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Abstract

We study approximation of the max sat problem by moderately exponential algorithms.

The general goal of the issue of moderately exponential approximation is to catch-up on

polynomial inapproximability, by providing algorithms achieving, with worst-case running

times importantly smaller than those needed for exact computation, approximation ratios

unachievable in polynomial time. We develop several approximation techniques that can be

applied to max sat in order to get approximation ratios arbitrarily close to 1.

1 Introduction

Optimum satisfiability problems are of great interest from both theoretical and practical points
of view. Let us only note that several subproblems of max sat and min sat are among the first
complete problems for many approximability classes [1, 16]. On the other hand, in many fields
(including artificial intelligence, database system, mathematical logic, . . . ) several problems can
be expressed in terms of versions of sat [3].

Satisfiability problems have in particular drawn major attention in the field of polynomial
time approximation as well as in the field of parameterized and exact solution by exponential
time algorithms. Our goal in this paper is to develop approximation algorithms for max sat with
running times which, though being exponential, are much lower than those of exact algorithms,
and with a better approximation ratio than the one achieved in polynomial time. This approach
has already been considered for max sat in [14, 20], where interesting tradeoffs between running
time and approximation ratio are given. It has also been considered for several other well known
problems such as minimum set cover [7, 12], min coloring [5, 6], max independent set and
min vertex cover [8], min bandwidth [13, 18], etc. Similar issues arise in the field of FPT
algorithms, where approximation notions have been introduced, for instance, in [9, 15]. In this
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article, we propose several improvements of the results of [14] and [20] using various algorithmic
techniques.

Given a set of variables and a set of disjunctive clauses, max sat consists of finding a truth
assignment for the variables that maximizes the number of satisfied clauses. In what follows,
we denote by X = {x1, x2, . . . , xn} the set of variables and by C = {C1, C2, . . . Cm} the set of
clauses. Each clause consists of a disjunction of literals, a literal being either a variable xi or its
negation ¬xi. A ρ-approximation algorithm for max sat (with ρ < 1) is an algorithm that finds
an assignment satisfying at least a fraction ρ of the maximal number of simultaneously satisfied
clauses. The best known ratio guaranteed by a polynomial time approximation algorithm is
α = 0.796 obtained in [2], while it is known that the problem (and even its restriction to
instances where every clauses contain exactly three literals) is not approximable in polynomial
time with ratio 7/8 + ǫ, for any ǫ > 0, unless P = NP [19]. A recent result [22] states that

for any ǫ > 0, achieving a ratio 7/8 + ǫ is even impossible to get in time O
(

2m1−ǫ
′
)

for any

ǫ′ > 0 unless the exponential time hypothesis fails1. This latter result motivates the study of
exponential time approximation algorithms.

Dealing with exact solution, [10] gives an exact algorithm working in time O∗(1.3247m)
which is the best known bound so far wrt. the number of clauses2. Dealing with the number n
of variables, the trivial O∗(2n) bound has not yet been broken down, and this constitutes one of
the main open problems in the field of exact exponential algorithms. The parameterized version
of max sat consists, given a set of clauses C and an integer k, of finding a truth assignment
that satisfies at least k clauses, or to output an error if no such assignment exists. In [10] the
authors give a parameterized algorithm for max sat running in time O∗(1.3695k).

Using the same notation as in [10], we say that a variable x is an (i, j)-variable if it occurs
positively in exactly i clauses and negatively in exactly j clauses. For any instance C of max

sat, we will denote by OPT(C) (or OPT if no ambiguity occurs) an optimal set of satisfied
clauses. Finally, we denote by α the ratio guaranteed by a polynomial time approximation
algorithm. In general, ρ will denote the approximation ratio of an algorithm, and, when dealing
with exponential complexity, γ will be the basis of the exponential term expressing it.

In order to fix ideas, let us give a first simple algorithm, useful to understand some of our
results. In particular, it is one of the basic stones of the results in [14]. It is based upon the
following two well known reduction rules.

Rule 1. Any clause containing an (h, 0)- or a (0, h)-literal, h > 1, can be removed from the
instance. This is correct because we can set this literal to TRUE or FALSE and satisfy the clauses
that contain it.

Rule 2. Any (1, 1)-literal can be removed too. Let C1 = x1 ∨ x2 ∨ · · · ∨ xp and C2 =
¬x1 ∨ x′

2 ∨ · · · ∨ x′
q be the only two clauses containing the variable x1. If there exist two opposite

literals ℓ and ¬ℓ in resp. C1 and C2, then we can satisfy both clauses by setting x1 to TRUE and ℓ
to FALSE and therefore we can remove these clauses. Otherwise, we can replace these clauses by
C = x2 ∨ · · · ∨ xp ∨ x′

2 ∨ · · · ∨ x′
q. The optimum in the initial instance is the optimum in the

reduced instance plus 1.

Algorithm 1. Build a tree as follows. Each node is labeled with a sub-instance of max sat.
The root is the initial instance. The empty instances (instances with no clauses) are the leaves.
For each node whose label is a non-empty sub-instance, if one of the reductions above applies,
then the node has one child labeled with the resulting (reduced) sub-instance. Else, a variable x
is arbitrarily chosen and the node has two children: in the first one, the instance has been

1This hypothesis [21] says that max sat where each clause has three literals is not solvable in subexponential
time wrt. the number of variables.

2We use the standard notation O∗(f) to denote f × p(m + n) for some polynomial p.
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transformed by setting x to FALSE (the literals x have been removed and the clauses containing
the literal ¬x are satisfied); in the second one, x is set to TRUE and the contrary happens. Finally,
for both children the empty clauses are marked unsatisfied. Thus, each node represents a partial
truth assignment. An optimal solution is a truth assignment corresponding to a leaf that has
the largest number of satisfied clauses. �

To evaluate the complexity of Algorithm 1, we count the number of leaves in the tree. Note
that if the number of leaves is T (n), then the algorithm obviously works in time O∗(T (n)). In the
sequel, in order to simplify notations we will use T (n) to denote both the number of leaves (when
we express recurrences) and the complexity. We consider two ways to count the number of leaves.
The former is by means of the variables. Each node has two children for which the number of
remaining variables decreases by 1. This leads to a number of leaves T (n) 6 2 × T (n − 1) and
therefore T (n) = O∗(2n). The second is by means of the clauses. On each node, if the chosen
variable is an (i, j)-variable, then the first child will have its number of clauses decreased by at
least i and the second child by at least j. The worst case, using the two reduction rules given
above, is i = 1 and j = 2 (or i = 2 and j = 1), that leads to T (m) = T (m − 1) + T (m − 2) and
therefore T (m) = O∗(1.618m).

In [14], the authors showed a way to transform any polynomial time approximation algorithm
(with ratio α) for max sat into an approximation algorithm with ratio ρ (for any α 6 ρ 6 1) and

running time O∗(1.618(ρ−α)(1−α)−1m). The basic idea of this algorithm is to build the same tree
as in Algorithm 1 up to the fact that we stop the branching when enough clauses are satisfied.
Then the α-approximation polynomial algorithm is applied on the resulting sub-instances. As
already mentioned, the best value of α is 0.796 [2]. Dealing with complexity depending on
the number of variables, using local search techniques Hirsch [20] devises for any ǫ > 0 and
any k > 2 a randomized algorithm that find with high probability a (1 − ǫ) approximation
for max-k-sat (restriction of the problem to instances with clauses of size at most k) in time
O∗ ((2 − cǫ,k)n) where cǫ,k = 2ǫ/(k(1 + ǫ)). For max-2-sat, the complexity is improved down to
O∗ ((2 − 3ǫ/(1 + 3ǫ))

n
).

The paper is organized as follows. In Sections 2 and 3 we propose some improvements (for any
ratio ρ) of the results of [14]. Figure 1 illustrates the relationship approximation ratio - running
time of the different methods we develop in these sections and compare them with the result
in [14]. More precisely, in Section 2 two first results are presented: the first one uses roughly
the same technique as in [14] (leading to Algorithm 2 in Figure 1) while the second one uses a
different approach consisting of splitting the instance in “small” sub-instances (Algorithm 3 in
Figure 1). In Section 3, we further improve these results for some ratios using another technique
consisting of approximately pruning a search tree (Algorithm 5 in Figure 1). Note that Figure 1
is drawn using α = 0.796 as the best polynomial time approximation ratio, but a figure of similar
shape would follow with other possible values of α. In these sections, we also show that similar
results can be derived for FPT approximation algorithms where, given a ratio ρ and an integer k,
one has either to output a solution that satisfies at least ρk clauses or to assert that no solution
satisfies (at least) k clauses.

All these results deal with complexity depending on the number of clauses. In Section 4, we
consider complexity depending on the number of variables and improve the results of [20] (see
Figure 2) by giving for any ratio ρ 6 1 a ρ-approximate algorithm that is (1) deterministic, (2)
valid for max sat (no restriction on the clauses length) and (3) with a much smaller running
time (for any ratio ρ). We conclude the article in Section 5 where we also briefly discuss the min

sat problem.
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Figure 1: Evaluation of complexities for different methods

2 First results

We provide in this section two first improvements of the result given in [14]. The first one,
given in Section 2.1, uses the same idea as [14] while the second one uses a completely different
technique and achieve improved running times (for some approximation ratios) by splitting the
initial instance in sub-instances of smaller size.

2.1 Using a better parameterized algorithm

In this section we briefly mention that the same technique as in [14] leads to an improved result
when we build the search tree according to the algorithm from [10] instead of the search tree
presented in Section 1. We so derive the following algorithm, that is strictly better than the one
of [14] (see Figure 1 in Section 1).

Algorithm 2. Build a search-tree as the parameterized algorithm of [10] does3. Stop the
development of this tree at each node where at least (m (ρ − α) / (1 − α)) clauses are satisfied
(recall that α is the best known polynomial approximation ratio for max sat), or when the
instance is empty. For each leaf of the so-pruned tree, apply a polynomial α-approximation
algorithm to complete the assignment of the remaining variables; thus, each leaf of the tree
corresponds to a complete truth assignment. Return the assignment satisfying the largest number
of clauses. �

Proposition 1. For any ρ such that α 6 ρ 6 1, Algorithm 2 achieves approximation ratio ρ in
time O∗(1.3695m(ρ−α)/(1−α)).

Proof. Consider first the running time. The parameterized algorithm of [10] builds a search tree
where the worst case recurrence relation is T (k) 6 2T (k − 3) + 2T (k − 7), where the parameter k
is the number of satisfied clauses, leading to a global complexity of O∗(1.3695k). Here, we build
this tree and stop the construction in each leave where m(ρ − α)/(1 − α) clauses are satisfied.
This leads to a running time of O∗(1.3695m(ρ−α)/(1−α)).

3Note that we use only the search-tree of the algorithm of [10] (in particular, not the initial kernelization in
it), so that at least one branch of the tree corresponds to a partial optimal assignment.
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Figure 2: Comparison between the algorithm of [20] for max-2-sat (upper curve), the algorithms
for max sat (intermediate curve) and max-2-sat (lower curve) that will be given in Section 4.

We now handle the approximation ratio. First, if the number |OPT| of clauses satisfied by an
optimal solution OPT is less than m(ρ−α)/(1−α), then Algorithm 2 obviously finds an optimum
solution. Otherwise, let us consider the branch of the branching tree where the leaf corresponds
to a partial optimal truth assignment satisfying clauses in OPT. Denote by k0 the number of
clauses satisfied in this leaf (k0 > m(ρ−α)/(1−α)), i.e. by the partial assignment corresponding
to this leaf. Using this assignment, we get a resulting instance in which it is possible to satisfy
|OPT| − k0 clauses (because the optimal assignment satisfies |OPT| clauses). Consequently,
the α-approximation algorithm called by Algorithm 2 will satisfy at least α (|OPT| − k0) more
clauses. So, finally, at least:

k0 + α (|OPT| − k0) = k0(1 − α) + α|OPT| > m (ρ − α) + α|OPT|

> |OPT|(ρ − α) + α|OPT| = ρ|OPT|

clauses will be satisfied.

2.2 Splitting the clauses

In [8], it is shown that a generic method can give interesting moderately exponential approxi-
mation algorithms if applied in (maximization) problems satisfying some hereditary property (a
property is said to be hereditary if for any set A satisfying this property, and any B ⊂ A, B
satisfies this property too). max sat can be seen as searching for a maximum subset of clauses
satisfying the property “can be satisfied by a truth assignment”, and this property is clearly
hereditary. Therefore, we can adapt the splitting method introduced in [8] to transform any
exact algorithm into a ρ-approximation algorithm, for any rational ρ, and with running time
exponentially increasing with ρ.

Algorithm 3. Let p, q be two integers such that ρ = p/q. Split the set of clauses into q pairwise
disjoint subsets A1, · · · , Aq of size m/q (at most ⌈m/q⌉ if m/q is not an integer). Then, consider
the q subsets Ci = Ai ∪ Ai+1 ∪ · · · ∪ Ai+p−1 (if the index is larger than q, take it modulo q) for
i = 1, · · · , q (see Figure 3). On each subset, apply some exact algorithm for max sat. Return
the best truth assignment among them as solution for the whole instance. �
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Instance C
divided in q subsets

· · · · · ·

Subset C1

Subset C2

Subset C3

...
. . .

Subset Cq−1

Subset Cq

Figure 3: Forming the q subsets of clauses.

Proposition 2. Given an exact algorithm for max sat running in time O∗(γm), Algorithm 3
achieves approximation ratio ρ in time O∗(γρm).

Proof. Algorithm 3 calls q times an exact algorithm (whose running time is O∗(γm)). Then the
bound of the running time easily follows from the fact that each subset Ci contains at most
p⌈m/q⌉ 6 ρm + p clauses.

For the approximation ratio, note first that if we restrict an instance with a set C of clauses
to a new instance with a new set C′ ⊂ C of clauses, then an optimal solution for C′ satisfies
at least the same amount of clauses in C′ than an optimal solution for C (in other words, the
restriction of any solution for C to C′ is feasible for C′), i.e., |OPT(C) ∩ C′| 6 |OPT(C′)|. In
particular, for i = 1, . . . , q, |OPT(Ci)| > |OPT(C) ∩ Ci|.

Now, note that by construction of the Ci’s, we easily see that each clause appears in exactly p
among the q subsets C1, C2, . . . , Cq, and this holds in particular for any clause in OPT. Thus,
∑q

i=1 |OPT(C)∩Ci| = p×|OPT(C)|. By the discussion above,
∑q

i=1 |OPT(Ci)| > p×|OPT(C)|.
Since

∑q
i=1 |OPT(Ci)| 6 q × maxq

i=1 |OPT(Ci)|, then maxq
i=1 |OPT(Ci)| >

p
q |OPT(C)|.

Note that if we consider an FPT algorithm working in time O∗(γk), using it in Algorithm 3
with parameter ρk (instead of an exact one) leads to a ρ approximate FPT algorithm working in
time O∗(γρk). Also, it is worth noticing that Algorithm 3 is faster than Algorithm 2 for ratios
close to 1 (see Figure 1 in Section 1).

3 Approximate pruning of the search tree

Informally, the idea of an approximate pruning of the search tree is based upon the fact that, if
we seek, say, a 1/2-approximation for a maximization problem, then when a search-tree based
algorithm selects a particular datum d for inclusion in the solution, one may remove one other
datum d′ from the instance (without, of course, including it in the solution). At worst, d′ is
part of an optimal solution and is lost by our solution. Thus, globally, the number of data in an
optimum solution is at most two times the number of data in the built solution. On the other
hand, with the removal of d′, the size of the surviving instance is reduced not by 1 (due to the
removal of d) but by 2.

This method can be adapted to max sat in the following way: revisit Algorithm 1 and
recall that its worst case with respect to m is to branch on a (1, 2)-literal and to fix 1 (satisfied)
clause on the one side and 2 (satisfied) clauses on the other side. If we decide to also remove 1
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more clause (arbitrarily chosen) in the former case and 2 more clauses (arbitrarily chosen) in
the latter one, this leads to a running time T (m) satisfying T (m) 6 T (m − 2) + T (m − 4),
i.e., T (m) 6 O∗(1.27m). Since in the branches we have satisfied at least s > 1 clause (resp.,
s > 2 clauses) while the optimum satisfies at most s + 1 clauses (resp., s + 2 clauses), we get an
approximation ratio 0.5.

This basic principle is not sufficient to get an interesting result for max sat, but it can
be improved as follows. Let us consider the left branch where the (1, 2)-literal is set to true,
satisfying a clause C1. Instead of throwing away one other clause, we pick two clauses C2 and C3

such that C2 contains a literal ℓ and C3 contains the literal ¬ℓ, and we remove these two clauses.
Any truth assignment satisfies either C2 or C3, meaning that in this branch we will satisfy at
least 2 clauses (C1 and one among C2 and C3), while at worst the optimum will satisfy these
three clauses. In the other branch where 2 clauses are satisfied, we pick two pairs of clauses
containing opposite literals and we remove them. This trick improves both the approximation
ratio and the running time: now we have an approximation ratio 2/3 (2 clauses satisfied among 3
clauses removed in one branch, 4 clauses satisfied among 6 clauses removed in the other branch),
and the running time satisfies T (m) 6 T (m − 3) + T (m − 6), i.e., T (m) = O∗(1.17m).

In what follows, we generalize the ideas sketched above in order to work for any ratio ρ ∈ Q.

Algorithm 4. Let p and q be two integers such as p
q = ρ−1

1−2ρ . We build the search tree and, on

any of its nodes, we count the number of satisfied clauses from the root (we do not count here the
clauses that have been arbitrarily removed). Each time we reach a multiple of q, we pick p pairs
of clauses with opposite literals and we remove them from the remaining sub-instance. When
such a sub-instance on a node is empty, we arbitrarily assign a value on any still unassigned
variable. Finally, we return the best truth assignment so constructed. �

Note that it might be the case that at some point it is impossible to find p pairs of clauses
with opposite literals. But this means that (after removing q < p pairs) each variable appears
only positively or only negatively, and the remaining instance is easily solvable in linear time.

Theorem 1. Algorithm 4 runs in time O∗(1.618m(2ρ−1)) and satisfies at least ρ · |OPT| clauses.

Proof. Consider the leaf where the variables are set like in an optimum solution. In this leaf,
assume that the number of satisfied clauses is s × q + s′ (where s′ < q); again, we do not count
the clauses that have been arbitrarily removed. Then, the algorithm has removed s × 2p clauses
arbitrarily, among which at least s × p are necessarily satisfied. In the worst case, the s × p other
clauses are in OPT; hence, |OPT| 6 2sp + sq + s′. So, the approximation ratio of Algorithm 4
is at least: (sq + sp + s′)/(sq + 2sp + s′) > ρ.

We now estimate the running time of Algorithm 4. For each node i of the tree, denote by mi

the number of clauses left in the surviving sub-instance of this node, by zi the number of satisfied
clauses from the root of the tree (we do not count the clauses that have been arbitrarily removed)
and set ti = mi − (2p/q)(zi mod q).

For the root of the tree, zi = 0 and therefore ti = m. Let i be a node with two children j (at
least one clause satisfied) and g (at least two clauses satisfied). Let us examine quantity tj when
exactly one clause is satisfied. In this case, zj = zi + 1. On the other hand: i) If zj mod q 6= 0,
then we have not reached the threshold necessary to remove the 2p clauses. Then, mj = mi − 1
and tj = mj −2p/q(zj mod q) = mi −1−2p/q((zi mod q)+1) = ti −1−2p/q. If zj mod q = 0,
then zi mod q = q − 1 and the threshold has been reached; so 2p clauses have been removed.
Then, mj = mi−1−2p, tj = mj = mi−1−2p and ti = mi−2p/q(q−1) = mi−2p+2p/q. Finally,
tj = ti − 1 − 2p/q. Therefore, in both cases i) and ii), tj 6 ti − 1 − 2p/q. Of course, by a similar
argument, if we satisfy g clauses, then the quantity ti is reduced by g(1 + 2p/q). This leads to a
running time T (t) 6 T (t − 1 − 2p/q) + T (t − 2 − 4p/q) and hence T (t) = 1.618t/(1+2p/q). Since
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initially t = m, we get T (m) = 1.618m/(1+2p/q). Taking into account that p/q = (ρ − 1)/(1 − 2ρ),
we get immediately 1/(1 + 2p/q) = 2ρ − 1.

Algorithm 4 can be improved if instead of using the simple branching rule in the tree, the
more involved case analysis of [10] is used. As already noted in Section 2.1, we use only the
search-tree of the algorithm of [10], that ensures that at least one branch of the tree corresonds
to a partial optimal assignment. This derives the following algorithm.

Algorithm 5. Let p and q be two integers such as p
q = ρ−1

1−2ρ . Build the search-tree of [10] and,
on each node of it, count the number of satisfied clauses from the root. Each time a multiple
of q is reached, pick p pairs of clauses with opposite literals and remove them from the resulting
sub-instance. Return the best truth assignment so constructed. �

To estimate the running time of Algorithm 5, we use nearly the same analysis as in [10]. The
only difference is that, at each step of the search tree, [10] counts without distinction the satisfied
and the unsatisfied clauses (clauses that became empty), whereas we have to make a difference
in the complexity analysis: a satisfied clause reduces the quantity t by 1 + 2p/q in Algorithm 5,
while an unsatisfied clause reduces it by only 1.

By an exhaustive comparative study between the cases analyzed in [10] and Algorithm 5, it
can be shown that for any ρ the worst case is always reached by the case (noted by 4.2 in [10])
T (m) = T (m − 2) + T (m − 3), that becomes T (m) = T (m − 2 − 2χ) + T (m − 3 − 2χ) with
χ = 2p/q in the analysis of Algorithm 5.

Indeed, in case 4.2 of [10] (“there is (2, 2)-literal x that occurs at least once as a unit clause”),
a branching is done on the variable x. On the one side, 2 clauses are satisfied while, on the other
side, 2 are satisfied and 1 becomes empty and thus it is removed from the instance. For [10],
this leads to a complexity T (m) 6 T (m − 2) + T (m − 3). For Algorithm 5, this gives T (m) 6

T (m − 2 − 4p/q) + T (m − 3 − 4p/q). To simplify these results, set χ = 2p/q. Then T (m) 6

T (m − 2 − 2χ) + T (m − 3 − 2χ), which leads to T (m) = O∗(γm) with γ the largest real solution
of the equation γ2χ+3 − γ − 1 = 0.

For the other cases, a comparative study between the algorithm of [10] and Algorithm 5 is
summarized in Table 1. Its third column gives equations whose largest real solutions are the
worst case running times for Algorithm 5.

Depending on the ratio ρ we seek, the running time of the algorithm is given by the worst
case of all the cases given in Table 1. However, one can show that for any ρ the worst case is
always reached by the case 4.2. Let us show an example (the other cases are similar). Consider
the equations f4.2(X) = X2χ+3 − X − 1 = 0 and f4.0(X) = X4χ+5 − X3χ+4 − 1 = 0. The largest
real solution of the former is always larger than the largest real solution of the latter one. Indeed,
let χ be any positive value. Remark first that f ′

4.0(X) = (4χ + 5)X4χ+4 − (3χ + 4)X3χ+3 > 0;
hence, function f4.0 is increasing with X > 1. What we now need to show is that if f4.2(X) = 0,
then f4.0(X) > 0 (this means that the zero of f4.0 is before that of f4.2):

f4.2(X) = 0 ⇔ X2χ+3 = X + 1 ⇔ X3χ+4 = Xχ+2 + Xχ+1

⇔ X4χ+5 = X2χ+3 + X2χ+2 ⇔ X4χ+5 = X2χ+2 + X + 1

⇒ X4χ+5 − X3χ+4 − 1 = X2χ+2 + X − Xχ+2 − Xχ+1

⇒ f4.0(X) = X2χ+2 + X − Xχ+2 − Xχ+1

⇒ f4.0(X) =
(

Xχ+1 − 1
) (

Xχ+1 − X
)

> 0

and the result follows.
Now, the claim of Theorem 1 dealing with the approximation ratio of Algorithm 4 identically

applies also for Algorithm 5. Putting all the above together, the following theorem holds.
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Case [10] Algorithm 5

4.0 a) T (m) = T (m − 1) + T (m − 5) T (m) = T (m − 1 − χ) + T (m − 5 − 4χ)
4.0 b) T (m) = T (m − 1) + T (m − 7) + T (m − 10) T (m) = T (m−1−χ)+T (m−7−6χ)+

T (m − 10 − 9χ)
4.1 T (m) = 2T (m − 3) T (m) = 2T (m − 3 − 3χ)
4.2 T (m) = T (m − 2) + T (m − 3) T (m) = T (m − 2 − 2χ) + T (m − 3 − 2χ)
4.3 T (m) = 2T (m − 6) + T (m − 2) T (m) = 2T (m−6−6χ)+T (m−2−2χ)
4.4 T (m) = T (m − 3) + T (m − 2) T (m) = T (m − 3 − 3χ) + T (m − 2 − 2χ)
4.5 Same as for 4.3
4.6 Same as for 4.4
4.7 T (m) = 2T (m − 5) T (m) = 2T (m − 5 − 5χ)
4.8 T (m) = 2T (m − 5) + 2T (m − 7) T (m) = 2T (m−5−5χ)+2T (m−7−6χ)
4.9 a) Same as for 4.1
4.9 b) Same as for 4.0 a)
4.10 T (m) = T (m − 1) + 1 T (m) = T (m − 1) + 1
4.11 a) T (m) = 2T (m − 4) T (m) = 2T (m − 4 − 4χ)
4.11 b) Same as for 4.0 a)
4.12 a) Same as for 4.0 a)
4.12 b) T (m) = 2T (m − 8) + T (m − 1) T (m) = 2T (m − 8 − 7χ) + T (m − 1 − χ)

Table 1: Running times for the algorithm of [10] and Algorithm 5.

Theorem 2. For any ρ < 1, Algorithm 5 achieves approximation ratio ρ on max sat with
running time T (m) = O∗(γm), where γ is the largest real solution of the equation X2α+3−X−1 =
0 and α = 2ρ−2

1−2ρ .

It is very well-known that, in every max sat-instance, at least m/2 clauses can be always
greedily satisfied. So for any such formula, |OPT| > m/2. Hence, any algorithm with running
time function of m is a parameterized algorithm for max sat. This however may lead to uninter-
esting results (its running time may be worse than that of the parameterized algorithm of [10]),
but we can improve this. Indeed, we can show that the pruning method just described can
be directly applied to the parameterized algorithm of [10] for the achievement of the following
parameterized approximation result.

Proposition 3. For any ρ < 1, max sat is approximable within ratio ρ in time O∗(1.3695(2ρ−1)k),
where k is the maximum number of satisfied clauses in the instance.

4 Splitting the variables

In this section, we present two algorithms that approximate max sat within any approximation
ratio smaller than 1, and with a computation time depending on n (the number of variables).
As mentioned in the introduction, Hirsch [20] devises for any ǫ > 0 and any k > 2 a random-
ized algorithm that find with high probability a (1 − ǫ) approximation for max-k-sat in time
O∗ ((2 − cǫ,k)n) where cǫ,k = 2ǫ/(k(1 + ǫ)) (note that cǫ,k → 0 when k → ∞, so this does not
give a complexity cn with c < 2 for max sat). For max-2-sat, the complexity is improved down
to O∗ ((2 − 3ǫ/(1 + 3ǫ))n).

As we will see, the first algorithm of this section (Algorithm 6 – see Figure 4 for an illustration)
improves these results. It builds several trees. Then, in each of them, as for Algorithm 2 in
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The best assignment among these is returned

Figure 4: Illustration of Algorithm 6.

Section 2.1, it cuts the tree at some point and completes variables’ assignment using a polynomial
approximation algorithm.

Algorithm 6. Let p and q be two integers such that p/q = (ρ − α)/(1 − α). Build q subsets
X1, · · · , Xq of variables, each one containing roughly p/q × n variables, where each variable
appears in exactly p subsets (as in Algorithm 3 in Section 2.2). For each subset Xi, construct
a complete search tree, considering only the variables in the subset (i.e., the depth of each of
these trees is exactly |Xi| ≃ p/q × n). For each of the leaves of these trees, run a polynomial
time algorithm guaranteeing a ratio α on the surviving sub-instance. Return the best truth
assignment among those built. �

Each of the trees built by Algorithm 6 is a binary tree and has depth roughly pn/q (more
precisely, at most pn/q + p). So its running time is O∗(2np/q). Note also that, on each of these
trees, at least one leaf is a partial assignment of an optimal (global) truth assignment. We will
call such a leaf an optimal leaf.

Lemma 1. At least one of optimal leaf has at least p
q × |OPT| satisfied clauses (before applying

the polytime approximation algorithm).

Proof. Remark that every clause Ci in OPT contains at least one true literal; pick one of them
from each clause Ci and denote the variable corresponding to this literal by Var(Ci). Let, for
each variable x, C(x) be the set of clauses from OPT for which x or ¬x is the picked literal, i.e.,
∀x ∈ X , C(x) = {Ci ∈ OPT/Var(Ci) = x}. Based upon this, OPT =

⋃

x∈X C(x).
In the tree obtained on the set Xi, denote by Λi the set of satisfied clauses on some optimal

leaf and set λi = |Λi|. Then,
⋃

x∈Xi
C(x) ⊆ Λi and, by construction, ∀i, j, C (xi) ∩ C (xj) = ∅.

10



We so have:

λi >
∑

x∈Xi

|C(x)|

q
∑

i=1

λi >

q
∑

i=1

∑

x∈Xi

|C(x)|

As every x belongs to exactly p subsets among the q sets Xi, it holds that:

(1)

q
∑

i=1

|λi| > p ×
∑

x∈X

|C(x)| = p × |OPT|

From (1), it is immediately derived that:

q
max
i=1

|λi| >
1

q

q
∑

i=1

|λi| >
p

q
×
∑

x∈X

|C(x)| =
p

q
× |OPT|

that concludes the proof.

Proposition 4. Algorithm 6 achieves approximation ratio ρ.

Proof. By Lemma 1, among all the optimal leaves, at least one satisfies λ >
p
q × |OPT| clauses.

As an optimal leaf corresponds to an optimal truth assignment, it is possible to complete this
assignment into an optimal (global) solution. In other words, there exist |OPT| − λ remaining
clauses that become true on the surviving sub-instance. If the polynomial algorithm called by
Algorithm 6 achieves approximation ratio α, it will compute a solution that satisfies at least
α × (|OPT − |λ|) clauses. Hence, the number of satisfied clauses will be at least:

|λ| + α × (|OPT − |λ|) = α|OPT| + (1 − α)λ > α|OPT| + (1 − α)
p

q
|OPT|

that leads to an approximation ratio of α + (1 − α)p
q = ρ.

Putting all the above together, the following theorem holds.

Theorem 3. Algorithm 6 achieves ratio ρ in time O∗(2n(ρ−α)/(1−α)), for any ρ 6 1.

Algorithm 6 is both deterministic and valid for max sat. Moreover in [20] the best running
time is obtained for the restricted problem max-2-sat for which a ρ = (1 − ǫ)-approximate solu-
tion is found in time O∗ ((2 − 3(1 − ρ)/(4 − 3ρ))

n
). Interestingly enough, (2 − 3(1 − ρ)/(4 − 3ρ))

is greater than 2(ρ−α)/(1−α) (with α = 0.796) for any ρ < 1. Finally, note that for max-2-sat

one can use Theorem 3 with the best polynomial time approximation ratio known for this prob-
lem, i.e., α = 0.931 [17] (note that max-2-sat is not approximable in polynomial time within
ratio 0.955 unless P = NP [19]). See Figure 2 in Section 1 for a comparison of running times.

Algorithm 6 builds a full search tree on each subset of variables. In particular, when the ratio
sought ρ tends to 1, the basis of the exponent in the complexity tends to 2. Then, one might
ask the following question: suppose that there is an exact algorithm solving max sat in O∗(γn)
(for some γ < 2), is it possible to find a ρ approximation algorithm in time O∗(γn

ρ ) where γρ < γ
for some ρ ∈]α, 1]? For any ρ ∈]α, 1]? This kind of reduction from an approximate solution to
an exact one would allow to take advantage of any possible improvement of the exact solution
of max sat, which is not the case in Algorithm 6. Note that finding an exact algorithm in
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time O∗(γn) for some γ < 2 is a famous open question for max sat (cf. the strong exponential
time hypothesis [21]) as well as for some other combinatorial problems. It has very recently
received a positive answer for the Hamiltonian cycle problem in [4].

Indeed, we propose in what follows a ρ-approximation algorithms working in time O∗(γn
ρ )

with γρ < γ for any ρ ∈]α, 1[. We first give a simple solution (Algorithm 7) that we improve later
(Algorithm 8). Algorithm 7 moves in the same spirit as Algorithm 6 but, instead of building a
full branching tree on Xi, calls an exact algorithm on the sub-instance induced by the set Xi.

Algorithm 7. Let ρ ∈ Q and p and q two integers such that p/q = ρ. Build q subsets of variables,
each one containing p/q × n variables (as in Algorithm 6). For each subset of variables Xi:

a) Remove from the instance the variables not in Xi and any empty clause.

b) Run the exact algorithm on the resulting sub-instance, thus obtaining a truth assignment for
the variables in Xi.

c) Complete this assignment with arbitrary truth-values for the variables not in Xi.

Among all the truth assignments produced, return the one that satisfies the largest number of
clauses in the whole instance. �

In Algorithm 7, the exact algorithm called in step b) runs in time O∗(γρn). Its approximation
ratio is the one claimed in Lemma 1. Indeed, the exact algorithm satisfies at least the same
amount of clauses as the optimal branching (for the global instance) would do. More precisely, for
each Xi, and for any x ∈ Xi, the clauses containing x (and in particular the clauses in C(x)) are
not removed from the instance. The optimal branching would then satisfy at least

∑

x∈Xi
|C(x)|

clauses and, obviously, the exact algorithm would satisfy even more. Hence, the following result
holds.

Proposition 5. Algorithm 7 achieves approximation ratio ρ in time O∗(γρn), where O∗(γn) is
the running time of an exact algorithm for max sat.

As one can see, in step c) of Algorithm 7, variables outside Xi, i = 1, . . . , q, are assigned
arbitrarily, so, at worst their truth value may satisfy no additional clause. Note that one might
want to use an approximation algorithm in the remaining instance as in Algorithm 6; however,
the same analysis would not work since the exact solution obtained by the exact algorithm on
the sub-instance might be completely different from the partial assignment of a global optimal
solution. Nevertheless, we are able to propose an improvement by completing partial solutions
in such a way that, roughly speaking, at least half of the remaining clauses are satisfied.

We now propose Algorithm 8, that is an improvement of Algorithm 7. For any ρ ∈]α, 1], it
achieves approximation ratio ρ and runs in time O∗(γn

ρ ).

Algorithm 8. Let p, q ∈ Q be such that p/q = 2ρ − 1. Build q subsets of variables X1, . . . , Xq,
each one containing p/q × n variables (as in Algorithm 6). For each Xi run the following steps:

i) assign weight 2 to every clause containing only variables in Xi, and weight 1 to every
clause containing at least one variable not in Xi;

ii) remove from the instance the variables not in Xi; remove empty clauses;

iii) solve exactly this max weighted sat resulting instance, thus obtaining a truth assign-
ment for the variables in Xi;
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Clauses in OPT

Clauses not in OPT

A+ A− B1
+ B2

+ B− C+ C−

A: variables
from X\Xi

B: variables
from both

C: variables
from Xi

Part remaining of the instance
after step 2, on which we apply

the max weighted sat algorithm

Figure 5: Division of clauses according to a subset Xi of variables.

iv) complete the assignment with a greedy algorithm: for each (i, j)-literal, if i > j, then the
literal is set to TRUE, else it is set to FALSE (and the instance is modified accordingly) and
return the best among the truth-assignments so-produced. �

Lemma 2. If there is a max sat-algorithm working in time O∗(γn), then the instances of max

weighted sat in Algorithm 8 can be solved with the same bound on the running time.

Proof. Note that the only weights assigned by Algorithm 8 are 1 and 2. In such a weighted
instance, we can add a new variable x0 and replace each clause c of weight 2 by three new
clauses: c, c ∨ x0 and c ∨ ¬x0. Thus, if c is satisfied, then it will count in the new instance as
three satisfied clauses. Otherwise, exactly one of the three new clauses will be satisfied. Thus,
the so-built instance of max sat is equivalent to the initial max weighted sat-instance built
by Algorithm 8.

Theorem 4. Algorithm 8 achieves approximation ratio ρ in time O∗(γ(2ρ−1)n), where O∗(γn)
is the running time of an exact algorithm for max sat.

Proof. For the running time: we apply q times an exact algorithm O∗(γn) on instances of size
(2ρ − 1)n.

For the approximation ratio, using the same notation as before, consider one particular literal
in each clause satisfied by some optimum solution OPT, and let C(x) be the subset of these
clauses such that the picked literal is x or ¬x. Then, as shown before, there exists a subset Xi

such that
∑

x∈Xi
|C(x)| > p

q |OPT|. Consider now such a Xi, and denote by (see Figure 5): A the

subset of clauses containing only variables in X \Xi, A+ (resp., A−) the subset of clauses from A
that are in the optimum (resp., are not in the optimum); B the subset of clauses containing at
least one variable in Xi and one variable in X \ Xi; B1

+ (resp., B2
+) the subset of clauses from B

that are in the optimum and whose chosen variable Var(c) is in Xi (resp., not in Xi); B− the
subset of clauses from B that are not in the optimum; C the remaining clauses, i.e., the clauses
that contain only variables in Xi, C+ (resp., C−) the subset of clauses from C that are in the
optimum (resp., are not in the optimum). Note that when removing variables in X \ Xi, clauses
in A become empty, so the remaining clauses are exactly those in B ∪ C. With these notations,
OPT = A+ ∪ B1

+ ∪ B2
+ ∪ C+ and

∑

x∈Xi
|C(x)| = |B1

+| + |C+|. Then, for the chosen Xi:

(2)
∣

∣B1
+

∣

∣+ |C+| >
p

q
|OPT| =

p

q

(

|A+| +
∣

∣B1
+

∣

∣+
∣

∣B2
+

∣

∣+ |C+|
)

With respect to step iii) of Algorithm 8, denote by B1 the subset of satisfied clauses from B
and by C1 the subset of satisfied clauses from C. As OPT is a particular solution of weight
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|B1
+| + 2|C+| for this weighted sat problem, we have:

(3) |B1| + 2 |C1| >
∣

∣B1
+

∣

∣+ 2 |C+|

The greedy algorithm in step iv) will satisfy at least half of the remaining clauses containing at
least one literal from X \ Xi, i.e., the set (B\B1) ∪ A. Finally, the number of satisfied clauses is
at least:

|B1| + |C1| +
|B| − |B1| + |A|

2
= |C1| +

|B1|

2
+

|B|

2
+

|A|

2

(3)

>

∣

∣B1
+

∣

∣

2
+ |C+| +

|B|

2
+

|A|

2

>
∣

∣B1
+

∣

∣+ |C+| +

∣

∣B+
2

∣

∣

2
+

|A+|

2

So, the approximation ratio achieved is at least:

∣

∣B1
+

∣

∣+ |C+| +
|B2

+|+|A+|

2
∣

∣B1
+

∣

∣+ |C+| +
∣

∣B2
+

∣

∣+ |A+|
=

1

2

(

1 +

∣

∣B1
+

∣

∣+ |C+|
∣

∣B1
+

∣

∣+ |C+| +
∣

∣B2
+

∣

∣+ |A+|

)

(2)

>
1

2

(

1 +
p

q

)

=
q + p

2q
= ρ

that completes the proof.

For instance, suppose that max sat is solvable in O∗(1.657n), which is the running time to
solve Hamiltonian cycle in [4]. Then Algorithm 8 achieves a 0.9-approximation in time O∗(1.576n)
while Algorithm 6 achieves the same ratio in time O∗(1.703n).

5 Discussion

We have proposed in this paper several algorithms that constitute a kind of “moderately expo-
nential approximation schemata” for max sat. They guarantee approximation ratios that are
unachievable in polynomial time unless P = NP, or even in time 2m1−ǫ

under the exponential
time hypothesis. To obtain these schemata, several techniques have been used coming either
from the polynomial approximation or from the exact computation. Furthermore, Algorithm 8
in Section 4 is a kind of polynomial reduction between exact computation and moderately ex-
ponential approximation transforming exact algorithms running on “small” sub-instances into
approximation algorithms guaranteeing good ratios for the whole instance. We think that re-
search in moderately exponential approximation is an interesting research issue for overcoming
limits posed to the polynomial approximation due to the strong inapproximability results proved
in the latter paradigm.

We conclude this paper with a word about another very well known optimum satisfiability
problem, the min sat problem that, given a set of variables and a set of disjunctive clauses,
consists of finding a truth assignment that minimizes the number of satisfied clauses. A ρ-
approximation algorithm for min sat (with ρ > 1) is an algorithm that finds an assignment
satisfying at most ρ times the minimal number of simultaneously satisfied clauses.

In [11] an approximability-preserving reduction between min vertex cover and min sat

is presented transforming any ρ-approximation for the former problem into a ρ-approximation
for the latter problem. This reduction can be used to translate any result on the min vertex

cover problem into a result on the min sat, the number of vertices in the min vertex cover

instance being the number of clauses in the min sat instance. For instance, the results from [8]
for min vertex cover lead to the following parameterized approximation result for min sat:
for every instance of min sat and for any r ∈ Q, if there exists a solution for min sat satisfying
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at most k clauses, it is possible to determine with complexity O∗(1.28rk) a 2 − r-approximation
of it.

We also note that the method used in Algorithm 6 can be applied as well to min sat with
the following modification of the algorithm. Let p, q ∈ Q be such that p/q = 2ρ − 1. Build q
subsets of variables, each one containing p/q × n variables. For each subset, construct a search
tree, considering only the variables in the subset (the depth of the trees is p/q × n). For each
leaf of any of the so-built trees, use some polynomial algorithm with ratio α on the surviving
sub-instance. Return the best of the truth assignments computed.

The complexity of the modification just described is the same as that of Algorithm 6, i.e.,
O∗(2n(α−ρ)/(α−1)) (the best known ratio is α = 2), and a similar analysis derives an approxima-
tion ratio α − (α − 1)p

q = ρ.
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