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1 Introduction

One of the outstanding problems in string theory is to find the effective low energy dynamics

for various classes of compactifications. Whereas from the phenomenological point of view

we are primarily interested in compactifications preserving not more than four supercharges

in four dimensions, our understanding of these cases remains still rudimentary and limited

to the weak coupling regime. On the other hand, quantum effects in general, and non-

perturbative effects in particular, which affect the effective action at strong coupling, are

known to play an extremely important role. For instance, one has to take them into account

– 1 –



J
H
E
P
0
2
(
2
0
1
5
)
1
7
6

to stabilize all moduli and to get a viable cosmological models [1], they provide resolution of

unphysical singularities in the moduli space [2], and they appear to be a crucial ingredient

ensuring various stringy dualities [3, 4]. Therefore, having control over such effects would

definitely produce a great impact on different research directions.

In recent years a significant progress has been achieved in understanding of the non-

perturbative effective action resulting from type II string theory compactified on a Calabi-

Yau threefold Y. In this case the low energy theory has N = 2 supersymmetry and the

effective action is completely determined by the geometry of the vector and hypermultiplet

(HM) moduli spaces [5, 6]. The former is a special Kähler (SK) manifold and is classically

exact (no corrections in the string coupling gs), whereas the latter is quaternion-Kähler

(QK) and receives perturbative and non-perturbative gs-corrections. The progress men-

tioned above was related with the developments of twistorial methods which provide an

efficient parametrization of QK geometries [7–9]. Combining these methods with the sym-

metries expected to survive at quantum level, a large class of instanton corrections to the

HM moduli space has been found [10–17] (see [18, 19] for reviews). Although the de-

scription of few types of instantons remains still unknown, the complete non-perturbative

picture for this class of compactifications seems to be already not far from our reach.

However, these results encode the HM metric in a very inexplicit way: they are formu-

lated in terms of ceratin holomorphic data on the twistor space, a canonical CP 1 bundle

over the original QK manifold. In principle, these data contain all geometric information,

and the procedure to extract the metric from them is well known. But it is often quite

difficult to realize it in practice. As a result, an explicit expression for the metric was not

known beyond the perturbative approximation. On the other hand, it might be interesting

not only from the pure mathematical point of view, as an example of an exact and non-

trivial QK metric, but also from the perspective of physical applications such as moduli

stabilization and producing an inflationary potential by gauging some of the isometries on

the moduli space [20, 21].

In this paper we fill this gap by computing the HM moduli space metric in the presence

of D-instanton corrections. More precisely, our result applies in the two cases. First, if

one includes only electrically charged D-instantons (in the type IIA formulation these are

instantons coming from D2-branes wrapping A-cycles in H3(Y,Z), whereas in type IIB

they correspond to D(-1) and D1-instantons), the obtained metric is valid to all orders in

the instanton expansion and thus it is an exact quaternion-Kähler metric. In the second

case, one can consider all D-instantons, but then the resulting metric is valid only in the

one-instanton approximation.

In the special case of one hypermultiplet, known as universal hypermultiplet, our re-

sults describe a four-dimensional QK manifold with one continuous isometry. By a proper

choice of coordinates the metric on such spaces can always be put in the so-called Tod

ansatz, which is described by one real function satisfying the non-linear Toda differential

equation [22]. We show that the D-instanton corrected HM metric, which we computed,

perfectly fits this ansatz and the potential, one derives from it, does solve the Toda equa-

tion. This provides a very non-trivial consistency check of our results.
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Besides, we reconsider the issue of a curvature singularity, which was studied before

in [23]. The singularity appears after inclusion of the one-loop gs-correction in the tree level

HM metric [24–26]. Knowing the metric in the presence of D-instantons, we are able to

study how they affect this singularity. In particular, we derive an equation for its position

in the moduli space. Furthermore, restricting to the D(-1)-instantons on the type IIB side,

we rewrite this equation in the form which is explicitly invariant under the SL(2,Z) duality

group. This allows us to relate the weak and strong coupling regions and establish that

the singularity is still present. This result suggests that perhaps the singularity is resolved

only in the full non-perturbative metric which includes not only D-instantons, but also

corrections from NS5-branes wrapping the whole Calabi-Yau [27].

The paper is organized as follows. In the next section we briefly review some facts

about the HM moduli space. In particular, we explain the twistorial construction of the

D-instantons. In section 3, starting from this construction, we compute the explicit ex-

pression for the D-instanton corrected metric. In section 4 we specialize this result to the

case of the universal hypermultiplet. Section 5 is devoted to the analysis of the curvature

singularity. Finally, section 6 presents our conclusions. In a few appendices we provide

some details of the calculations.

2 Hypermultiplet moduli space

2.1 Perturbative metric in type IIA

The HM moduli space MH is the target space of the non-linear sigma-model describing

the dynamics of the scalar fields constituting the bosonic sector of the hypermultiplets in a

theory with N = 2 supersymmetry. If the supersymmetry is local, i.e. the hypermultiplets

are coupled to N = 2 supergravity, MH must be a quaternion-Kähler manifold [5], which

means that its holonomy group is contained in Sp(n) × SU(2) where n is the number of

hypermultiplets and dimRMH = 4n. In the case where the theory we are describing

emerges from type II string theory compactified on a Calabi-Yau Y, MH comes equipped

with a set of preferable coordinates originating in the geometry of the compactification.

Let us concentrate on the type IIA formulation. Then the low energy effective the-

ory contains n = h2,1(Y) + 1 hypermultiplets and their scalar fields have the following

interpretation:

• the fields za (a = 1, . . . , h2,1) parametrizing the deformations of the complex structure

of Y;

• the RR-fields ζΛ, ζ̃Λ (Λ = 0, . . . , h2,1) arising as period integrals of the RR 3-form of

type IIA string theory over a symplectic basis of cycles in H3(Y,Z);

• the four-dimensional dilaton eφ = 1/g2(4);

• the NS-axion σ which is dual to the B-field in four dimensions.

The subspace parametrized by za, which we denote sKc, carries a natural special Kähler

metric [28] determined by the holomorphic prepotential F (XΛ), a homogeneous function
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of degree two. In terms of this function the Kähler potential of the special Kähler geometry

is given by

K = − logK, K = −2 Im (z̄ΛFΛ(z)), (2.1)

where FΛ = ∂XΛF and we defined zΛ = (1, za). Note that this subspace and the total

space MH carry an action of the symplectic group. In particular, (XΛ, FΛ) and (ζΛ, ζ̃Λ)

transform in the vector representation, whereas φ and σ are symplectic invariant.

At tree level the metric on MH is obtained by Kaluza-Klein reduction from ten-

dimensional supergravity and turns out to be determined by the prepotential F [29, 30].

It is known as the c-map metric which gives a canonical construction of a QK manifold

as a bundle over a special Kähler base. At perturbative level the HM metric receives

a one-loop correction only [25]. It is proportional to the Euler class of the Calabi-Yau,

χY = 2
(

h1,1(Y)− h2,1(Y)
)

, and thus induces a one-parameter deformation of the c-map

metric [24, 31, 32]. Its explicit expression has been computed in [26] and reads as

ds2 =
r + 2c

r2(r + c)
dr2 − 1

r

(

NΛΣ − 2(r + c)

rK
zΛz̄Σ

)

(

dζ̃Λ − FΛΛ′dζΛ
′

)(

dζ̃Σ − F̄ΣΣ′dζΣ
′

)

+
r + c

16r2(r + 2c)

(

dσ + ζ̃Λdζ
Λ − ζΛdζ̃Λ + 8cAK

)2
+

4(r + c)

r
Kab̄dz

adz̄b. (2.2)

Here we denoted r = eφ, NΛΣ = −2 ImFΛΣ, the matrix NΛΣ is its inverse, c = − χY

192π is the

deformation parameter encoding the one-loop correction, and AK is the so-called Kähler

connection on sKc

AK =
i

2
(Kadz

a −Kādz̄
a) . (2.3)

Topologically the metric (2.2) describes a bundle with the two-stage fibration structure

R
+
r ×















S1
σ −→ C(r)

↓
Tζ,ζ̃ −→ Jc(Y)

↓
sKc















. (2.4)

Here Jc(Y) is the so-called intermediate Jacobian with the special Kähler base

parametrized by complex structure moduli za and with the fiber given by the torus of

RR-fields, Tζ,ζ̃ = H3(Y,R)/H3(Y,Z). In turn, Jc(Y) appears as the base for the circle

bundle C(r) of the NS-axion, with the curvature given by [33]

d

(

1

2
Dσ

)

= ωT +
χY

24
ωsKc

, (2.5)

where ωT = dζ̃Λ∧dζΛ and ωsKc
= − 1

2πdA are the Kähler forms on T and sKc, respectively.

The second contribution to the curvature is generated by the one-loop correction. The

metric on the circle bundle parametrically depends on the dilaton r, which contributes to

the topology just as a common factor.

Note that the deformation induced at one-loop gives rise to three singularities at r = 0,

r = −c and r = −2c. One can show that the first two can be removed by a coordinate
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transformation [23]. On the other hand, the last one is a true singularity as can be checked

by computing the quadratic curvature invariant RµνρσR
µνρσ. Since the physical moduli

space cannot have such singularities, it must be resolved by non-perturbative effects. In

section 5, we will discuss the effect of D-instantons on this issue.

2.2 D-instantons and the twistor space

Beyond the perturbative approximation described by the metric (2.2), the HM moduli

space is known to receive instanton corrections coming from branes wrapping non-trivial

cycles of the Calabi-Yau. There are two classes of such corrections corresponding to the

two types of branes in string theory: D-branes and NS5-branes. The former are by now

well understood, at least in the type IIA formulation. The latter have been described only

recently (see [14, 16, 17]) and only on the type IIB side. In this paper we will ignore them

and restrict our attention to the simpler sector of D-instantons.

A D-instanton is characterized by a charge vector γ = (pΛ, qΛ). On the type IIA side,

it is integer valued and labels the homology class qΛAΛ− pΛBΛ ∈ H3(Y,Z) which contains

the special Lagrangian submanifold wrapped by a D2-brane.1 On the type IIB side, it

labels instead an element of the derived category of coherent sheaves [34, 35]. Given the

charge, one further introduces two other important objects:

• the central charge function

Zγ(z) = qΛz
Λ − pΛFΛ(z), (2.6)

which appears as the central element in the supersymmetry subalgebra unbroken by

the instanton;

• the generalized Donaldson-Thomas (DT) invariant (or simply the BPS index) Ωγ ,

which is an integer2 appearing as a part of the topological data characterizing the

Calabi-Yau Y and, in a sense, counts the instantons of given charge.

Then the leading contribution of the D-instanton of charge γ to the metric has the following

form [27]

δds2|D-inst ∼ Ωγ e
−2π|Zγ |/gs−2πi(qΛζ

Λ−pΛζ̃Λ). (2.7)

In fact, one can do much better and incorporate D-instantons exactly, to all orders in

gs and in the instanton expansion. This is achieved using the twistorial description of QK

manifolds [9]. The main idea behind this approach is that complicated constraints of the

QK geometry are resolved in terms of some holomorphic data on the twistor space Z. The

latter is a canonical CP 1-bundle over the QK manifold M, where the fiber describes the

triplet of almost complex structures J i satisfying the algebra of quaternions and thereby

1The other branes existing in the type IIA formulations, D0 and D4, do not generate instanton contri-

butions because there are no 1- and 5-dimensional cycles on any Calabi-Yau threefold.
2In fact, the DT invariants are piecewise constant functions on the moduli space parametrized by za.

They jump across codimension one walls in this space, known as lines of marginal stability, according to

the wall-crossing formula of [36]. For the purpose of this work this phenomenon is irrelevant and we can

safely ignore this dependence on the moduli.
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realizing the quaternionic structure of M. The main advantage of the twistor space is that,

in contrast to M, it is a Kähler manifold which carries in addition a holomorphic contact

structure. It is defined as the kernel of the canonical (1,0)-form Dt on Z, where t is a

complex coordinate parametrizing the fiber. This (1,0)-form is in turn determined by the

SU(2) part ~p of the Levi-Civita connection on M as follows

Dt = dt+ p+ − ip3t+ p−t2, (2.8)

where we used the chiral components of the connection, p± = −1
2

(

p1 ∓ ip2
)

. Rescaling Dt,

one can make from it a holomorphic one-form3

X =
4

it
eφDt (2.9)

such that X ∧ (dX )n is the non-vanishing holomorphic top form. The rescaling function φ

is called the contact potential. The properties of X imply that locally, by a proper choice

of coordinates, it can always be trivialized as

X = dα[i] + ξΛ[i]dξ̃
[i]
Λ , (2.10)

where the index [i] labels open patches of an atlas, Z = ∪Ui, and (ξΛ[i], ξ̃
[i]
Λ , α

[i]) is the set

of Darboux coordinates in Ui. These coordinates turn out to be the main object of interest

in this construction because knowing them as functions on the base M and of the fiber

coordinate t is, in principle, equivalent to knowing the metric. Indeed, combining (2.9)

and (2.10), one can find the contact potential φ and the SU(2) connection ~p, which can

then be used to compute the triplet of quaternionic two-forms ~ω. They are defined by the

almost complex structures, ~ω(X,Y ) = g( ~JX, Y ), and the QK geometry requires that they

are proportional to the curvature of the SU(2) connection4

~ω = −2

(

d~p+
1

2
~p× ~p

)

. (2.11)

On the other hand, the Darboux coordinates can also be used to get the almost complex

structure J3 so that, combining it with ω3, one arrives at the metric on M. The details of

this procedure are explained in appendix A, and in the next section we apply it to extract

the D-instanton corrected metric on MH .

Thus, to incorporate D-instantons in the twistor approach, we should specify the Dar-

boux coordinates on the twistor space of the HM moduli space MH taking into account

their contributions. This was done in [12, 13] and the resulting Darboux coordinates are

3In general, the rescaling factor may depend holomorphically on the fiber coordinate t and is different

in different patches of an open covering of the twistor space, which implies that the contact one form is not

globally defined and has different local realizations X [i]. However, we will not need such generic construction

which becomes relevant only after inclusion of NS5-brane instantons.
4The proportionality coefficient is related to the (inverse) cosmological constant and affects only the

overall scale of the metric. We fix it by consistency with the perturbative metric (2.2).
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determined in terms of functions Ξγ(t) which satisfy the following system of integral equa-

tions

Ξγ(t) = Θγ +R
(

t−1Zγ − tZ̄γ

)

+
1

8π2

∑

γ′

Ωγ′

〈

γ, γ′
〉

∫

ℓγ′

dt′

t′
t+ t′

t− t′
log
(

1− σγ′e−2πiΞγ′ (t
′)
)

.

(2.12)

Here Θγ = qΛζ
Λ−pΛζ̃Λ, R plays the role of a coordinate on the moduli space (we will trade

it later for the dilaton), 〈γ, γ′〉 = qΛp
′Λ − q′Λp

Λ is the skew-symmetric product of charges,

ℓγ is the so-called BPS ray on CP 1 joining t = 0 and t = ∞ along the direction determined

by the phase of the central charge

ℓγ = {t : Zγ(z)/t ∈ iR−}, (2.13)

and σγ is a sign function on the charge lattice satisfying σγσγ′ = (−1)〈γ,γ
′〉σγ+γ′ and known

as quadratic refinement (we set it to 1 for pure electric charges γ = (0, qΛ)). Given the

functions Ξγ(t), the Darboux coordinates in the patch Uγ , which lies to the left from the

BPS ray ℓγ , read as

ξΛ[γ] = ζΛ +R
(

t−1zΛ − t z̄Λ
)

+
1

8π2

∑

γ′

Ωγ′p′ΛJ (1)
γ′ (t),

ξ̃
[γ]
Λ = ζ̃Λ +R

(

t−1FΛ − t F̄Λ

)

+
1

8π2

∑

γ′

Ωγ′q′ΛJ (1)
γ′ (t),

α[γ] = 4ic log t− 1

2
σ − R

2

(

t−1W − tW̄
)

+
R

16π2

∑

γ′

Ωγ′

(

t−1Zγ′ + tZ̄γ′

)

J (1)
γ′ (0)

− i

16π3

∑

γ′

Ωγ′

∫

ℓγ′

dt′

t′
t+ t′

t− t′
Lσγ′

(

e−2πiΞγ(t′)
)

− 1

2
ξΛ[γ](t) ξ̃

[γ]
Λ (t),

(2.14)

where

W (z) ≡ FΛ(z)ζ
Λ − zΛζ̃Λ (2.15)

and we introduced two functions5

Lǫ(z) = Li2(ǫz) +
1

2
log z log(1− ǫz),

J (1)
γ (t) =

∫

ℓγ

dt′

t′
t+ t′

t− t′
log
(

1− σγe
−2πiΞγ(t′)

)

.
(2.16)

These equations capture the effect of all D-instantons in an exact way. The price to pay for

this non-perturbative description is that it is somewhat implicit — to get corrections to the

metric tensor, one needs to follow the procedure outlined in appendix A. The main obstacle

on this way is the complicated nature of the integral equations (2.12), which can be solved,

for generic set of charges, only perturbatively generating an instanton expansion. This is

the reason why below we restrict to a subset of charges which allows to avoid this problem.

5The first function is a variant of the Roger dilogarithm which satisfies the famous pentagon identity

and plays an important role in integrability [37].
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A quantity, which is needed for evaluation of the metric and plays an important role in

this story [38, 39], is the contact potential appearing in the relation (2.9). It was explicitly

evaluated in [13], again in terms of the solution of (2.12), and is given by

eφ =
R2

4
K(z, z̄)− c− iR

32π2

∑

γ

Ωγ

∫

ℓγ

dt

t

(

t−1Zγ − tZ̄γ

)

log
(

1− σγe
−2πiΞγ(t)

)

. (2.17)

Its importance is partially explained by the fact that it can be identified with the dilaton

field. Then the formula (2.17) can be considered as an equation which allows to find the

coordinate R as a function of the dilaton and thereby to express all Darboux coordinates

in terms of the standard fields of the type IIA formulation of string theory.

Finally, note that the Darboux coordinates (2.14) carry a representation of the sym-

plectic group. Namely, (ξΛ[γ], ξ̃
[γ]
Λ ) transform as a vector under symplectic transformations,

whereas the combination α[γ] + 1
2 ξ

Λ
[γ]ξ̃

[γ]
Λ is invariant. Besides, the contact potential (2.17)

is also invariant. These properties ensure that the D-instanton corrections are consistent

with symplectic invariance of type IIA theory.

2.3 Type IIB and mirror symmetry

So far we dealt mostly with the HM moduli space in the type IIA formulation. Its type IIB

description can be obtained by applying mirror symmetry which requires that type IIA and

type IIB string theories compactified on mirror Calabi-Yau threefolds, and their moduli

spaces in particular, are the same. However, MH in type IIB comes with its own set of

natural coordinates. They are different from those used above and adapted to the action

of the S-duality group SL(2,Z), which is a manifest symmetry of the type IIB formulation.

Thus, to apply mirror symmetry in practice we need to know the relation between the type

IIB fields and the ones described in section 2.1. Such relation is known as mirror map.

At classical level it has been found in [40] and quantum corrections, including various

instanton effects, have been included in [23, 41, 42].

In this paper we will not need these general results. For our purposes it will be sufficient

to restrict to the mirror map for the field R, complex structure moduli za and RR-fields ζΛ

in the presence of D-instantons with vanishing magnetic charge pΛ. In this approximation

the mirror map for these fields turns out to coincide with the classical one and is given by

R =
τ2
2

za = ba + ita, ζ0 = τ1, ζa = −(ca − τ1b
a). (2.18)

The type IIB fields appearing here on the r.h.s. transform in the following way under an

S-duality transformation

(

a b

c d

)

∈ SL(2,Z):

τ → aτ + b

cτ + d
, ta → |cτ + d| ta,

(

ca

ba

)

→
(

a b

c d

)(

ca

ba

)

, (2.19)

where we combined the inverse 10-dimensional string coupling τ2 = 1/gs with the RR-field

τ1 into an axio-dilaton τ = τ1 + iτ2. We will use these relations in section 5 to extract the

strong coupling behavior of certain contributions to the HM metric.
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3 D-instanton corrected metric

In this section we will provide an explicit expression for the D-instanton corrected HM

metric, deriving it from the twistorial construction presented in section 2.2. We will relegate

most of intermediate equations and technical details to appendix B, trying to concentrate

here on conceptual issues.

In fact, we are not able to compute exactly the metric which includes all D-instanton

corrections because it is not possible to solve explicitly the integral equations (2.12), which

are at the heart of this construction. Therefore, we impose an additional condition that all

charges are mutually local, i.e.

〈γ, γ′〉 = 0. (3.1)

This condition can be interpreted in two ways. On one hand, it is satisfied if we include

only electrically charged D2-instantons which have charges with vanishing magnetic

component γ = (0, qΛ). Any other set of charges solving (3.1) can be rotated to this

one by a symplectic transformation. Nevertheless, it is useful to work in generic frame

because it allows to check the symplectic invariance of the final result, which is done in

appendix B.4. On the other hand, the condition (3.1) can be viewed as a reduction to the

one-instanton approximation because it effectively kills all multi-instanton terms in the

expressions for Darboux coordinates (2.14). This provides another justification for not

setting magnetic charges to zero at once.

The assumption (3.1) liberates us from the necessity to solve any equations since it

reduces (2.12) to an explicit and simple expression

Ξγ(t) = Θγ +R
(

t−1Zγ − tZ̄γ

)

. (3.2)

This is the crucial simplification. From this point no more approximations or assumptions

need to be made to compute the metric explicitly. The general procedure to extract it from

Darboux coordinates on the twistor space is presented in appendix A. The idea is just to

apply this procedure to the system described by eqs. (2.14) and (2.17).

However, first, we should translate the Darboux coordinates to the patch around t =

0, the north pole of CP 1, which we denote by U+. This can be done by performing a

holomorphic contact transformation, i.e. a change of Darboux coordinates preserving the

contact one-form (2.10), which removes most of singularities at t = 0 and leaves only

those which are admitted by the condition (A.1): ξΛ can have a simple pole, ξ̃Λ should be

regular, and α has only a logarithmic singularity controlled by the one-loop correction c.

Such contact transformation is given by

ξΛ[+] = ξΛ[γ] + ∂ξ̃ΛH
[+γ],

ξ̃
[+]
Λ = ξ̃

[γ]
Λ − ∂ξΛH

[+γ],

α[+] = α[γ] −H [+γ] + ξΛ[+]∂ξΛH
[+γ],

(3.3)

where the holomorphic function H [+γ] was found in [13] to have the following form

H [+γ] = F (ξ[+]) + Gγ(ξ[+], ξ̃
[γ]). (3.4)
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Here the second term is a complicated, but irrelevant function for us because, as was shown

in [13], it affects only O(t2) terms in the Laurent expansion of the Darboux coordinates.

Thus, we can safely ignore it for our purposes, and this allows to replace ξΛ[+] on the r.h.s.

of (3.3) by ξΛ[γ].

After this, it is straightforward to compute first few coefficients in the Laurent expan-

sion around t = 0 which can be found in (B.16). Substituting them into (A.2), one finds

the components of the SU(2) connection ~p, see (B.17). This connection in turn can be used

to get the quaternionic 2-form ω3 via (A.3). The result is given in (B.18). In all these

results we extensively used notations defined in appendix B.1 and, as for the perturbative

metric, denoted by r the exponential of the dilaton identified with the contact potential.

The next step is to write down explicitly the basis of (1,0) forms in the almost complex

structure J3. It is given by (A.4), but can be further simplified. First, since πa = dza, one

can drop all terms proportional to this one-form in other basis elements. Furthermore, it

turns out to be convenient to add to π̃α the term − i
2 ξ

Λ,0
[+] π̃Λ. As a result, one arrives at

the following basis

dza,

YΛ = dζ̃Λ − FΛΣdζ
Σ − 1

8π2

∑

γ

Ωγ

(

qΛ − pΣFΛΣ

)

dJ (1)
γ ,

Σ = dr + 2c d logR− i

16π2

∑

γ

Ωγ

(

RZγdJ (1,+)
γ − J (1,−)

γ d
(

RZ̄γ

)

)

+
i

4

(

dσ + ζ̃Λdζ
Λ − ζΛdζ̃Λ

)

.

(3.5)

The final step is the most cumbersome. It requires to rewrite the quaternionic 2-form

ω3 (B.18) in the basis of 1-forms (3.5) and their complex conjugates, so that it takes the

form similar to (A.5). This is a straightforward, although lengthy procedure which is the

subject of appendix B.3. The final result can be found in (B.42) and immediately leads to

the following expression for the D-instanton corrected metric:

ds2 =
2

r2

(

1− 2r

R2U

)

(dr)2 +
1

32r2
(

1− 2r
R2U

)

(

dσ + ζ̃Λdζ
Λ − ζΛdζ̃Λ + V

)2

+
R2

2r2
|zΛYΛ|2 +

1

rU

∣

∣

∣

∣

∣

YΛM
ΛΣv̄Σ − iR

2π

∑

γ

ΩγWγdZγ

∣

∣

∣

∣

∣

2

−1

r
MΛΣ

(

YΛ +
iR
2π

∑

γ

ΩγVγΛJ (2,+)
γ

(

dZγ −U−1Zγ∂K
)

)

×



ȲΣ − iR
2π

∑

γ′

Ωγ′ V̄γ′ΣJ (2,−)
γ′

(

dZ̄γ′ −U−1Z̄γ′ ∂̄K
)





– 10 –



J
H
E
P
0
2
(
2
0
1
5
)
1
7
6

+
R2K

r

(

Kab̄dz
adz̄b − 1

(2πKU)2

∣

∣

∣

∣

∣

∑

γ

ΩγZγWγ

∣

∣

∣

∣

∣

2

|∂K|2

+
1

2πK

∑

γ

ΩγJ (2)
γ

∣

∣dZγ −U−1Zγ∂K
∣

∣

2

)

. (3.6)

This is the main result of this work. Several comments about it are in order.

• To keep the expression for the metric as simple as possible, we used several notations

introduced in appendix B.1:

– Jγ with various upper indices denote the twistorial integrals (B.1), which all

can be evaluated in terms of series of Bessel functions;

– VγΛ and vΛ are the vectors (B.4) and (B.10);

– MΛΣ is the inverse of the matrix (B.7);

– U is the function (B.12), which can be thought of as an instanton corrected

version of the Kähler potential;

– Wγ is a function on the charge lattice defined in (B.13);

– and finally V is the one-form (B.15) generalizing the Kähler connection (2.3)

appearing in the perturbative metric.

• As was promised, the expression (3.6), although somewhat non-trivial, is rather ex-

plicit. However, there are two implicit ingredients which still may require to make

an instanton expansion. First of all, this is the inverse matrix MΛΣ. Only in some

particular cases it can be found without involving any expansion. Secondly, this

is the coordinate R which should be viewed as a function of other coordinates on

the moduli space. This function is defined only implicitly by the expression for the

dilaton (2.17), which in our notations takes the following form

r =
R2

4
K − c− iR

32π2

∑

γ

Ωγ

(

ZγJ (1,+)
γ + Z̄γJ (1,−)

γ

)

. (3.7)

• Since the HM metric is derived using the assumption on the D-brane charges which

has a symplectic invariant form, it is expected to be symplectic invariant itself. How-

ever, this symmetry is not explicit in the form given in (3.6). In fact, it is not explicit

in the expression (2.2) for the perturbative metric either. In that case it is actually

not so difficult to bring the metric to a manifestly symplectic invariant form, see for

instance [18, eq. (3.12)]. In our case this is a harder task, mainly due to the presence

of the matrix MΛΣ. Nevertheless, in appendix B.4 we address this issue and prove

that the metric is indeed symplectic invariant.

• As was noticed in the beginning of this section, our result is valid in the two cases: ei-

ther we include only a subset of all possible D-instantons with charges satisfying (3.1),
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in which case the metric is exact, or one considers all charges but restricts to the one-

instanton approximation. This approximation is effectively equivalent to dropping

all terms non-linear in DT invariants Ωγ . In this case the metric can be further sim-

plified. In particular, one can explicitly invert the matrix MΛΣ and solve (3.7) for R
as a function of other coordinates.

• The instanton corrections break the nice two-stage fibration structure (2.4) of the

perturbative metric. This happens, first of all, due to the fact that the metric on the

subspace parametrized by the complex structure moduli acquires a dependence on

the RR-fields. Moreover, the dilaton is now not factorized anymore, but non-trivially

combined with both za and (ζΛ, ζ̃Λ) due to the appearance of terms proportional

to dr in the holomorphic one-form YΛ, see (B.43). The property, which however

remains true, is that the HM moduli space is still a circle bundle with the fiber

parametrized by the NS-axion,

S1
σ −→ MH

↓
Binst
r,z,ζ,ζ̃

.

(3.8)

A non-trivial feature of the metric (3.6) is that the connection defining this bundle,

ζ̃Λdζ
Λ − ζΛdζ̃Λ + V , does not have a component along the dilaton, see (B.15). This

might be related to the obstructions on the quantum corrections coming from the

relation (2.5).

4 Universal hypermultiplet

4.1 Tod ansatz

A very important particular case of our story corresponds to compactification on a rigid

Calabi-Yau manifold, i.e. the one with h2,1(Y) = 0 which therefore does not have complex

structure moduli. The vanishing of the Hodge number implies that the HM sector of type

IIA string theory compactified on Y consists only from one hypermultiplet, appearing in

the literature under the name of the universal hypermultiplet [43]. Its moduli space is a

four-dimensional QK manifold. In four dimensions the QK condition is more explicit than

in higher dimensions and implies that the manifold should be an Einstein space with a

non-vanishing cosmological constant and a self-dual Weyl curvature.

Once the effects NS5-brane instantons are ignored, the HM moduli space is guaranteed

to have at least one continuous isometry, which acts by constant shifts of the NS-axion σ.

Self-dual Einstein spaces with such an isometry admit a rather explicit description: by a

proper choice of coordinates, their metric can always be written in the form of the Tod

ansatz parametrized by one real function [22]. The ansatz reads

ds2 = − 3

Λ

[

P

ρ2
(

dρ2 + 4eTdzdz̄
)

+
1

Pρ2
(dθ +Θ)2

]

, (4.1)
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where T is a function of (ρ, z, z̄) and is independent of θ parametrizing the direction of the

isometry. Furthermore,

P = 1− 1

2
ρ∂ρT, (4.2)

dΘ = i (∂zPdz − ∂z̄Pdz̄) ∧ dρ− 2i∂ρ(Pe
T )dz ∧ dz̄, (4.3)

whereas the Einstein self-duality condition of the metric is encoded in the Toda differential

equation to be satisfied by the function T ,

∂z∂z̄T + ∂2ρe
T = 0. (4.4)

This description was at the origin of many attempts to compute the instanton corrected

metric on MH because it implies that all instanton corrections can be encoded just in one

function, the Toda potential T . To extract them, it is sufficient to find a proper solution

of the Toda equation. Although in the one-instanton approximation this strategy was very

successful [44–48],6 the results obtained beyond this approximation are often not reliable

because of additional unjustified simplifications typically imposed on the ansatz for T to

fix ambiguities of integration and to avoid complications of the full non-linear problem.

Given the twistorial construction of D-instantons, we do not need to solve any differ-

ential equations anymore. In principle, this construction should provide us automatically

with a solution of the Toda equation which incorporates all D-instanton corrections.

Furthermore, in [51] a dictionary between the twistorial quantities and those of the Tod

ansatz, which should be sufficient to extract such a solution, was found. It is given by the

following relations

ρ = eφ, z =
i

2
ξ̃
[+]
0 , θ = −1

8
σ, T = 2 log(R/2). (4.5)

In the next subsection we will show that the HM metric computed in the previous section,

specialized to the four-dimensional case, reproduces the ansatz (4.1), and the resulting

Toda potential and coordinates are consistent with the relations (4.5).

4.2 The metric and Toda potential

To write the metric (3.6) for the universal hypermultiplet, we note that in this case the

indices Λ,Σ, . . . take only one value, whereas quantities with indices a, b, . . . do not simply

exist. Correspondingly, we drop the remaining index 0 on n-dimensional vectors such as

charges and RR-fields and denote them simply as γ = (p, q) and (ζ, ζ̃). Furthermore, for

rigid Calabi-Yau manifolds the holomorphic prepotential is a quadratic monomial [52]

F (X) =
λ

2
X2, λ ≡ λ1 − iλ2 =

∫

B Ω
∫

AΩ
, (4.6)

where λ is a fixed complex number, given by the ratio of periods of the holomorphic 3-form

Ω ∈ H3,0(Y) over an integral symplectic basis (A,B) of H3(Y,Z), with λ2 > 0. As a result,

6A similar strategy can be applied to derive NS5-brane instantons as well [49], because generic 4d QK

manifolds can be parametrized by solutions of another, more complicated non-linear differential equation,

which replaces the Toda equation in the absence of the isometry [50].
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for the quantities characterizing the “special Kähler geometry”,7 one finds N = K = 2λ2
and Zγ = Vγ = q− λp. The other important quantities, including the potential U and the

one-forms Y and V , can be found in (C.3). Plugging them into (3.6), the metric reduces to

ds2=
2

r2

[

(

1− 2r

R2U

)(

(dr)2+
R2

4
|Y|2

)

+
1

64

(

1− 2r

R2U

)−1
(

dσ+ζ̃dζ−ζdζ̃+V
)2
]

.

(4.7)

Finally, it should be noted that the relation between R and the dilaton r = eφ is provided

as usual by (3.7).

Comparing the resulting metric with the Tod ansatz (4.1), one finds that they match

perfectly provided one takes Λ = −3/2, uses the identifications (4.5),8 and in addition

ensures that

• ∂ρT = 4
(

R2U
)−1

;

• the connection V satisfies the analogue of (4.3) (see (C.2));

• and the potential T = 2 log(R/2) fulfils the Toda equation.

In appendix C we prove that all these conditions do hold, and thus the metric we computed

satisfies the constraints of four-dimensional quaternion-Kähler geometry. This might be

considered as a non-trivial test on the general metric (3.6).

One of byproducts of our analysis is that we found an exact solution of the Toda

equation. Unfortunately, it is given only implicitly: it turns out to be encoded in the two

non-differential equations. One of them is the formula for the dilaton (3.7) and the second

equation is (B.16c), where ξ̃
[+]
0 should be replaced by −2iz. The former allows to find the

Toda potential T = 2 log(R/2) as a function of r = ρ and the RR-fields (ζ, ζ̃), whereas

the latter relates these fields to the complex coordinate z. Choosing the electric frame for

the set of mutually local charges and evaluating the integrals explicitly in terms of Bessel

functions, these two equations can be written as follows

eT =
1

2λ2
(ρ+ c)− eT/2

4π2λ2

∑

q>0

Ω̄(0,q)q cos
(

2πqζ
)

K1

(

8πqeT/2
)

,

z =
i

2
(ζ̃ − λζ) +

1

4π2

∑

q>0

Ω̄(0,q)q sin
(

2πqζ
)

K0

(

8πqeT/2
)

,

(4.8)

where we used the so-called rational DT invariants Ω̄γ =
∑

d|γ
1
d2

Ωγ/d, which appear here

as free parameters of the solution. It is clear that if one solves these equation by expanding

in powers of instantons, the Toda potential will be represented as a power series in Bessel

functions, which is similar to the solution found in [48].

In fact, the twistorial formalism allows to get the Toda potential which encodes all

D-instanton corrections, and not only the electrically charged ones. This is because the

identifications (4.5) hold in this more general case as well. Such Toda potential will be

7We put quotes because in this case they describe an empty space.
8We remind that Y = dξ̃

[+]
0 , which implies the identification dz = i

2
Y.
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again encoded in two non-differential equations similar to (4.8) and corresponding to the

formulas for the dilaton (2.17) and for the Fourier coefficient of the Darboux coordinate

ξ̃ (2.14), where no restriction on charges is imposed anymore. However, the difference will

be that the integrals appearing in these formulas cannot be evaluated explicitly, because

now the function Ξγ(t) is not the simple polynomial (3.2), but satisfies the system of integral

equations (2.12). Nevertheless, it is easy to solve this system perturbatively and generate

an instanton expansion for Ξγ(t) and subsequently for the Toda potential. We do not give

such an expansion here, but just note that already at second order the solution is given by

a complicated double integral, which cannot be reduced to a product of Bessel functions.

5 Curvature singularity in the presence of D-instantons

5.1 Equation for singularity

As was mentioned in the end of section 2.1, after inclusion of the one-loop correction, if

χY > 0, the HM metric acquires a curvature singularity at r = −2c. The natural question

is what happens with this singularity once one adds D-instanton contributions. In this

section we will try to answer this question, at least in the case of electrically charged

D-instantons where the metric (3.6) holds to all orders.

First of all, comparing the metrics (3.6) and (2.2), one observes that the factor r+2c,

appearing in front of the kinetic terms for the dilaton and the NS-axion, is promoted now to

1

2
R2U− r. (5.1)

Therefore, it is natural to expect that, equating this expression to zero, one obtains an

equation which determines a hypersurface in MH representing the singularity of the

D-instanton corrected metric. Substituting explicit expressions for U (B.12) and r (3.7),

one arrives at the following condition

K +
4c

R2
+

1

π

∑

γ

Ωγ

(

i

8π

(

ZγJ (1,+)
γ + Z̄γJ (1,−)

γ

)

− |Zγ |2J (2)
γ

)

(5.2)

+
1

8π2

(

∑

γ

Ωγ

(

ZγJ (2,+)
γ + Z̄γJ (2,−)

γ

)

VγΛ

)

MΛΣ
∑

γ′

(

Ωγ′

(

Zγ′J (2,+)
γ′ + Z̄γ′J (2,−)

γ′

)

V̄γ′Σ

)

= 0.

There is actually another way to get this equation, which also reveals what becomes

singular from the geometric point of view when one approaches the singularity. It was

noticed in [23], that the curvature singularity appearing at one-loop corresponds to the

degeneracy of the basis of (1,0)-forms. Let us see when this can happen. From the explicit

form of this basis (3.5), it follows that dza, YΛ and ImΣ are always linearly independent.

Thus, it can degenerate only if

ReΣ = 0 mod dza, YΛ. (5.3)

For instance, at perturbative level this condition becomes

deφ + 2cd logR = 0 mod dza, YΛ, (5.4)
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and upon using the one-loop relation between the coordinate R and the dilaton

R = 2K−1/2
√
r + c, (5.5)

one indeed gets back the standard perturbative result r = −2c. Similarly, one can show

that, applied to the instanton corrected basis of (1,0)-forms (3.5), the condition (5.3)

generates the equation (5.2).9

Now the crucial question to be understood is whether the equation (5.2) has any solu-

tions. In this respect it is important to point out that, in contrast to the perturbative result,

it depends not only on the dilaton, but on other coordinates as well, and is written more nat-

urally in terms of R. The latter is in a sense a more fundamental quantity because it is re-

lated to the 10-dimensional string coupling, see (2.18), whereas r = eφ is a derived quantity

and it is possible that its range of values allowed by (3.7) is less than the positive half-axis.

Since for small string coupling, where R → ∞, all terms in (5.2) are suppressed

comparing to the first one, which is always positive, the equation will have a solution

if there is a region in the moduli space where its l.h.s. is negative. This might happen

only at finite string coupling. Therefore, we need to understand the behavior of (5.2)

in such deep quantum regime. This is possible when we have S-duality at our disposal

which relates the weak and strong coupling regions. Fortunately, this is the case in our

situation because the sector of quantum corrections we considered is S-duality invariant.

In fact, this feature was used to find these corrections in the original work [10]. However,

to make this symmetry explicit and to exploit it, one needs to pass to the mirror type

IIB formulation. In the next subsection we show how this can be done and analyze the

behavior of (5.2) under S-duality transformations.

5.2 Equation for singularity and S-duality

In the type IIB formulation electrically charged D-instantons correspond to contributions

from D(-1) and D1-branes. The former are point-like objects having only one non-vanishing

charge q0, and the latter wrap two-dimensional cycles on the Calabi-Yau labeled by qa.

Besides these exponential corrections in gs, the metric receives α′-corrections through the

holomorphic prepotential F (X): there is a perturbative correction and exponential con-

tributions coming from worldsheet instantons. The resulting HM metric should carry an

isometric action of the S-duality group SL(2,Z), which mixes the perturbative α′-correction

with D(-1)-instantons and worldsheet with D1-instantons. However, this symmetry is not

manifest neither in the expression for the metric (3.6), nor in the twistorial construction

of section 2.2, as they are adapted to the type IIA formulation. The twistorial construc-

tion of D1-D(-1)-instantons has in fact been put in a manifestly S-duality invariant form

in [23, 41], which can be seen as an indirect proof of the invariance of the metric. This also

implies that the equation for singularity should be S-duality invariant as well.

To see this explicitly, one needs to rewrite the equation (5.2) in the type IIB variables

using the mirror map (2.18) and perform a Poisson resummation. Below we will do this for

9In fact, this procedure was already attempted in [23], but due to a simple computational mistake, the

result presented there is wrong.
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the sector which includes D(-1)-instantons only. Thus, we neglect contributions from world-

sheet and D1-instantons. This is justified not only by simplifications which happen in this

approximation, but also by the fact that the one-loop gs-correction giving rise to the sin-

gularity is a part of the same SL(2,Z) multiplet as D(-1)-instantons. Therefore, one could

hope that already contributions from D(-1)-branes are sufficient to resolve the singularity.

Thus, in the following we consider D-brane charges with only one non-vanishing com-

ponent q0. In this case the DT invariant is independent of q0 and coincides with the Euler

characteristic of the Calabi-Yau threefold, Ωq0 = χY = −χ
Ŷ

where Ŷ is the Calabi-Yau

on which type IIB string theory is compactified and which is mirror to Y used in type IIA

compactification. Since we drop the contribution of worldsheet instantons, the holomorphic

prepotential reads [53]

F (X) = −κabc
XaXbXc

6X0
+

iζ(3)χ
Ŷ

16π3
(X0)2, (5.6)

where the first term is the classical contribution determined by the intersection numbers

κabc of 4-cycles, whereas the second term is a perturbative α′-correction. This prepotential

leads to the exponential of the Kähler potential given by

K = 8V −
ζ(3)χ

Ŷ

4π3
, (5.7)

where V = 1
6 κabct

atbtc is the Calabi-Yau volume and we used the relation za = ba + ita

from the mirror map (2.18). Substituting these data in the singularity equation (5.2), it

takes the following form

8V −
χ
Ŷ

2π
S1 +

χ2
Ŷ

8π2
M00S2

2 = 0, (5.8)

where we introduced

S1 =
∑

q0 6=0

q0

(

i

4π

(

J (1,+)
γ + J (1,−)

γ

)

− 2q0J (2)
γ

)

+
ζ(3)

2π2
− 1

24R2
,

S2 =
∑

q0 6=0

q20

(

J (2,+)
γ + J (2,−)

γ

)

.
(5.9)

Furthermore, in this approximation it is possible to find an explicit expression forM00.

Indeed, for the holomorphic prepotential (5.6), the matrix (B.7) reads

MΛΣ = N cl
ΛΣ −

S3χŶ

2π
δ0Λδ

0
Σ, (5.10)

where

S3 =
ζ(3)

2π2
−
∑

q0 6=0

q20J (2)
γ (5.11)

and

N cl
ΛΣ =

(

−4V + 2κabcb
abbtc −2κabcb

btc

−2κabcb
btc 2κabct

c

)

(5.12)
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is the same as the matrix NΛΣ but defined only by the first classical term in the prepo-

tential (5.6). Its inverse can be computed in terms of the matrix Gab =
1
2V κabct

c which is

supposed to be invertible. Then one finds

(N cl)ΛΣ = − 1

4V

(

1 ba

ba babb − (G−1)ab

)

. (5.13)

On the other hand, it is easy to show that

MΛΣ = (N cl)ΛΣ +
S3χŶ

2π

(N cl)Λ0(N cl)Σ0

1− S3χŶ

2π (N cl)00
. (5.14)

In particular, this implies

M00 =
(N cl)00

1− S3χŶ

2π (N cl)00
= − 1

4V +
S3χŶ

2π

. (5.15)

Substituting this result into (5.8), the singularity equation can be brought to the following

form

1 +
χ
Ŷ

16πV
(2S3 − S1)−

χ2
Ŷ

(16πV )2
(

2S3S1 + S2
2

)

= 0. (5.16)

The last step is to perform the Poisson resummation of the three functions S1, S2 and

S3. This is done is appendix D and gives

S1 =
1

4π2

∑′

m,n∈Z

(

1

|mτ + n|3 − 3(mτ2)
2

|mτ + n|5
)

,

S2 = − 3

4π2

∑′

m,n∈Z

mτ2(mτ1 + n)

|mτ + n|5 , (5.17)

S3 =
1

4π2

∑′

m,n∈Z

(

1

|mτ + n|3 − 3(mτ2)
2

2|mτ + n|5
)

,

where prime means that the sum goes over all pairs of integers except (m,n) = (0, 0).

Introducing the non-holomorphic Eisenstein series

E3/2(τ) =
∑′

m,n∈Z

τ
3/2
2

|mτ + n|3 , (5.18)

which is a modular invariant function, and plugging these results into (5.16), one finally

arrives at the equation for singularity in the type IIB variables, which makes its modular

properties manifest,

1 +
χ
Ŷ
E3/2(τ)

64π3V τ
3/2
2

−
2χ2

Ŷ
(

64π3V τ
3/2
2

)2



E2
3/2(τ)−

9

4

∑′

m,n∈Z

∑′

m′,n′∈Z

τ52 (mn
′ − nm′)2

|mτ + n|5|m′τ + n′|5



 = 0.

(5.19)
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It is easy to see that the l.h.s. of this equation is invariant under SL(2,Z) transforma-

tions (2.19). This is in perfect agreement with the expectation that the full HM metric (3.6)

must be S-duality invariant.

Now we are in a position to infer about the fate of the singularity in the presence of

D(-1)-instantons. To this end, let us set τ1 = 0, apply S-duality transformation

τ2 → τ−1
2 , V → V τ32 (5.20)

in the singularity equation, and extract the limit τ2 → 0. To accomplish the last step, it

is convenient to work with equation (5.16) where the resummation has not been done yet.

The point is that after the transformation (5.20) the limit of small τ2 is similar to the weak

string coupling limit before the transformation. In particular, all instanton contributions

are exponentially suppressed and can be dropped. As a result, the expansion of the l.h.s.

of the singularity equation reads

−
ζ(3)2χ2

Ŷ

2(16π3V )2
τ−6
2 +

ζ(3)χ2
Ŷ

6(16π2V )2
τ−4
2 +

ζ(3)χ
Ŷ

32π3V
τ−3
2 +

χ
Ŷ

96πV
τ−1
2 + 1 +O

(

e−2πτ−1
2
)

. (5.21)

We see that the dominant term comes from the last term in (5.16) due to the presence of the

volume factor, which after the transformation (5.20) generates the additional factor τ−6
2 .

Its crucial feature is that it comes with the minus sign. Thus, we conclude that in the region

of small τ the l.h.s. of the singularity equation is negative. This implies that the equation

always has a solution and the inclusion of D(-1)-instantons is not sufficient to resolve the

singularity. Moreover, the situation in a sense becomes even worse because this conclusion

was achieved independently on the sign of the Euler characteristic and therefore, in contrast

to the case of the perturbative metric, the singularity appears now for both signs of χY!

We do not expect that inclusion of D1-instantons or even D5 and D3-instantons will

improve the situation. It seems that the singularity can be resolved only in the full non-

perturbative metric which, in particular, takes into account the effects from NS5-brane

instantons. Since they scale like e−2πV τ22 [27], they become dominating at strong coupling

and can significantly change the behavior of the metric.

6 Discussion

In this paper we computed an explicit expression for the metric on the HM moduli space

of type II string theory compactified on a Calabi-Yau threefold affected by D-instantons.

In fact, we were not able to get the exact quaternion-Kähler metric which includes them

all. Instead, our result applies in two cases:

• One includes all D-instantons, but the metric is not valid beyond the one-instanton

approximation. In particular, it is only approximately quaternion-Kähler.

• One includes only “a half” of D-instantons by restricting to a set of charges which

satisfy the condition of mutual locality (3.1), and in fact can always be rotated to

have vanishing magnetic components. Then the metric is exactly quaternion-Kähler.
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Actually, the set of electrically charged D-instantons is likely to be the maximal one for

which it is possible to get exact analytic expressions. Beyond this approximation, deriving

the metric requires solution of a system of integral equations (2.12). These equations have

the form of Thermodynamic Bethe Ansatz (TBA) [54–56] and, typically, it is impossible

to solve the TBA equations analytically. Thus, at this point it is not evident whether our

all orders result can be further improved.

We also checked that in the four-dimensional case, our metric agrees with the Tod

ansatz for QK metrics with one continuous isometry and provides a function which is an

exact non-trivial solution of the Toda equation. The latter is defined implicitly by the two

equations (4.8).

Finally, we investigated the effect of D-instantons on the curvature singularity

appearing in the one-loop corrected metric. In particular, we found the equation deter-

mining the singularity hypersurface inside the moduli space and explicitly demonstrated,

restricting to the sector of D(-1)-instantons in type IIB string theory, that it is invariant

under SL(2,Z)-transformations. Using this property, which allows to relate the weak

and strong couplings, we showed that the singularity is not resolved. We expect that

the resolution will be possible only after taking into account contributions of NS5-brane

instantons, which are believed to cure some other problems of the D-instanton corrected

HM moduli space as well. For instance, in [57] it was argued that they should regularize

the divergence which occurs in summing D-instantons over the charge lattice due to the

exponential growth of DT invariants. Although recently some progress has been achieved

in formulating these non-perturbative effects in the twistorial framework [14, 16, 17],

neither of the above issues has been addressed yet.

Regarding possible applications of our results, we would like to mention that the met-

ric (3.6) possesses several continuous isometries, which can be used to get a gauged super-

gravity in four dimensions. The latter has a non-trivial scalar potential, which depends

on the gauged isometries and on the metrics on both moduli spaces of vector and hyper-

multiplets [21]. Although this potential was extensively studied for the gaugings which

start from the tree level c-map metric on MH (see, for example, the recent exhaustive

work [58]), there were just few attempts to incorporate the instanton effects in it by re-

placing the c-map metric with the instanton corrected one [59, 60]. Our result appears as

a natural starting point for such investigation.
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A Deriving the metric from twistor data

The general procedure to derive the metric on a QK manifold M from the knowledge of

Darboux coordinates on its twistor space Z was described in detail in [9] and briefly outlined

in section 2.2. Here we recapitulate the main steps and provide all relevant equations.
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The starting point is the Laurent expansion of the Darboux coordinates near t = 0.

We assume that it is given by

ξΛ[+] = ξΛ,−1
[+] t−1 + ξΛ,0[+] +O(t),

ξ̃
[+]
Λ = ξ̃

[+]
Λ,0 +O(t),

α[+] = 4ic log t+ α
[+]
0 +O(t),

(A.1)

where the index [+] indicates the patch surrounding the north pole of CP 1. This assumption

is consistent with the form of Darboux coordinates in the case of the D-instanton corrected

HM moduli space. Next, one should proceed with the following four steps:

• Substituting the expansions (A.1) into the contact one-form X (2.10) and comparing

it with the canonical form Dt (2.8) using (2.9), one finds the components of the SU(2)

connection

p+ =
i

4
e−φ ξΛ,−1

[+] dξ̃
[+]
Λ,0,

p3 = −1

4
e−φ

(

dα
[+]
0 + ξΛ,0[+] dξ̃

[+]
Λ,0 + ξΛ,−1

[+] dξ̃
[+]
Λ,1

)

.

(A.2)

• Then one computes the triplet of quaternionic 2-forms (2.11). In particular, for ω3

the formula reads

ω3 = −2dp3 + 4ip+ ∧ p−. (A.3)

• One specifies the almost complex structure J3 by providing a basis of (1,0) forms

on M. Such a basis was found in [9] and, after some simplifications, it takes the

following form

πa = d
(

ξa,−1
[+] /ξ

0,−1
[+]

)

, π̃Λ = dξ̃
[+]
Λ,0, π̃α =

1

2i
dα

[+]
0 + 2c d log ξ0,−1

[+] . (A.4)

• Finally, the metric is recovered as g(X,Y ) = ω3(X, J3Y ). To do this in practice, one

should rewrite ω3, computed by (A.3) in terms of differentials of (generically real)

coordinates on M, in the form which makes explicit that it is of (1,1) Dolbeault

type. Using for this purpose the basis πX = (πa, π̃Λ, π̃α) given in (A.4), the final

result should look like

ω3 = igXȲ π
X ∧ π̄Y , (A.5)

from which the metric readily follows as ds2 = 2gXȲ π
X ⊗ π̄Y .

B Details of the metric evaluation

In this appendix we provide some technical details on the derivation of the metric (3.6) and

its properties. First, in section B.1 we collect various useful notations and relations. Sec-

tion B.2 provides intermediate results leading the expression for the quaternionic 2-form ω3

in the coordinate basis. Next section is devoted to rewriting this 2-form in the basis of (1,0)-

forms. Finally, in section B.4 we check the symplectic invariance of the resulting metric.
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B.1 Notations and useful relations

In course of the presentation we have repeatedly used several convenient notations to make

the equations look concise. In this subsection we provide a list of these notations and some

useful properties. This should facilitate the reader for looking them up and helps us to

avoid introducing them in scattered fashion throughout the text. To better distinguish

different sets of definitions, we put them under separate items.

• First, we introduce functions on the moduli space, which can all be obtained as

Fourier coefficients of J (1)
γ (t) or its derivative with respect to one of the moduli,

around t = 0 and t = ∞,

J (1)
γ =

∫

ℓγ

dt

t
log
(

1− σγe
−2πiΞγ(t)

)

, J (2)
γ =

∫

ℓγ

dt

t

1

σγe2πiΞγ(t) − 1
,

J (1,±)
γ = ±

∫

ℓγ

dt

t1±1
log
(

1−σγe−2πiΞγ(t)
)

, J (2,±)
γ = ±

∫

ℓγ

dt

t1±1

1

σγe2πiΞγ(t)−1
,

(B.1)

where Ξγ(t) is given in (3.2). They satisfy the reality properties

J (n)
γ = J (n)

−γ , J (n,+)
γ = J (n,−)

−γ (B.2)

and the following identities

ZγJ (n,+)
γ = Z̄γJ (n,−)

γ , (B.3)

which can be established by partial integration.

• Next, we introduce a useful shorthand notation

VγΛ = qΛ − FΛΣp
Σ, (B.4)

and a function which depends on two charges

Qγγ′ = NΛΣReVγΛReVγ′Σ +
1

4
NΛΣp

Λp′Σ. (B.5)

We would like to consider it as a matrix acting on the (infinite-dimensional) space

of vectors whose components are enumerated by charges. The above introduced VγΛ
is an example of such vector. Note that for mutually local charges, the matrix Qγγ′

satisfies the following useful relations,

Qγγ′ = VγΛN
ΛΣV̄γ′Σ = V̄γΛN

ΛΣVγ′Σ. (B.6)

• Then, we define two matrices which play a very important role in our story. One of

them is an instanton corrected version of NΛΣ and the other is a matrix on the space

of charge labeled vectors as above,

MΛΣ = NΛΣ − 1

2π

∑

γ

ΩγJ (2)
γ V̄γΛVγΣ, (B.7)
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Mγγ′ = δγγ′ − Ωγ′

2π
J (2)
γ Qγγ′ . (B.8)

These two matrices are not independent of each other. The property (B.6) ensures

that their inverse matrices satisfy the following relation, which allows to expressM−1
γγ′

in terms of (M−1)ΛΣ ≡MΛΣ,

M−1
γγ′ = δγγ′ +

1

2π
J (2)
γ VγΛM

ΛΣV̄γ′ΣΩγ′ . (B.9)

• It is convenient also to introduce several vectors

vγ =
1

4π

(

ZγJ (2,+)
γ + Z̄γJ (2,−)

γ

)

,

vγ =
∑

γ′

ΩγΩγ′Qγγ′vγ′ ,

vΛ =
∑

γ

ΩγvγVγΛ,

(B.10)

a potential

U = K − 1

2π

∑

γ

Ωγ |Zγ |2J (2)
γ , (B.11)

and another potential and a vector labeled by charges, which have two representations

due to the relation (B.9),

U = U +
∑

γ,γ′

vγM
−1
γγ′vγ′

= K − 1

2π

∑

γ

Ωγ |Zγ |2J (2)
γ + vΛM

ΛΣv̄Σ. (B.12)

Wγ = Z̄γJ (2)
γ − Ω−1

γ J (2,+)
γ

∑

γ′

vγ′M−1
γ′γ

= Z̄γJ (2)
γ − J (2,+)

γ vΛM
ΛΣV̄γΣ. (B.13)

• Finally, we define two 1-forms. The first one is a certain linear combination of the

differentials of the RR-fields

Cγ = NΛΣ
(

qΛ − ReFΛΞp
Ξ
)

(

dζ̃Σ − ReFΣΘdζ
Θ
)

+
1

4
NΛΣ p

Λ dζΣ, (B.14)

which is built in the way analogous to Qγγ′ (B.5). The second, which we call V ,
appears explicitly in the HM metric (3.6) and arises as the imaginary part of a certain

(1,0)-form, see (B.35) below. In terms of Cγ and the other quantities introduced

above, it reads

V = 2R2K

(

1− 4r

R2U

)

AK +
8r

RU

∑

γ

Ωγ

(

vγ +
1

2π
J (2)
γ VγΛM

ΛΣv̄Σ

)

Cγ

+
2r

πiU

∑

γ

Ωγ

[(

Wγ+
RU

8πir
J (1,+)
γ

)

dZγ−
(

W̄γ+
RU

8πir
J (1,−)
γ

)

dZ̄γ

]

. (B.15)
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B.2 Computation of ω3

The coefficients of the Laurent expansion of the Darboux coordinates:

ξΛ,−1
[+] = RzΛ, (B.16a)

ξΛ,0
[+] = ζΛ − 1

8π2

∑

γ

Ωγp
ΛJ (1)

γ , (B.16b)

ξ̃
[+]
Λ,0 = ζ̃Λ − FΛΣζ

Σ − 1

8π2

∑

γ

ΩγVγΛJ (1)
γ , (B.16c)

ξ̃
[+]
Λ,1 = −iRz̄ΣNΛΣ − 1

2R FΛΣΘζ
ΣζΘ − 1

4π2

∑

γ

Ωγ

[

VγΛJ (1,+)
γ

− 1

2R FΛΣΘp
ΣζΘJ (1)

γ +
1

32π2R FΛΣΘp
Σ
∑

γ′

Ωγ′p′ΘJ (1)
γ J (1)

γ′

]

, (B.16d)

α
[+]
0 = −1

2

(

σ + ζΛζ̃Λ − FΛΣζ
ΛζΣ

)

+ 2i (r + c)− 1

8π2

∑

γ

Ωγ

[

1

2πi

∫

ℓγ

dt′

t′
Li2

(

σγe
−2πiΞγ(t

′)
)

−VγΛζΛJ (1)
γ −RZγJ (1,+)

γ +
1

16π2
pΛJ (1)

γ

∑

γ′

Ωγ′Vγ′ΛJ (1)
γ′



 . (B.16e)

The components of the SU(2) connection:

p+ =
i

4r

[

RzΛ
(

dζ̃Λ − FΛΣdζ
Σ
)

− R
8π2

∑

γ

ΩγZγdJ (1)
γ

]

, (B.17)

p3 =
1

8r

[

dσ + ζ̃Λdζ
Λ − ζΛdζ̃Λ + 2R2KAK − R

4π2

∑

γ

Ωγ

(

J (1,+)
γ dZγ − J (1,−)

γ dZ̄γ

)

]

.

The quaternionic 2-form:

ω3 =
1

4r2
dr ∧

[

dσ + ζ̃Λdζ
Λ − ζΛdζ̃Λ − R

4π2

∑

γ

Ωγ

(

J (1,+)
γ dZγ − J (1,−)

γ dZ̄γ

)

]

+
R2K

2r
d log

r

R2
∧ AK +

1

2r

(

dζΛ ∧ dζ̃Λ − iR2NΛΣdz
Λ ∧ dz̄Σ +

iR2

2r
zΛz̄ΣYΛ ∧ ȲΣ

)

+
1

16π2r

∑

γ

Ωγ

(

dJ (1,+)
γ ∧ d (RZγ)− dJ (1,−)

γ ∧ d
(

RZ̄γ

)

)

. (B.18)

B.3 ω
3 in the holomorphic basis

In this subsection we reexpress the quaternionic 2-form ω3 (B.18) in the basis of (1,0)-forms

given explicitly in the main text, see (3.5). To this end, we start from the terms involving

dσ. There is only one such term in (B.18) and, similarly, in (3.5) it appears only in ImΣ.

Therefore, to rewrite the contribution dr ∧ dσ as a part of a 2-form which is manifestly of

type (1,1), it is natural to look for the combination

2iΣ̂ ∧ ¯̂
Σ = 4Re Σ̂ ∧ Im Σ̂, (B.19)
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where Σ̂ is a (1,0)-form

Σ̂ = Σ + fΛdz
Λ + gΛYΛ, (B.20)

fixed by the requirement that

Re Σ̂ ∼ dr. (B.21)

Substituting the explicit expressions for (1,0)-forms into this condition, expressing d logR
in terms of dr and differentials of other coordinates via the relation obtained by taking

differential of (3.7)

dr =
R2

2
U d logR+

R2

4
dK +

R
4

∑

γ

Ωγ

(

vγdΘγ −
R
2π

J (2)
γ d|Z̄γ |2

)

, (B.22)

where we used notations from (B.10) and (B.11), and equating to zero the coefficients of

all one-forms except dr, one arrives at the following two equations on fΛ and gΛ

fΛ =
1

2
R2 (1−A(g))KΛ +

R
4π

∑

γ

ΩγVγΛ

[J (1,+)
γ

2πi
+RA(g)Z̄γJ (2)

γ

−2 Im
(

gΣVγΣ
)

J (2,+)
γ

]

, (B.23)

0 = Re gΛ
(

dζ̃Λ − ReFΛΣdζ
Σ
)

+ Im gΛ ImFΛΣ dζΣ

+
1

4

∑

γ

Ωγ

[

RA(g)vγ +
1

π
Im
(

gΣVγΣ
)

J (2)
γ

]

dΘγ , (B.24)

where we introduced the function of gΛ

A(g) =
4

R2U

(

r − R
2

∑

γ

Ωγ Im
(

gΣVγΣ
)

vγ

)

. (B.25)

To solve the second condition (B.24) with respect to gΛ, one can use the following trick.

Let us choose the ansatz

Re gΛ = −
∑

γ

Ωγp
Λgγ , Im gΛ = −2

∑

γ

ΩγN
ΛΣ
(

qΣ − ReFΣΞp
Ξ
)

gγ , (B.26)

where gγ is still to be found. Then all terms in (B.24) become proportional to dΘγ and

the condition reduces to a linear equation on gγ ,

gγ = −1

4
RA(g)vγ +

1

2π
J (2)
γ

∑

γ′

Ωγ′Qγγ′gγ′ , (B.27)

where the last term is written using the matrix (B.5). As a result, the solution for gγ is

obtained as

gγ = − r

RU

∑

γ′

M̂−1
γγ′vγ′ , (B.28)
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where M̂−1
γγ′ is the inverse of the matrix

M̂γγ′ =Mγγ′ + U−1vγvγ′ (B.29)

and we used another matrix introduced in (B.8) and the vectors from (B.10). Since the

last term is just the product of two vectors, M̂−1
γγ′ can be expressed in terms of the inverse

of Mγγ′ . An easy calculation shows that

M̂−1
γγ′ =

∑

γ′′

M−1
γγ′′

[

δγ′′γ′ −
∑

γ̃ vγ̃M
−1
γ̃γ′

U +
∑

γ̃,γ̃′ vγ̃M
−1
γ̃γ̃′vγ̃′

vγ′′

]

, (B.30)

which leads to the following simple result

gγ = − r

RU

∑

γ′

M−1
γγ′vγ′ , (B.31)

where comparing to (B.28) the potential U has been converted into U defined in (B.12).

Substituting this result into (B.25) and (B.23), one finds

A(g) =
4r

R2U
, (B.32)

fΛ =

(R2

2
− 2r

U

)

NΛΣz̄
Σ +

1

π

∑

γ

ΩγVγΛ

( R
8πi

J (1,+)
γ +

r

U
Wγ

)

, (B.33)

where we used10 Wγ defined in (B.13). Having found these solutions, it is now straightfor-

ward to check that the condition (B.21) is indeed satisfied. This follows from

Re Σ̂ = 2

(

1− 2r

R2U

)

dr, (B.34)

Im Σ̂ =
1

4

(

dσ + ζ̃Λdζ
Λ − ζΛdζ̃Λ + V

)

, (B.35)

where the one-form V is explicitly given in (B.15). As a result, for the only contribution

containing dσ one finds

1

4r2
dr ∧

(

dσ + ζ̃Λdζ
Λ − ζΛdζ̃Λ

)

=
iΣ̂ ∧ ¯̂

Σ

4r2
(

1− 2r
R2U

) − 1

16r2
dr ∧ V , (B.36)

where the last term is independent of dσ. Substituting this into (B.18), one obtains the

following intermediate expression for ω3

10To get this quantity, we used the property that the matrix

Sγγ′ = Ωγ

∑

γ′′

Ωγ′′Qγγ′′M
−1
γ′′γ′

is symmetric. Its symmetricity is equivalent to the symmetricity of

J
(2)
γ Sγγ′J

(2)

γ′ = −2πΩγ

∑

γ′′

(δγγ′′ −Mγγ′′)M−1
γ′′γ′J

(2)

γ′ = −2πΩγ

(

M
−1
γγ′ − δγγ′

)

J
(2)

γ′

which is indeed symmetric.
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ω3 =
i Σ̂ ∧ ¯̂

Σ

4r2
(

1− 2r
R2U

) +
iR2

4r2
zΛz̄ΣYΛ ∧ ȲΣ − iR2

2r
NΛΣdz

Λ ∧ dz̄Σ

+
1

2r
dζΛ ∧ dζ̃Λ +

1

16π2r

∑

γ

Ωγ

(

dJ (1,+)
γ ∧ d(RZγ)− dJ (1,−)

γ ∧ d(RZ̄γ)
)

(B.37)

−R2K

r
d logR∧AK +

2dr

r2
∧
[

rK

U
AK +

∑

γ

Ωγ

(

gγCγ − r

4πiU

(

WγdZγ − W̄γdZ̄γ

)

)

]

.

The next terms to consider are those which are quadratic in the differentials of the

RR-fields. There are three such terms in (B.37): the second term, which is already in the

desired form; the forth term; and one more contribution comes from the last term after

substitution of (B.22). To deal with them, we introduce a convenient notation

Yγ = iNΛΣ V̄γΛ YΣ (B.38)

and note the following identity

dζΛ ∧ dζ̃Λ +
R
r

∑

γ

ΩγvγdΘγ ∧
∑

γ′

Ωγ′gγ′Cγ′ (B.39)

= −iNΛΣYΛ ∧ ȲΣ + i
∑

γ,γ′

(R2U

r2
ΩγΩγ′gγgγ′ − 1

2π
ΩγM

−1
γγ′J (2)

γ′

)

Yγ ∧ Ȳγ′

− 1

2π

∑

γ,γ′

Ωγ



M−1
γγ′ +

4gγ
r

∑

γ′′

vγ′′M−1
γ′′γ′



 Cγ ∧
(

J (2,+)
γ′ d(RZγ′) + J (2,−)

γ′ d(RZ̄γ′)
)

.

The l.h.s. represents exactly the contributions we wanted to rewrite. Thus, using this

identity in (B.37), one puts ω3 in the form which is written using solely the (1,0)-forms (3.5),

their complex conjugate and dR. Furthermore, one can show that all terms involving dR
cancel, as do also the terms of (2,0) and (0,2)-type. After few manipulations, one can arrive

at the following result

ω3 =
i Σ̂ ∧ ¯̂

Σ

4r2
(

1− 2r
R2U

) − i

2r

(

NΛΣ − R2

2r
zΛz̄Σ

)

YΛ ∧ ȲΣ − i

4πr

∑

γ,γ′

ΩγM
−1
γγ′J (2)

γ′ Yγ ∧ Ȳγ′

+
iR2

8r3U

∑

γ

Ωγ

(

UgγYγ +
r

π
WγdZγ

)

∧
∑

γ′

Ωγ′

(

Ugγ′ Ȳγ′ +
r

π
W̄γ′dZ̄γ′

)

+
iR
4πr

∑

γ,γ′

ΩγM
−1
γγ′

[

J (2,−)
γ′ Yγ ∧

(

dZ̄γ′ −U−1Z̄γ′ ∂̄K
)

+ J (2,+)
γ′

(

dZγ′ −U−1Zγ′∂K
)

∧ Ȳγ

]

+
iR2

2r

[

U−1∂K ∧ ∂̄K −NΛΣdz
Λ ∧ dz̄Σ − 1

2πU

∑

γ

Ωγ

(

WγdZγ ∧ ∂̄K + W̄γ∂K ∧ dZ̄γ

)

+
1

2π

∑

γ,γ′

(

ΩγJ (2)
γ δγγ′ − 1

2π
Sγγ′J (2,+)

γ J (2,−)
γ′

)

dZγ ∧ dZ̄γ′



 , (B.40)

where in the last term the symmetric matrix Sγγ′ was defined in footnote 10. The quater-

nionic 2-form (B.40) is manifestly of (1,1)-type and the metric readily follows from it.
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However, the result (B.40) has one serious shortcoming: it requires to deal with infinite-

dimensional matrices and, in particular, to find the inverseM−1
γγ′ . Fortunately, the situation

can be improved due to the relation (B.9) that expresses M−1
γγ′ in terms of the inverse of

another matrix, which is already finie-dimensional. In particular, this relation implies
∑

γ′

vγ′M−1
γ′γ = ΩγvΛM

ΛΣV̄γΣ,

∑

γ,γ′

vγM
−1
γγ′vγ′ = vΛM

ΛΣv̄Σ,

∑

γ

ΩγgγYγ = − ir

RU
YΛM

ΛΣv̄Σ,

∑

γ

ΩγM
−1
γγ′J (2)

γ′ Yγ = iΩγ′J (2)
γ′ YΛM

ΛΣV̄γ′Σ,

(B.41)

Using these identities, the 2-form (B.40) can be rewritten as follows

ω3 =
i Σ̂ ∧ ¯̂

Σ

4r2
(

1− 2r
R2U

) +
iR2

4r2
zΛz̄ΣYΛ ∧ ȲΣ

− i

2r
MΛΣ

(

YΛ +
iR
2π

∑

γ

ΩγVγΛJ (2,+)
γ

(

dZγ −U−1Zγ∂K
)

)

∧



ȲΣ − iR
2π

∑

γ′

Ωγ′ V̄γ′ΣJ (2,−)
γ′

(

dZ̄γ′ −U−1Z̄γ′ ∂̄K
)





+
i

2rU

(

YΛM
ΛΣv̄Σ − iR

2π

∑

γ

ΩγWγdZγ

)

∧



vΛ′MΛ′Σ′ȲΣ′ +
iR
2π

∑

γ′

Ωγ′W̄γ′dZ̄γ′





+
iR2K

2r

{

Kabdz
a ∧ dz̄b − 1

K2U2

(

1

2π

∑

γ

Ωγ |Zγ |2J (2)
γ − vΛM

ΛΣv̄Σ

)2

∂K ∧ ∂̄K

+
1

2πK

∑

γ

ΩγJ (2)
γ

(

dZγ −U−1Zγ∂K
)

∧
(

dZ̄γ −U−1Z̄γ ∂̄K
)

}

. (B.42)

The metric can be read off as g(X,Y ) = ω3(X, J3Y ) and its explicit expression is presented

in the main text, see (3.6). Finally, note that the (1,0)-form YΛ given in (3.5) can be

expanded in the differentials of the standard coordinates on the HM moduli space upon

using (B.22). The result is given by

YΛ = dζ̃Λ − FΛΣdζ
Σ − i

4π

∑

γ

ΩγVγΛ

[

J (2)
γ dΘγ +R

(

J (2,+)
γ dZγ + J (2,−)

γ dZ̄γ

)

+
2πR
U

vγ





4 dr

R2
−dK−

∑

γ′

Ωγ′





vγ′

R dΘγ′−
J (2)
γ′

2π

(

Z̄γ′dZγ′ + Zγ′dZ̄γ′

)









]

.

(B.43)

An important feature of this result is that it shows that in the presence of instantons YΛ

has a non-vanishing projection along dr.
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B.4 Check of symplectic invariance

In this appendix, we verify that the instanton corrected metric (3.6), although it is not

manifest, is invariant under symplectic transformations. It turns out that the proof of

the invariance is much easier if one works in terms of infinite-dimensional matrix Mγγ′

and not with its finite-dimensional cousin MΛΣ. Due to this reason, we will consider the

expression (B.40) for the quaternionic 2-form, rather than the expression for the metric

presented in the main text. Since the two are related by simple algebraic manipulations,

symplectic invariance of one follows from that of the other.

The starting point is the matrix

NΛΣ = F̄ΛΣ − i
(Nz)Λ(Nz)Σ

(zNz)
. (B.44)

It plays an important physical role since it appears in the kinetic term for the gauge fields

in the vector multiplet sector [6]. Its imaginary part is invertible and satisfies

1

2
ImNΛΣ = NΛΣ −K−1

(

zΛz̄Σ + z̄ΛzΣ
)

, (B.45)

which shows that it also naturally arises in the kinetic term for the RR-fields at perturbative

level, cf. the second term in (2.2). Its importance for our discussion follows from the fact

that NΛΣ and its imaginary part have nice transformation properties under the symplectic

group. For an element

(

A B

C D

)

∈ Sp(2n,Z), they are given by [61]

N 7→ (C +DN )(A+BN )−1,

ImN 7→ (A+BN )−T ImN (A+BN̄ )−1.
(B.46)

Besides, let us define for any symplectic vector ρ = (χΛ, ψΛ), which transforms in the

defining representation of Sp(2n,Z), the two vectors of dimension n:

VρΛ = ψΛ − FΛΣχ
Σ, VρΛ = ψΛ −NΛΣχ

Σ. (B.47)

It is easy to check that the second vector defined by NΛΣ, in contrast to the first one,

transforms as a modular form,

Vρ 7→ (A+BN )−1Vρ. (B.48)

These properties imply, in particular, that the combination Vρ ImN−1V̄ρ̃ is symplectic

invariant for any symplectic vectors ρ and ρ̃.

At the next step, let us again consider two symplectic vectors, ρ and ρ̃, and define for

them the following quantity

Q(ρ, ρ̃) =
(

ψΛ − ReFΛΛ′χΛ′

)

NΛΣ
(

ψ̃Σ − ReFΣΣ′χ̃Σ′

)

+
1

4
χΛNΛΣχ̃

Σ. (B.49)

It naturally appears in our context since, in particular, one has Qγγ′ = Q(γ, γ′) and

Cγ = Q(γ, dC) where C = (ζΛ, ζ̃Λ) is the vector of RR-fields. Then it is straightforward to
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prove that

Q(ρ, ρ̃) = VρΛN
ΛΣV̄ρ̃Σ +

i

2
〈ρ, ρ̃〉 = V̄ρΛN

ΛΣVρ̃Σ − i

2
〈ρ, ρ̃〉

=
1

2
VρΛ ImNΛΣV̄ρ̃Σ − i

2
〈ρ, ρ̃〉+ 1

K

(

〈ρ,X〉
〈

ρ̃, X̄
〉

+
〈

ρ, X̄
〉

〈ρ̃, X〉
)

,

(B.50)

where X = (zΛ, FΛ) and 〈 · , · 〉 is the symplectic invariant scalar product introduced be-

low (2.12). Since all terms on the r.h.s. are symplectic invariant, this result shows the

invariance of Q(ρ, ρ̃) as well as of VρN
−1V̄ρ̃. In particular, the latter fact ensures the in-

variance of the perturbative metric (2.2) because the only term, which is not manifestly

symplectic invariant, is VdCN
−1V̄dC .

Now it is easy to prove the invariance of the instanton corrected HM metric. It is

sufficient to note that all non-manifestly invariant terms in ω3 (B.40) are constructed from

the following building blocks: Qγγ , Cγ , VdCN−1V̄γ , and VdCN
−1V̄dC . As we have just

proved, they are symplectic invariant which, in particular, implies the invariance of U, Yγ ,

Mγγ′ and the total metric.

For the purpose of rewriting the metric in a manifestly invariant form, it would be nice

to promoteMΛΣ to a matrix which has transformation properties similar to ImNΛΣ (B.46).

Unfortunately, this seems to be a hard task and we do not address it here.

C Match with the Tod ansatz

The aim of this appendix is to prove that in the case of the universal hypermultiplet the

function T = 2 log(R/2) and the connection one-form V satisfy the following two conditions

∂rT = 4
(

R2U
)−1

, (C.1)

dV = 2dζ ∧ dζ̃ + 4ir (∂z∂rTdz − ∂z̄∂rTdz̄) ∧ dr + 16i∂r(Pe
T )dz ∧ dz̄, (C.2)

and the Toda equation (4.4).

Specializing the notations from appendix B.1 to the four-dimensional case and substi-

tuting the prepotential (4.6), one finds the following results11

v =
1

2π

∑

γ

Ωγ |Zγ |2J (2,−)
γ ,

M = 2λ2 −
1

2π

∑

γ

Ωγ |Zγ |2J (2)
γ ,

U =M +M−1|v|2,

Y = dζ̃ − λdζ − i

4π

∑

γ

ΩγZγ

(

J (2)
γ − vM−1J (2,+)

γ

)

dΘγ −
2iv

RM dr,

V =
4r

πRU

∑

γ

ΩγZγ

(

J (2,+)
γ + vM−1J (2)

γ

)

Cγ .

(C.3)

11To get all these results as well as the ones which follow below, it is crucial to take into account the

condition of mutual locality, which takes the form qp′ = q′p and implies, in particular, that ZγZ̄γ′ = Z̄γZγ′

and vZ̄γ = v̄Zγ .
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Next, solving dz = i
2 Y with respect to differentials of the RR-fields, one obtains

dζ =
4

U
Re

[

v

RM dr −
(

1− i

4π

∑

γ

Ωγp
(

J (2)
γ − v̄M−1J (2,−)

γ

)

Z̄γ

)

dz

]

,

dζ̃ =
4

U
Re

[

λ̄v

RM dr −
(

λ̄− i

4π

∑

γ

Ωγq
(

J (2)
γ − v̄M−1J (2,−)

γ

)

Z̄γ

)

dz

]

.

(C.4)

Combining these differentials in various ways, one computes

Cγ = −i
(

Z̄γdz − Zγdz̄
)

, (C.5)

dΘγ = − 2

U

(

Z̄γdz + Zγdz̄
)

+
2(vZ̄γ + v̄Zγ)

RMU
dr. (C.6)

dζ ∧ dζ̃ = − 4i

U

(

dz ∧ dz̄ − 1

RM (v̄dz − vdz̄) ∧ dr

)

. (C.7)

Then differentiating (3.7) and using (C.6), one gets

d logR =
2dr

R2U
+
v̄dz + vdz̄

RMU
. (C.8)

From this result, one immediately concludes that

∂rT =
4

R2U
, ∂zT =

2v̄

RMU
, (C.9)

which proves the first from our conditions (C.1).

To prove the second condition (C.2), we rewrite it in terms of differentials dr and dz.

To this end, we use (C.7) and (C.9). Then the r.h.s. of this condition can be put in the

following form

− 8ir∂2re
Tdz ∧ dz̄ + 4i

[

(r∂z∂rT + ∂zT ) dz − (r∂z̄∂rT + ∂z̄T ) dz̄
]

∧ dr. (C.10)

On the other hand, substituting (C.5) into the expression for the connection V from (C.3),

one obtains a very simple result

V = −4ir (∂zTdz − ∂z̄Tdz̄) . (C.11)

It is trivial to see that its differential reproduces (C.10) provided T satisfies the Toda

equation (4.4), which proves the condition (C.2).

Finally, it remains to show that T indeed fulfils the Toda equation. Using the results

for the first derivatives (C.9), it can be rewritten as

∂z

(

2v

RMU

)

− ∂rU
−1 = 0. (C.12)

To demonstrate that this equation does hold, one then substitues explicit expressions for

v, M and U from (C.3) and evaluates their derivatives. This is a straightforward, although

a bit cumbersome exercise, and we prefer not to put it here.
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D Poisson resummation

In this appendix we perform the Poisson resummation of the functions S1, S2 (5.9) and

S3 (5.11). This procedure relies on the following resummation formula

∑

q∈Z

f(q) =
∑

n∈Z

g(2πn), g(w) =

∫ ∞

−∞
dx f(x)e−iwx. (D.1)

Before we start, it is convenient to note that all three functions can be written in terms

of one family of functions

f (α)m (x) = (signx)αx2e−2πimxζ0
∫ ∞

0

ds

s

(

s−1 + s
)α
e−2πm|x|R(s−1+s). (D.2)

Indeed, it is easy to check that

S1 =
ζ(3)

2π2
− 1

2

∑

m>0

∑

q∈Z

f (2)m (q),

S2 = −i
∑

m>0

∑

q∈Z

f (1)m (q),

S3 =
ζ(3)

2π2
−
∑

m>0

∑

q∈Z

f (0)m (q),

(D.3)

where we used that f
(0)
m (0) = f

(1)
m (0) = 0, whereas f

(2)
m (0) = 2

(2πmR)2
. This observation

allows to perform the resummation in a uniform way because the only thing which should be

evaluated is the Fourier transform of f
(α)
m (x). Identifying ζ0 = τ1 and R = τ2/2 according

to the mirror map (2.18) and interchanging the order of integrations, one finds12

g(α)m (2πn) =
1

4π3

∫ ∞

−∞

ds

s

(

1
s + s

)α

(

mτ2
2 (s−1 + s) + i (mτ1 + n)

)3

=
i

4π2

(

2

mτ2

)3
(

∂2

∂s2
s2
(

s−1 + s
)α

(

s+ itm,n
−

)3

)∣

∣

∣

∣

∣

s=−itm,n
+

, (D.4)

where tm,n
± are the two roots of the denominator appearing in the first line, which are given

explicitly by

tm,n
± =

mτ1 + n∓ |mτ + n|
mτ2

. (D.5)

Then a simple computation gives

g(0)m (2πn) = − 1

4π2

(

2

|mτ + n|3 − 3(mτ2)
2

|mτ + n|5
)

,

g(1)m (2πn) = − 3i

2π2
mτ2(mτ1 + n)

|mτ + n|5 ,

g(2)m (2πn) = − 1

π2

(

1

|mτ + n|3 − 3(mτ2)
2

|mτ + n|5
)

.

(D.6)

Applying the resummation formula in (D.3) and plugging there these results, one immedi-

ately arrives at (5.17).

12The integral in (D.4) converges only for α < 3, but this condition encompasses all the relevant cases

for us.
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