,t)g(x,t)dx ≤ W (t) (25) 2v(1,t) 2 ≤ W (t) , w(0,t) 2 ≤ W (t) (26) 
W (t) =M max s∈[-D,0] |X t (s)| 2 + w t (s) 2 ( 27 
)
for t ≥ D. Therefore, with ( 23), ( 25)-( 26) and applying Young inequality, one gets for t ≥ D ) such that, for δ < δ * , there exist r, γ > 0

V (t) ≤ - λ (Q) 2 -4b 2 |K| 2 |X(t)| 2 -b 1 w(t) 2 -b 2 v(t) 2 -b 1 -4b 2 - 2|PB| 2 λ (Q) w(0,t) 2 + b 0 | Ḋ(t)| × max s∈[-D,0] |X t (s)| 2 + w t (s) 2 + v t (s) 2 in which b 0 = b 1 (4 + 2M) + b 2 (1 + M). Consequently, choos- ing b 2 = λ (Q) 16|K| 2 , b 1 > 4b 2 + 2|PB| 2 λ (Q) , it follows V (t) ≤ -ηV (t) + b| Ḋ(t)| max s∈[-D,0] V (t + s) , t ≥ D in which we have introduced η = min λ (Q)
V (t) ≤ r maxV D e -γ(t-D) , t ≥ D The fact δ * < 1 follows conservatively observing that η ≤ b 2 /(2b 1 D) and that b ≥ b 0 /(b 1 D) ≥ b 2 /(b 1 D) . Finally, using (22) 
, one deduces (4).

C. Remarks

The main trick enabling to conclude on the overall system convergence without requiring the delay time-derivative to be strictly uniformly bounded by 1 (i.e. Ḋ(t) < 1, t ≥ 0) is the use of ( 24) in the analysis (to counteract the appearance of terms Ḋ(t)w(0,t)2 ). However, this choice is somewhat conservative in the sense that it only holds for t ≥ D and hence the exponential result stated in Theorem 1 only holds for t ≥ D.

IV. SIMULATION RESULTS

To illustrate the relevance of the proposed prediction-based control law, we consider the unstable second-order dynamics

Ẋ(t) = 0 1 -1 1 X(t) + 0 1 U(t -D(t)) (28) 
in which D(t) is a communication delay that can be subject to large variations. A schematic view of the system is given in Fig. 1. We consider that the communication between the plant and the controller is not symmetric, resulting only into an input delay 2 . The control law (2) is applied with the feedback gain K = -[2 3]. The integral in ( 2) is implemented with a trapezoidal discretization scheme.

Communication delay D(t)

Controller Plant 

X(t) U (t) U (t -D(t)) Network
Ḋ(t) Ḋ(t) Ḋ = 1
Fig. 2. Closed-loop dynamics for a continuously differentiable delay of sinusoidal form (see the third plot above and Fig. 3). We first consider a sinusoidal continuously differentiable delay (see Fig. 3 in which a close-up view of the delay variations is provided), which exhibits time-derivatives greater than one during an infinite number of time intervals Corresponding closed-loop results are pictured in Fig. 2. One can observe that, as Theorem 1 states it can be the case, the plant asymptotically converges despite periodic non-causal delay variations. However, note that, as the delay function is continuously differentiable, a variation of 1 -Ḋ from a negative value to a positive one implies that t -D(t) is not injective, i.e. that some inputs are read twice. This has no physical meaning in the context of a network system. To evaluate our controller performance in a more meaningful framework, we consider a random delay constrained by the fact that all control inputs are only received once by the plant (i.e. such that there do not exist t 1 = t 2 s.t. t 1 -D(t 1 ) = t 2 -D(t 2 )). Corresponding simulation results are pictured in Fig. 4 and exhibit the same convergence property as previously. In this case, the causality property is almost never satisfied, as can be observed on the fourth plot provided in Fig. 4, but the average delay variations remain sufficiently small for stabilization to be achieved. Despite the fact that the delay is not continuously differentiable, one can observe that the conclusion of Theorem 1 still holds. Hence, extension of our design to almost everywhere (a.e.) piecewise continuously differentiable delay function is a direction of future work.

V. CONCLUSION

In this work, we presented the first result on predictionbased control for a linear plant subject to a known timevarying input delay which can violate the causality principle. The proposed controller employs a prediction of the system state on a time horizon equal to the current delay value. We have proven that asymptotic convergence is achieved, provided that the average delay variations remain sufficiently small, in the sense of an average L 2 -norm.

Our design exploits the fact that the delay is continuously differentiable, which may not be a fairly realistic assumption in the context of communication delays, i.e., for network systems for which each information sent is only received once by the system a priori. This motivates our willingness to extend the design proposed in this paper to piecewise continuously differentiable delay functions. APPENDIX Lemma 2 (Halanay inequality for Time-Varying systems): Consider a positive continuous real-valued function x such that, for some t 0 ∈ R, ẋ(t) ≤ -ax(t) + b(t) max x t , t ≥ t 0 x t 0 = ψ [START_REF] Witrant | Stabilisation des systèmes commandés par réseaux[END_REF] with a ≥ 0, b : R + → R + a continuous function which

satisfies 1 t -h i t h i b(s) 2 ds ≤ δ , t ∈ [h i , h i+1 ] (30) 
for some δ > 0 and an ordered sequence (h i ) i∈N such that h 0 = t 0 , lim i→∞ h i = ∞ and ∆h i = h i+1h i ∈ [∆, ∆] for all i ∈ N. There exists δ * ∈ (0, a 2 ) such that, if δ < δ * , then there exists γ, r ≥ 0 such that ∀t ≥ t 0 x(t) ≤ r max x t 0 e -γ(t-t 0 ) (31)

Proof: We start our analysis by observing that, without loss of generality, one can consider that ∆ ≥ D + 1/(2a) (otherwise, one can simply consider a subsequence of (h i ) i∈N which satisfies this property; this one exists as lim i→∞ h i = ∞).

Let t 1 = inf t ≥ t 0 | x(t) > max x t 0 ∈ R∪{∞} and assume δ < 4a 2 e -1 ∆ = δ < a 2 (32)

By definition, x(t 1 ) = max x t 0 , x(t) < x(t 1 ) for t < t 1 and there exists ε > 0 such that x(t) = max x t for t ∈ [t 

Theorem 1 :

 1 Consider the closed-loop system consisting of the dynamics (1) and the control law (2) in which the delay D : R → [D, D ] ⊂ [D, D] is a continuously differentiable function such that there exists δ > 0 such that

  (P),b 1 D,b 2 (D-D )} . From Lemma 2 in Appendix, one gets the existence of δ * ∈ (0, η b 2

Fig. 1 .

 1 Fig. 1. Schematic view of the considered system with communication delay.

Fig. 3 .

 3 Fig. 3. Zoom-in view of the delay variations and the corresponding delayed control.

Fig. 4 .

 4 Fig. 4. Closed-loop dynamics with a chattering delay.

  time horizon if the delay is not causal, as discussed later in Section II.
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  t 0 ) max x t 0 , t ∈ [t 1 ,t 1 + ε)From (32), this is in contradiction with the definition of t 1 . Hence t 1 > t 0 . Integrating[START_REF] Witrant | Stabilisation des systèmes commandés par réseaux[END_REF], one gets, for t ∈ [t 0 ,t 1 ],x(t) ≤e -a(t-t 0 ) x(t 0 ) +

					t
	≤ exp -(a -	b(s)ds x(t 0 ) δ )(t t t 0 √ t 0 e -a(t-s) b(s) max x s ds
	≤ e -a(t-t 0 ) +	t t 0	e -a(t-s) b(s)ds max x t 0
	Applying Cauchy-Schwartz inequality, one concludes that
	x(t) ≤ e -a(t-t 0 ) +	1 -e -2a(t-t 0 ) 2a	√ δ	√ t -t 0 max x t 0
	≤ e -a(t-t 0 ) +	δ 2a	√ t -t 0 max x t 0	(33)

1 ,t 1 +ε). Assume that t 1 = t 0 . Then

[START_REF] Witrant | Stabilisation des systèmes commandés par réseaux[END_REF] 

rewrites

ẋ(t) ≤ax(t) + b(t)x(t) , t ∈ [t 1 ,t 1 + ε)

and, with

[START_REF] Yue | Delayed feedback control of uncertain systems with time-varying input delay[END_REF]

,

x(t) ≤ expa(tt 0 ) + ∆ = ϕ(tt 0 ) max x t 0 , t ∈ [t 0 ,t 1 ]

This is usually not the case in practice, as the plant and the controller exchange data through similar channels, which should result into an additional output delay. Note that, for a time-varying delay, an output delay cannot be recast as an input delay. However, our approach can be straightforwardly extended to LTV systems. Therefore, by appropriately modifying the control design, both output-and input-delays could be handled.

Studying this function, one can see that ϕ is strictly increasing on [0,t 

which exists according to the previous considerations, and assume that δ < δ * ∆ = min δ , δ . Finally, define

From ( 36) and the fact that ∆ > 1/(2a) + D, it follows that ε 0 ≥ ε > 0. Consider δ 0 such that τ * 1 = min {h 1t 0 ,t 1t 0 } for δ = δ 0 and assume temporarily that δ ≤ δ 0 . Then, if t 1 ≤ t 0 + t * 2 , from (33), we conclude that x(t 1 ) < max x t 0 and we again obtain a contradiction with the definition of t 1 . Consequently, t 1 > t 0 + t * 2 ≥ h 1 from (35). Thus, δ 0 is such that τ * 1 = h 1t 0 for δ = δ 0 . From (35), one gets that δ < δ 0 . Hence, by picking δ < δ * , the conclusion t 1 > h 1 holds.

Further, from (35), it follows that τ *

Hence, to summarize, by construction, one gets (33) and

• t 1 > h 1 ; and

We now prove similar properties by iterations, for i ≥ 1. Integrating (29) between h i and t and following the same lines as previously, one gets

With the same arguments as those previously used, one obtains that t 1 > t * 2 + h i > h i+1 provided that δ ≤ δ i . Similarly, one can show that this condition holds as δ < δ * < δ i . Defining

It follows directly that t 1 = ∞. Further, from (37) and as ε i > ε > 0 for all i ∈ N, there exist r, γ > 0 such that (31) is satisfied.