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Abstract. Fixed-parameter algorithms, approximation algorithms and moderately
exponential algorithms are three major approaches to algorithm design. While each
of them being very active in its own, there is an increasing attention to the connection
between these different frameworks. In particular, whether Independent Set would
be better approximable once endowed with subexponential-time or FPT-time is a
central question. In this article, we provide new insights to this question using two
complementary approaches; the former makes a strong link between the linear PCP
conjecture and inapproximability; the latter builds a class of equivalent problems
under approximation in subexponential time.

1 Introduction

Fixed-parameter algorithms, approximation algorithms and moderately exponential/subex-
ponential algorithms are major approaches for efficiently solving NP-hard problems. These
three areas, each of them being very active in its own, have been considered as foreign to
each other until recently. A polynomial-time approximation algorithm produces a solution
whose quality is guaranteed to lie within a certain range from the optimum. One illustrative
problem indicating the development of this area is Independent Set4. The approximability
of Independent Set within constant ratios had remained as one of the most important
open problems for a long time in the field. It was only after the novel characterization of NP
by PCP theorem [1] that such inapproximability was proven assuming P 6= NP. Subsequent
improvements of the original PCP theorem led to much stronger result for Independent
Set: it is inapproximable within ratios Ω(nε−1) for any ε > 0, unless P = NP [35].

Moderately exponential (subexponential, respectively) computation allows exponential
(subexponential, respectively) running time for the sake of optimality. In this case, the en-
deavor lies in limiting the growth of the running time function as much as possible. Parame-
terized complexity provides an alternative framework to analyze the running time in a more
refined way [14]. Given an instance with a parameter k, the aim is to get an O(f(k)·poly(n))-
time (or equivalently, FPT-time) algorithm, where poly(n) is independent of k. As these two
research programs offer a generous running time when compared to that of classic approx-
imation algorithms, a growing amount of attention is paid to them as a way to cope with
hardness in approximability. The first one yields moderately exponential approximation. In
moderately exponential approximation, the core question is whether a problem is approx-
imable in moderately exponential time while such approximation is impossible in polynomial
time. Suppose a problem is solvable in time γnpoly(n), but it is NP-hard to approximate
within ratio r. Then, we seek r-approximation algorithms of running time significantly faster
than γnpoly(n). This issue has been considered for several problems such as Set Parti-
tioning, Independent Set, Coloring, and Bandwidth [2, 4, 5, 12, 18].
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The second research program handles approximation by fixed parameter algorithms. We
say that a minimization (maximization, respectively) problem Π, together with a parame-
ter k, is parameterized r-approximable if there exists an FPT-time algorithm which computes
a solution of size at most (at least, respectively) rk whenever the input instance has a so-
lution of size at most (at least, respectively) k. This line of research was initiated by three
independent works [15, 7, 10]. For an excellent overview on early stages of the topic, see [29].
Since then very important research has been conducted on several aspects (both computa-
tional and structural) of parameterized approximation (see, for example, [5, 3, 11, 16, 21, 22]).
In what follows, parameterization means “standard parameterization”, i.e., where problems
are parameterized by the cost of the optimal solution.

Several natural questions can be asked dealing with these two programs. In particular,
the following ones have been asked several times [29, 15, 18, 5]:

Q1: can a problem, which is highly inapproximable in polynomial time, be well-approximated
in subexponential time?

Q2: does a problem, which is highly inapproximable in polynomial time, become well-app-
roximable in FPT-time?

Few answers have been obtained until now. Regarding Q1, negative results can be directly
obtained by gap-reductions for certain problems. For instance, Coloring is not approx-
imable in subexponential time within ratio (4/3) − ε since this would allow to determine
whether a graph is 3-colorable or not in subexponential time. This contradicts a widely-
acknowledged computational assumption [24], the Exponential Time Hypothesis.

Exponential Time Hypothesis (ETH): There exists an ε > 0 such that no algorithm
solves 3Sat in time O(2εn), where n is the number of variables.

Regarding Q2, [15] shows that assuming FPT 6= W[2], for any r the Independent Domi-
nating Set problem is not r-approximable5 in FPT-time.

Among interesting problems for which Q1 and Q2 are worth being asked are Inde-
pendent Set, Coloring and Dominating Set. They fit in the frame of both Q1 and
Q2 above: they are hard to approximate in polynomial time while their approximability in
subexponential or in parameterized time is still open.

In this paper, we study parameterized and subexponential (in)approximability of natural
optimization problems. In particular, we follow two guidelines: (i) getting inapproximabil-
ity results under some conjecture and (ii) establishing classes of uniformly inapproximable
problems under approximation preserving reductions.

Following the first direction, we establish a link between a major conjecture in PCP
theory and inapproximability in subexponential-time and in FPT-time, assuming ETH.
Just below, we state this conjecture while the definition of PCP is deferred to the next
section.

Linear PCP Conjecture (LPC): 3Sat ∈ PCP1,β [log |φ|+D,E] for some β ∈ (0, 1),
where |φ| is the size of the 3Sat instance (sum of lengths of clauses), D and E are
constant.

Unlike ETH which is widely held to be a reasonable conjecture, LPC is a wide open question.
In Lemma 2 stated in Section 2, we claim that if LPC turns out to hold, it implies that
one of the most interesting questions in subexponential and parameterized approximation
is answered in the negative. In particular, the following holds for Independent Set on n
vertices, for any constant 0 < r < 1 assuming ETH:

(i) there is no r-approximation algorithm in time O(2n
1−δ

) for any δ > 0;
(ii) there is no r-approximation algorithm in time O(2o(n)), if LPC holds;

5 Actually, the result is even stronger: it is impossible to obtain a ratio r = g(k) for any function g.

2



(iii) there is no r-approximation algorithm in time O(f(k)nO(1)), if LPC holds, where k is
the size of a maximum independent set and f is any function.

We observe that (i) is not conditional upon LPC. In fact, this is an immediate consequence
of the near-linear PCP construction achieved in [13]. Note that similar inapproximability
results under ETH for Max-3Sat and Max-3Lin for some subexponential running time
have been obtained in [31].

Following the second guideline, we show that a number of problems are equivalent with
respect to approximability in subexponential time. Designing a family of equivalent problems
is a common way to provide an evidence in favor of hardness of these problems. One promi-
nent example is the family of problems complete under SERF-reducibility [24] which leads
to equivalent formulations of ETH. More precisely, for a given problem Π, let us formulate
the following hypothesis, which can be seen as the approximate counterpart of ETH.

Hypothesis 1 (APETH(Π)) There exist two constants ε > 0 and r (r < 1 if Π is a
maximization problem, r > 1, otherwise), such that Π is not r-approximable in time 2εn.

We prove that several well-known problems are equivalent with respect to the APETH
(APETH-equivalent). To this end, a notion called the approximation preserving sparsifi-
cation is proposed. A recipe to prove that two problems A and B are APETH-equivalent
consists of two steps. The first is to reduce an instance of A into a family of instances in
“bounded” version (bounded degree for graph problems, bounded occurrence for satisfia-
bility problems), which are equivalent with respect to approximability. This step is where
approximation preserving sparsification comes into play. The second is to use standard ap-
proximation preserving reductions to derive equivalences between bounded versions of A
and B. In this paper, we consider L-reductions [32] for this purpose. Furthermore, we show
that if APETH fails for one of these problems, then any problem in MaxSNP6 would be
approximable for any constant ratio in subexponential FPT-time 2o(k), which is also an
evidence toward the validity of APETH. This result can be viewed as an extension of [26],
which states that no MaxSNP-hard problem allows a algorithm in time 2o(k) under ETH.

Some preliminaries and notation are given in Section 2. Results derived from PCP and
LPC are given in Section 3. The second direction on equivalences between problems is
described in Section 4.

2 Preliminaries and notation

We will use in the sequel the well known sparsification lemma [24]. Intuitively, this lemma
allows to work with 3Sat formula with linear lengths (the sum of the lengths of clauses is
linearly bounded in the number of variables).

Lemma 1. [24] For all ε > 0, a 3Sat formula φ on n variables can be written as the
disjunction of at most 2εn 3Sat formulæ φi on (at most) n variables such that φi contains
each variable in at most cε clauses for some constant cε. Moreover, this reduction needs at
most poly(n)2εn-time.

We denote by PCPα,β [q, p] (see for instance [1] for more on PCP systems) the set of
problems for which there exists a PCP verifier V which uses q random bits, reads at most p
bits in the proof and is such that:

– if the instance is positive, then there exists a proof such that V accepts with probability
at least α;

– if the instance is negative, then for any proof V accepts with probability at most β.

6 All the definitions concerning MaxSNP are given in the appendix. The reader can also find those
definitions in the seminal paper [32].
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The following theorem is proved in [13] (see also Theorem 7 in [31]), presenting a further
refinement of the characterization of NP.

Theorem 1. [13] For every ε > 0,

3Sat ∈ PCP1,ε [(1 + o(1)) log n+O (log(1/ε)) , O (log(1/ε))]

A recent improvement [31] of Theorem 1 (a PCP Theorem with two-query projection tests,
sub-constant error and almost-linear size) has some important corollaries in subexponential-
time approximation. In particular:

Corollary 1. [31] Under ETH, for every ε > 0, and δ > 0, it is impossible to distinguish
between instances of Max-3Sat with m clauses where at least (1− ε)m are satisfiable from
instances where at most ((7/8) + ε)m are satisfiable, in time O(2m

1−δ
).

Under LPC, a stronger version of this result follows by a standard argument.

Lemma 2. Under LPC7 and ETH, there exists r < 1 such that for every ε > 0 it is
impossible to distinguish between instances of Max-3Sat with m clauses where at least
(1− ε)m are satisfiable from instances where at most (r+ ε)m are satisfiable, in time 2o(m).

Proof. Suppose that 3Sat ∈ PCP1,β [log |φ|+D,E], where β ∈ (0, 1), |φ| is the sum of the
lengths of clauses in the 3Sat instance, D and E are constants.

Given an ε > 0, let ε′ such that 0 < ε′ < ε. Given an instance φ of 3Sat on n variables, we
apply the sparsification lemma [24] (with ε′) to get 2ε

′n instances φi on at most n variables.
Since each variable appears at most cε′ times in φi, the global size of φi is |φi| 6 cε′n.

Then for each formula φi we use the previous PCP assumption. The size of the proof is
at most E2|R| = c′|φi| 6 cn for some constants c′, c that depend on ε′ (where |R| = log n+D
is the number of random bits) since E2|R| is the total number of bits that we read in the
proof. Take one variable for each bit in the proof: x1, · · · , xcn. For each random string R:
take all the 2E possibilities for the E variables read, and write a CNF formula which is
satisfied if and only if the verifier accepts. This can be done with a formula with a constant
number of clauses, say C1, each clause having a constant number of variables, say C2 (C1

and C2 depends only on E).
If we consider the CNF formula formed by all these CNF formulas for all the random

clauses, we get a CNF formula with C12
|R| clauses on variables x1, · · · , xcn. The clauses are

on C2 variables but by adding dC2/4e variables we can replace a clause on C2 variables by an
equivalent set of 3-clauses. This way we get a 3-CNF formula and multiply the number of
variables and the number of clauses by a constant, so they are still linear in n. For each R
we have a set of say C ′1 clauses.

Suppose that we start from a satisfiable formula φi. Then there exists a proof for which
the verifier always accepts. By taking the corresponding values for the variables xi, and
extending it properly to the new variables y, all the clauses are satisfied.

Suppose that we start from a non satisfiable formula φi. Then for any proof (i.e., any
truth values of variables), the verifier rejects for a proportion of at least (1−β) of the random
strings. If the verifier rejects for a random string R, then in the set of clauses corresponding
to this variable at least one clause is not satisfied. It means that among the C ′12|R| clauses
(total number of clauses), at least (1 − β) · 2|R| are not satisfied, i.e., a fraction (1−β)/C′1 of
the clauses.

Then either m = C ′12
|R| = O(n) clauses are satisfiable, or at least m(1−β)/C′1 clauses

are not satisfied by each assignment. Distinguishing between these sets in time 2o(m) would
determine whether φi is satisfiable or not in 2o(n). Doing this for each φi would solve 3Sat in
time poly(n)2ε

′n + 2ε
′nO(2o(n)) = O(2εn). This is valid for any ε > 0 so it would contradict

ETH. ut
7 Note that LPC as expressed in this article implies the result even with replacing (1− ε)m by m.
However, we stick with this lighter statement (1− ε)m in order, in particular, to emphasize the
fact that perfect completeness is not required in the LPC conjecture.
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The (conditional) hardness result of approximating Max-3Sat stated in Lemma 2 will be
the basis of the negative results of parameterized approximation in Section 3.1.

Let us now present two useful gap amplification results for Independent Set. First, as
noted in [17], the so-called self-improvement property [20] can be proven for Independent
Set also in the case of parameterized approximation.

Lemma 3. [17] If there exists a parameterized r-approximation algorithm for some r ∈
(0, 1) for Independent Set, then this is true for any r ∈ (0, 1).

Also, the very powerful tool of expander graphs allows us to derive a gap amplification for
Independent Set, proved in Theorem 3. But first, in order to prove the theorem, let us
recall some basics about gap amplification and expander graphs.

Definition 1. A graph G is a (n, d, α)-expander graph if:

(i) G has n vertices;
(ii) G is d-regular;
(iii) all the eigenvalues λ of G but the largest one is such that |λ| 6 αd.

Lemma 4. For any positive integer k ∈ N∗ and any α > 0 there exist d and a (k2, d, α)-
expander graph. Moreover, d depends only on α, and this graph can be computed in polyno-
mial time for every fixed α.

Proof. The lemma follows from the following two lemmata.

Lemma 5. [19, 23] For every positive integer k, there exists a (k2, 8, 5
√
2/8)-expander graph,

computable in polynomial time.

If G is a graph with adjacency matrix M , let us denote Gk the graph with adjacency
matrix Mk. Then, the following lemma also holds.

Lemma 6. [33] If G is an (n, d, α)-expander graph, then Gk is an (n, dk, αk)-expander
graph.

Proof (Lemma 6). Gk is obviously dk regular, and the eigenvalues of Gk are the eigenvalues
of G to the power of k. ut

To complete the proof of the lemma, take α > 0 and let p be the smallest integer such that
(5
√
2/8)p 6 α. Graph Gp is as required and Lemma 4 is proved. ut

Let G be a graph on n vertices and H be a (n, d, α)-expander graph. Let t be a positive
integer. Build the graph G′t on N = ndt−1 vertices: each vertex corresponds to a (t − 1)-
random walk x = (x1, · · · , xt) on H (meaning that x1 is chosen at random, and xi+1 is
chosen randomly in the set of neighbors of xi), and two vertices x = (x1, · · · , xt) and
y = (y1, · · · , yt) in G′t are adjacent iff {x1, · · · , xt, y1, · · · , yt} is a clique in G. Then, the
following holds.

Theorem 2. [23] Let G be a graph on n vertices and H be a (n, d, α)-expander graph. If
b > 6α then, denoting by ω(G) the clique-number (size of a maximum clique) of G, it holds
that:

– if ω(G) 6 bn then ω(G′t) 6 (b+ 2α)tN ;
– if ω(G) > bn then ω(G′t) > (b− 2α)tN .

We are well prepared now to prove the following theorem.

Theorem 3. Let G be a graph on n vertices (for sufficiently large n) and a > b be two
positive real numbers. Then for any real r > 0 one can build in polynomial time a graph Gr
and specify constants ar and br such that:
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(i) Gr has N 6 Cn vertices, where C is some constant independent of G (but may depend
on r);

(ii) if ω(G) 6 bn then ω(Gr) 6 brN ;
(iii) if ω(G) > an then ω(Gr) > arN ;
(iv) br/ar 6 r.

Proof. Set k = d
√
ne. We modify G by adding k2 − n dummy (isolated) vertices. Let G′ be

the new graph. It has n′ = k2 vertices. Note that n′ 6 (
√
n+1)2 = n+2

√
n+1 = n+ o(n).

Let n be such that 1− ε 6 n/n′ 6 1 for a small ε. Due to Lemma 4, we consider a (k2, d, α)-
expander graph H for a sufficiently small α (the value of which will be fixed later). According
to Theorem 2 (applied on G′) we build in polynomial time a graph G′t on N = n′dt vertices
such that (choosing α < b/6):

– if ω(G) 6 bn then ω(G′) = ω(G) 6 bn′, hence ω(G′t) 6 (b+ 2α)tN ;
– if ω(G) > an then ω(G′) = ω(G) 6 an′(1− ε), hence ω(G′t) > (a(1− ε)− 2α)tN .

We choose ε and α such that a(1−ε)−2α > b+2α, and then t such that (a(1−ε)−2α)t/(b+2α)t 6
r. The number of vertices of G′t is clearly linear in n (first point of the theorem). Then,
br = (b+2α)t and ar = (a(1−ε)−2α)t fulfil items (ii), (iii) and (iv) of theorem’s statement.

ut

3 Some consequences of (almost-) linear size PCP system

3.1 Parameterized inapproximability bounds

It is shown in [9] that, under ETH, for any function f no algorithm running in time f(k)no(k)
can determine whether there exists an independent set of size k, or not (in a graph with n
vertices). A challenging question is to obtain a similar result for approximation algorithms for
Independent Set. In the sequel, we propose a reduction from Max-3Sat to Independent
Set that, based upon the negative result of Corollary 1, only gives a negative result for some
function f (because Corollary 1 only avoids some subexponential running times and not, for
instance, time 2m/logm). However, this reduction gives the inapproximability result sought,
if the consequence of LPC given in Lemma 2 (which strengthens Corollary 1 and seems
to be a much weaker assumption than LPC) is used instead. We emphasize the fact that
the results in this section are valid as soon as a hardness result for Max-3Sat as that in
Lemma 2 holds.

The proof of the following theorem essentially combines the parameterized reduction
in [9] and a classic gap-preserving reduction.

Theorem 4. Under LPC and ETH, there exists r < 1 such that no approximation algo-
rithm for Independent Set running in time f(k)no(k) can achieve approximation ratio r
in graphs of order n.

Proof. We denote by N the number of vertices in a graph (to avoid confusion with the
number of variables in a formula). We will show that the existence of such an algorithm for
any r′ < 1 would contradict the hardness result for Max-3Sat in Lemma 2, hence ETH
or LPC. Consider a constant r < 1. Let 0 < ε < 1 − r. We show that the existence of an
(r + ε)-approximation algorithm for Independent Set running in time f(k)No(k) would
allow to distinguish in time 2o(m) between instances of Max-3Sat where (1− ε′)m clauses
are satisfiable and instances where at most (r+ ε′)m clauses are satisfiable, for some ε′ > 0.
W.l.o.g., we can assume that f is increasing, and that f(k) > 2k.

Take an instance I of Max-3Sat, let K be an integer that will be fixed later. We build
a graph GI as follows:

– partition the m clauses into K groups H1, · · · , HK each of them containing roughly m/K
clauses;
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– each group Hi involves a number si 6 3m/K of variables; for all possible values of these
variables, add a vertex in the graph GI if these values satisfy at least λm/K clauses in Hi

(the value of λ will also be fixed later);
– finally, add an edge between two vertices if they have one contradicting variable.

In particular, the vertices corresponding to the same group of clauses form a clique. It is
easy to see that the so-constructed graph contains N 6 K23m/K vertices.

The following easy claim holds.

Claim. If a variable assignment A satisfies at least λm/K clauses in at most s groups, then
it satisfies at most λm+ (s(1−λ)m/K) clauses.

Proof of claim. A satisfies at most m/K clauses in at most s groups, and at most λm/K in the
other K−s groups, so in total at most sm/K+ (K−s)λm/K = λm+ s(1−λ)m/K, that completes
the proof of the claim. 3

Now, let us go back to the proof of the theorem. Assume an independent set of size at
least t in GI . Then one can achieve a partial solution that satisfies at least λm/K clauses
in at least t groups. So, at least tλm/K clauses are satisfiable. In other words, if at most
(r + ε′)m clauses are satisfiable, then a maximum independent set in GI has size at most
K · (r+ε′)/λ. Suppose that at least (1 − ε′)m clauses are satisfiable. Then, using the claim,
there exists a solution satisfying at least λm/K clauses in at least ((1−ε′−λ)/(1−λ)) ·K groups;
otherwise, it should be λm+ s(1−λ)m/K < (1− ε′)m. Then, there exists an independent set
of size ((1−ε

′−λ)/(1−λ)) ·K in GI .
Now, set K = df−1(m)/(1−ε2)e. Set also λ = 1− ε, and ε′ = ε3. Run the assumed (r + ε)-

approximation parameterized algorithm for Independent Set in GI with parameter k =
(1− ε2)K. Then, if at least (1− ε′)m clauses are satisfiable, there exists an independent set
of size at least ((1−ε

′−λ)/(1−λ)) ·K = (1 − ε3/ε)K = (1 − ε2)K = k; so, the algorithm must
output an independent set of size at least (r + ε)k. Otherwise, if at most (r + ε′)m clauses
are satisfiable, the size of an independent set is at most K · (r+ε′)/λ = K · (r+ε3)/(1−ε) =
k · (r+ε3)/((1−ε)(1−ε2)) = k(r + rε+ o(ε)).

So, for ε sufficiently small, the algorithm allows to distinguish between the two cases of
Max-3Sat (for ε′), i.e., whether at least (1−ε′)m clauses are satisfiable, or at most (r+ε)m
clauses.

The running time of the algorithm is f(k)No(k), with f(k) = f((1 − ε2)K) = m and
No(k) = Nk/ψ(k), for some increasing and unbounded function ψ. So, No(k) = (K23m/K)k/ψ(k)

= K23m(1−ε2)/ψ(k) = O(2o(m)). ut

The following result follows from Lemma 3 and Theorem 4.

Corollary 2. Under LPC and ETH, for any r ∈ (0, 1) there is no r-approximation param-
eterized algorithm for Independent Set (i.e., an algorithm that runs in time f(k)poly(n)
for some function f).

Let us now consider Dominating Set which is known to be W[2]-hard [14]. The existence
of a parameterized constant-factor approximation algorithm for this problem is open [15].

Here, we present an approximation preserving reduction (fitting the parameterized frame-
work) which, given a graph G(V,E) on n vertices where V is a set of K cliques C1, · · · , CK ,
builds a graph G′(V ′, E′) such that G has an independent set of size α if and only if G′ has
a dominating set of size 2K − α. Using the fact that the graphs produced in the proof of
Theorem 4 are of this form (vertex set partitioned into cliques), this reduction will allow
us to obtain a lower bound (based on the same hypothesis) for the approximation of min
dominating set.

The graph G′ is built as follows:

– for each clique Ci in G, add a clique C ′i of the same size in G′; add also: an independent
set Si of size 3K, each vertex in Si being adjacent to all vertices in C ′i and a special
vertex ti adjacent to all the vertices in C ′i;
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– for each edge e = {u, v} with u and v not in the same clique in G, add an independent
set We of size 3K; suppose that u ∈ Ci and v ∈ Cj ; then, each vertex in We is linked
to ti and to all vertices in C ′i but u, and to tj and to all vertices in C ′j but v.

Informally, the reduction works as follows. The set Si ensures that we have to take at least
one vertex in each C ′i, the fact that |We| = 3K ensures that it is never interesting to take
a vertex in We. If we take ti in a dominating set, this will mean that we do not take any
vertex in the set Ci in the corresponding independent set in G. If we take one vertex in C ′i
(but not ti), this vertex will be in the independent set in G. Let us state this property in
the following lemma.

Lemma 7. G has an independent set of size α if and only if G′ has a dominating set of
size 2K − α.

Proof. Suppose that G has an independent set S of size α. Then, S has one vertex in α
sets Ci, and no vertex in the other K−α sets. We build a dominating set T in G′ as follows:
for each vertex in S we take its copy in G′. For each clique Ci without vertices in S, we
take ti and an arbitrary vertex in C ′i. The set T has size α+2(K−α) = 2K−α. For each C ′i,
one of its vertices is in T ; so, vertices in C ′i, ti and vertices in Si are dominated. Now consider
a vertex in We with e = {u, v}, u ∈ Ci and v ∈ Cj . If Ci ∩ S = ∅ (or Cj ∩ S = ∅), then
ti ∈ T (or tj ∈ T ) and, by construction, ti is adjacent to all vertices in We. Otherwise, there
exist w ∈ S ∩ Ci and x ∈ S ∩ Cj . Since S is an independent set, either w 6= u or x 6= v. If
w 6= u, by construction w (its copy in C ′i) is adjacent to all vertices in We and, similarly,
for x if x 6= v. So, T is a dominating set.

Conversely, suppose that T is a dominating set of size 2K−α. Since Si is an independent
set of size 3K, T cannot contain Si entirely, so at least one vertex in N(Si) has to be in T .
But any vertex in N(Si) dominates all the vertices in Si. Thus, we can assume that T∩Si = ∅
and the same occurs with We. In particular, there exists at least one vertex in T in each C ′i.
Now, suppose that T has two different vertices u and v in the same C ′i. Then, we can
replace v by ti getting a dominating set (vertices in Si are still dominated by u, and any
vertex in some We which is adjacent to v is adjacent to ti). So, we can assume that T has
the following form: exactly one vertex in each C ′i, and K − α vertices ti. Hence, there are α
cliques C ′i, where ti is not in T . We consider in G the set S constituted by the α vertices
in T in these α sets. Take two vertices u and v in S with, say, u ∈ Ci and v ∈ Cj (with ti 6∈ T
and tj 6∈ T ). If there were an edge e = {u, v} in G, neither u nor v would have dominated a
vertex in We (by construction). Since neither ti nor tj is in T , this set would not have been
a dominating set, a contradiction. So, S is an independent set. ut

Theorem 5. Under LPC and ETH, there exists an r > 1 such that there is no r-approx-
imation algorithm for Dominating Set running in time f(k)no(k) where n is the order of
the graph.

Proof. In the proof of Theorem 4, we produce a graph GI which is made of K cliques and
such that: if at least (1−ε)m clauses are satisfiable in I, then there exists an independent set
of size (1−O(ε))K; otherwise (at most (r+ ε)m clauses are satisfiable in I), the maximum
independent set has size at most (r + O(ε))K. The previous reduction transforms GI in a
graph G′I such that, applying Lemma 7, in the first case there exists a dominating set of size
at most 2K− (1−O(ε))K = K(1+O(ε)) while, in the second case, the size of a dominating
set is at least 2K − (r + O(ε))K = K(2 − r − O(ε)). Thus, we get a gap with parameter
k′ = K(1+O(ε)). Note that the number of vertices inG′I is n

′ = n+K+3K+3K|EI | = O(n3)
(where EI is the set of edges in GI). If we were able to distinguish between these two sets of
instances in time f(k′)n′o(k

′), this would allow to distinguish the corresponding independent
set instances in time f(k′)n′o(k

′) = g(k)no(k) since k′ = K(1 + O(ε)) = k(1 + O(ε)) (k =
K(1− ε3) being the parameter chosen for the graph GI). ut
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Such a lower bound immediately transfers to Set Cover since a graph on n vertices for
Dominating Set can be easily transformed into an equivalent instance of Set Cover with
ground set and set system both of size n.

Corollary 3. Under LPC and ETH, there exists r > 1 such that there is no r-approxima-
tion algorithm for Set Cover running in time f(k)mo(k) in instances with m sets.

3.2 On the approximability of Independent Set and related problems in
subexponential time

As mentioned in Section 2, an almost-linear size PCP construction [31] for 3Sat allows to get
the negative result stated in Corollary 1. In this section, we present further consequences
of Theorem 1, based upon a combination of known reductions with (almost) linear size
amplifications of the instance.

First, Theorem 1 combined with the reduction in [1] showing inapproximability results
for Independent Set in polynomial time and the gap amplification of Theorem 3, leads to
the following result.

Theorem 6. Under ETH, for any r > 0 and any δ > 0, there is no r-approximation
algorithm for Independent Set running in time O(2n

1−δ
), where n is the order of the

input graph.

Proof. Again, to avoid confusion we denote in this proof by N the number of vertices in a
graph. Given an ε > 0, let ε′ be such that 0 < ε′ < ε. Given an instance φ of 3Sat on n
variables, we first apply the sparsification lemma [24] (with ε′) to get 2ε

′n instances φi on at
most n variables. Since each variable appears at most cε′ times in φi, the global size of φi is
|φi| 6 cε′n.

Consider a particular φi, r > 0 and δ > 0. We use the fact that 3Sat∈ PCP1,r[(1 +
o(1)) log |φ| +Dr, Er] (where Dr and Er are constants that depend only on r), in order to
build the following graph Gφi (see also [1]):

– for any random string R of size (1 + o(1)) log |φ|+Dr, and any possible value of the Er
bits read by V, add a vertex in the graph if V accepts;

– if two vertices are such that they have at least one contradicting bit (they read the same
bit which is 1 for one of them and 0 for the other one), add an edge between them.

In particular, the set of vertices corresponding to the same random string is a clique.
Assume that φi is satisfiable. Then there exists a proof for which the verifier accepts for

any random string R. Take for each random string R the vertex in Gφi corresponding to this
proof. There is no conflict (no edge) between any of these 2|R| vertices, hence α(Gφi) = 2|R|

(where, in a graph G, α(G) denotes the size of a maximum independent set).
If φi is not satisfiable, then α(Gφi) 6 r2|R|. Indeed, suppose that there is an independent

set of size α > r2|R|. This independent set corresponds to a set of bits with no conflict,
defining part of a proof that we can arbitrarily extend to a proof Π. The independent set
has α vertices corresponding to α random strings (for which V accepts), meaning that the
probability of acceptance for this proof Π is at least α/2|R| > r, a contradiction with the
property of the verifier.

Furthermore, Gφi has N 6 2|R|2Er 6 C ′|φi|1+o(1) = Cn1+o(1) vertices (for some con-
stants C,C ′ that depend on ε′) since |φi| 6 cε′n. Then, one can see that, for any r′ > r, an
r′-approximation algorithm for Independent Set running in time O(2N

1−δ
) would allow

to decide whether φi is satisfiable or not in time O(2n
1−δ′

) for some δ′ < δ. Doing this
for each of the formula φi would allow to decide whether φ is satisfiable or not in time
poly(n)2ε

′n + 2ε
′nO(2n

1−δ′

) = O(2εn). This is valid for any ε > 0 so it would contradict
ETH.

Combining this reduction with the gap amplification of Theorem 3 allows to create a gap
with any constant in (0, 1). Since the reduction in this amplification is linear with respect
to the number of vertices, we get the claimed result. ut
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Let us note that the result of Theorem 6 has been powerfully improved very recently in [8],
where it is proved that under ETH, for any δ > 0 any r larger than some constant, any
r-approximation algorithm for Independent Set must run in at least 2n

1δ/r1+δpoly(n) time.
Note also that, since (for k 6 n), nk

1−δ
= O(2n

1−δ′

), for some δ′ < δ, the following holds.

Corollary 4. Under ETH, for any r > 0 and any δ > 0, there is no r-approximation
algorithm for Independent Set running in time O(nk

1−δ
), where n is the order of the

input graph, and k is the size of a maximum independent set.

The results of Theorem 6 and Corollary 4 can be immediately extended to problems that
are linked to Independent Set by approximation preserving reductions (that preserve at
least constant ratios) that have linear amplifications of the sizes of the instances, as in the
following proposition.

Proposition 1. Under ETH, for any r > 0 and any δ > 0, there is no r-approximation
algorithm for either Set Packing or Bipartite Subgraph running in time O(2n

1−δ
) in

a graph of order n.

Proof. Consider the following reduction from Independent Set to Bipartite Subgraph
given in [34]. Let G(V,E) be an instance of Independent Set of order n. Construct a
graph G′(V ′, E′) for Bipartite Subgraph by taking two distinct copies of G (denote them
by G1 and G2, respectively) and adding the following edges: a vertex vi1 of copy G1 is linked
with a vertex vj2 of G2, if and only if either i = j or (vi, vj) ∈ E. The graph G′ has 2n
vertices.

Let now S be an independent set of G. Then, obviously, taking the two copies of S in G1

and G2 induces a bipartite graph of size 2|S|. Conversely, consider an induced bipartite
graph in G′ of size t, and take the largest among the two color classes. By construction, it
corresponds to an independent set inG, whose size is at least t/2 (note that it cannot contain 2
copies of the same vertex). So, any r-approximate solution for Bipartite Subgraph in G′
can be transformed into an r-approximate solution for Independent Set in G. Observe
finally that the size of G′ is two times the size of G. ut

Dealing with minimization problems, Theorem 6 and Corollary 4 can be extended to Color-
ing, using the reduction given in [27]. Note that this reduction uses the particular structure
of graphs produced in the inapproximability result in [1] (as in Theorem 6). Hence, the
following result can be derived.

Proposition 2. Under ETH, for any r > 1 and any δ > 0, there is no r-approximation
algorithm for Coloring running in time O(2n

1−δ
) in a graph of order n.

Proof. In [27] the following reduction is presented. Given a graph G whose vertex set is
partitioned into K cliques each of size S, and given a prime number q > S, a graph Hq

having the following properties can be built in polynomial time:

– the vertex set of Hq is partitioned into q2K cliques, each of size q3;
– α(Hq) 6 max{q2α(G); q2(α(G)− 1) +K; qK};
– if α(G) = K, then χ(Hq) = q3.

Fix a ratio r > 1, and let rIS > 0 be such that rIS + r2IS 6 1/r. Start from the graph Gφi
produced in the proof of Theorem 6 for ratio rIS . The vertex set of Gφi is partitioned into
K = 2|R| cliques, each of size at most 2Er . By adding dummy vertices (a linear number,
since Er is a fixed constant), we can assume that each clique has the same size S = 2Er , so
the number of vertices in Gφi is N = KS = 2|R|2Er .

Let q > max{S, 1/rIS} be a prime number, and consider the graph Hq produced from Gφi
by the reduction in [27] mentioned above. If φi is satisfiable, α(Gφi) = K and then by the
third property of the graph Hq, χ(Hq) = q3. Otherwise, by the second property α(Hq) 6
max{q2α(Gφ); q2(α(Gφ) − 1) +K; qK}. Formula φi being not satisfiable, α(Gφi) 6 rISK.
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By the choice of q, qK 6 q2rISK, so α(Hq) 6 q2rISK + K = (q2rIS + 1)K. Since the
number of vertices in Hq is Kq5, we get that χ(Hq) > q5/(q2rIS+1). The gap created for the
chromatic number in the two cases is then at least:

q5

(q2rIS + 1) q3
=

1

rIS + 1/q2
>

1

rIS + r2IS
> r

The result follows since Hq has Kq5 vertices and q is a constant (that depends only on the
ratio r and on the constant number of bits p read by V), so the size of Hq is linear in the
size of Gφi . ut

Concerning the approximability of Vertex Cover and Min-Sat in subexponential time,
the following holds.

Proposition 3. Under ETH, for any ε > 0 and any δ > 0, there is no ((7/6)− ε)-approxi-
mation algorithm for Vertex Cover running in time O(2n

1−δ
) in graphs of order n, nor

for Min-Sat running in time O(2m
1−δ

) in CNF formulæ with m clauses.

Proof. We combine the following theorem with a well known reduction.

Theorem 7. [31] Under ETH, for every ε > 0, and δ > 0, it is impossible to distinguish
between instances of max 3-lin with m equations where at least (1 − ε)m are satisfiable
from instances where at most ((1/2) + ε)m are satisfiable, in time O(2m

1−δ
).

Consider an instance I of max 3-lin on m equations. Build the following graph GI :

– for any equation and any of the eight possible values of the 3 variables in it, add a vertex
in the graph if the equation is satisfied;

– if two vertices are such that they have one contradicting variable (the same variable has
value 1 for one vertex and 0 for the other one), then add an edge between them.

In particular, the set of vertices corresponding to the same equation is a clique. Note that
each equation is satisfied by exactly 4 values of the variables in it. Then, the number of
vertices in the graph is N = 4m. Consider an independent set S in the graph GI . Since there
is no conflict, it corresponds to a partial assignment that can be arbitrarily completed into
an assignment τ for the whole system. Each vertex in S corresponds to an equation satisfied
by τ (and S has at most one vertex per equation), so τ satisfies (at least) |S| equations.
Reciprocally, if an assignment τ satisfies α clauses, there is obviously an independent set of
size α in GI . Hence, if (1 − ε)m equations are satisfiable, there exists an independent set
of size at least (1 − ε)m, i.e., a vertex cover of size at most N − (1 − ε)m = N(3/4 + ε/4).
If at most ((1/2) + ε)m equations are satisfiable, then each vertex cover has size at least
N − ((1/2) + ε)m = N(7/8− ε/4).

We now handle the Min-Sat problem via the following reduction [28]. Given a graph G,
build the following instance on Min-Sat. For each edge {vi, vj} add a variable xij . For each
vertex vi add a clause ci. Variable xij appears positively in ci and negatively in cj . Then,
take a vertex cover V ∗ of size k; for any xij , fix the variable to true if vi ∈ V ∗, to false
otherwise. Consider a clause cj with vj 6∈ V ∗. If xij is in cj then vi is in V ∗, hence xij is
true; if xji is in cj then, by construction, xji is false. So cj is not satisfied, and the assignment
satisfies at most k clauses. Conversely, consider a truth assignment that satisfies k clauses
ci1 , · · · , cik . Consider the vertex set V ∗ = {vi1 , · · · , vik}. For an edge {vi, vj}, if xij is set to
true, then ci is satisfied and vi is in V ∗; otherwise, cj is satisfied and vj is in V ∗; so V ∗ is
a vertex cover of size k. Since the number of clauses in the reduction equals the number of
vertices in the initial graph, the result is concluded. ut

All the results given in this section are valid under ETH and rule out some ratios in subex-
ponential time of the form 2n

1−δ
. It is worth noticing that if LPC holds, then all these results

would hold for any subexponential time (in contrast to the result of [8] for Independent
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Set that holds only for the form 2n
1−δ

). Note that this is in some sense optimal since it
is easy to see that, for any increasing and unbounded function r(n), Independent Set is
approximable within ratio 1/r(n) in subexponential time (simply consider all the subsets of V
of size at most n/r(n) and return the largest independent set among these sets).

Corollary 5. Under LPC and ETH Theorem 6 and Propositions 1, 2 and 3 hold for any
time complexity 2o(n).

Indeed, using LPC, the same proof as in Theorem 6 creates for each φi a graph on N = O(n)
variables with either an independent set of size αN (if φi is satisfiable) or a maximum
independent set of size at most (α/2)N (if φi is not satisfiable). Then using expander graphs,
usual arguments allow to amplify this gap from 1/2 to any constant r > 0 while preserving
the linear size of the instance (see Theorem 3). Results for the other problems immediately
follow from the same arguments as above.

4 Subexponential approximation preserving reducibility

In this section, we study subexponential approximation preserving reducibility. Recall that
APETH(Π) (Hypothesis 1) states that it is hard to approximate in subexponential time
problem Π, within some constant ratio r. We exhibit that a set of problems are APETH-
equivalent using the notion of approximation preserving sparsification. We then link APETH
with approximation in subexponential FPT-time.

4.1 Approximation preserving sparsification and APETH equivalences

Recall that the sparsification lemma for 3Sat reduces a formula φ to a set of formulae φi
with bounded occurrences of variables such that solving the instances φi would allow to
solve φ. We attempt to build an analogous construction for subexponential approximation
using the notion of approximation preserving sparsification.

Given an optimization problem Π and some parameter of the instance, Π-B denotes
the problem restricted to instances where the parameter is at most B. For example, we can
prescribe the maximum degree of a graph or the maximum number of literal occurrences in
a formula as the parameter.

Definition 2. An approximation preserving sparsification from a problem Π to a bounded
parameter version Π-B of Π is a pair (f, g) of functions such that, given any ε > 0 and any
instance I of Π:

1. f maps I into a set f(I, ε) = (I1, I2, . . . , It) of instances of Π, where t 6 2εn and
ni = |Ii| 6 n; moreover, there exists a constant Bε (independent on I) such that any Ii
has parameter at most Bε;

2. for any i 6 t, g maps a solution Si of an instance Ii (in f(I, ε)) into a solution S of I;
3. there exists an index i 6 t such that if a solution Si is an r-approximation in Ii, then

S = g(I, ε, Ii, Si) is an r-approximation in I;
4. f is computable in time 2εnpoly(n), and g is computable in time polynomial in |I|.

With a slight abuse of notation, let APETH(Π-B) denote the hypothesis: ∃B such that
APETH(Π-B), meaning that Π is hard to approximate in subexponential time even for
some bounded parameter family of instances. Then the following holds8.

Theorem 8. If there exists an approximation preserving sparsification from Π to Π-B,
then APETH(Π) if and only if APETH(Π-B).
8 Note that we could consider a more general definition, leading to the same theorem, by allowing:
(1) a slight amplification of the size of Ii (ni 6 αn for some fixed α in item 1), (2) an expansion
of the ratio in item 3 (if Si is r-approximate S is h(r) approximate where h(r) goes to 1 when r
goes to 1) and (3) a computation time 2εnpoly(n) for g in item 4.
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Proof. Obviously, APETH(Π) is implied by APETH(Π-B). Now, assume APETH(Π)
holds, for some ratio r. We show that APETH(Π-B) holds for the same ratio. Let ε >
0, ε′ = ε/2, and suppose that Π-B is r-approximable in time 2ε

′npoly(n). Then given an
instance I of Π, compute f(I, ε′) (in time 2ε

′npoly(n)). For each of the t instances Ii,
compute an r-approximate solution Si in time 2ε

′nipoly(ni) = 2ε
′npoly(n), and use g to

transform Si into a solution S for I. Let S∗ be the best of these solutions. We obtain S∗ in
time 2ε

′n2ε
′npoly(n) = 2εnpoly(n). By item 3 of Definition 2, S∗ is an r-approximation of I.

We can do this for any ε, leading to a contradiction. ut

We now illustrate this technique on some problems. It is worth noticing that the sparsification
lemma for 3Sat in [24] is not approximation preserving9; one cannot use it to argue that
approximating Max-3Sat (in subexponential time) is equivalent to approximating Max-
3Sat with bounded occurrences.

Proposition 4. There exists an approximation preserving sparsification from Indepen-
dent Set to Independent Set-B and one from Vertex Cover to Vertex Cover-B.

Proof. Let ε > 0. It is well known that the positive root of 1 = x−1 + x−1−B goes to
one when B goes to infinity. Then, consider a Bε such that this root is at most 2ε. Our
sparsification is obtained via a branching tree: the leaves of this tree will be the set of
instances Ii; f consists of building this tree; a solution of an instance in the leaf corresponds,
via the branching path leading to this leaf, to a solution of the root instance, and that is
what g makes.

More precisely, for Independent Set, consider the following usual branching tree, start-
ing from the initial graph G: as long as the maximum degree is at least Bε, consider a
vertex v of degree at least Bε, and branch on it: either take v in the independent set (and
remove N [v]), or do not take it. The branching stops when the maximum degree of the graph
induced by the unfixed vertices is at most Bε − 1. When branching, at least Bε + 1 vertices
are removed when taking v, and one when not taking v; thus the number of leaves is t 6 2εn

(by the choice of Bε). Then, f and g satisfy items 1 and 2 of the definition. For item 3, it is
sufficient to note that g maps Si in S by adding adequate vertices. Then, if we consider the
path in the tree corresponding to an optimal solution S∗, leading to a particular leaf Gi, we
have that |S∗| = |S∗ ∩Gi|+ k for some k > 0, and the solution S computed by g is of size
|S| = |Si| + k. So, |S|/|S∗| > |Si|/|S∗∩Gi| > r if Si is an r-approximation for Gi. The same
argument holds also for Vertex Cover. ut

Analogous arguments apply more generally to any problem where we have a “sufficiently
good” branching rule when the parameter is large. Indeed, suppose we can ensure the de-
crease in instance size by g(B) for non decreasing and unbounded function g in all (possibly
except for one) branches. Then such a branching rule can be utilized to yield an approxima-
tion preserving sparsification as in Proposition 4.

We give another approximation preserving sparsification, where there is no direct branch-
ing rule allowing to remove a sufficiently large number of vertices.

Let Generalized Dominating Set be defined as follows: given a graph G(V,E)
where V is partitioned into V1, V2, V3, we ask for a minimum size set of vertices V ′ ⊆ V1∪V2
which dominates all vertices in V2 ∪ V3. Of course, the case V2 = V corresponds to the
usual Dominating Set problem. Note that Generalized Dominating Set is also a gen-
eralization of Set Cover, with V2 = ∅, V3 being the ground set and V1 being the set
system.

Proposition 5. There exists an approximation preserving sparsification from General-
ized Dominating Set to Generalized Dominating Set-B.
9 One of the reasons is that when a clause C is contained in a clause C′, a reduction rule removes C′,
that is safe for the satisfiability of the formula, but not when considering approximation.
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Proof. Let ε > 0, and consider the following branching algorithm, where B′ > 4 will be
specified later (as a function of ε):

1. remove all edges between two vertices in V1, as well as all edges between two vertices
in V3;

2. if there exists a vertex v ∈ V1 of degree at least B′, branch on it;
3. otherwise, if there exists a vertex v ∈ V2 of degree at least B′2, branch on it;
4. otherwise, if there exists a vertex v ∈ V3 of degree at least B′3, branch on a neighbor

of v.

Note that branching on a vertex v in V1 or V2 means that if v is taken, then v is removed
from the graph, its neighbors in V2 are transferred to V1 (they are already dominated),
while its neighbors in V3 are removed from the graph. If v is not taken, if it is in V1 then
it is removed from the graph, and if it is in V2 then it is transferred to V3 (we still need to
dominate it).

By principle, in a leaf of the tree, each vertex in V1 has degree at most B′, while each
vertex in V2 has degree at most B′2, and each vertex of V3 has degree at most B′3. Then
the graph has bounded maximum degree B = B′3.

However, when branching it might be the case that only at most one vertex is removed
from the graph in each branch. To show that the number of leaves in the tree is indeed
sufficiently small, we change the branching measure by introducing appropriate weights on
the vertices of the graph. Let w1 = min{1/2, 1/4 + d(v)/4B′} be the weights of vertices in V1,
w2 = min{1, 3/4+ d(v)/4B′} and w3 = 1/2 be the weights of vertices in V2 and V3 respectively.
Then the global weight of G is W (G) 6 n.

Consider a branching step on a vertex v ∈ V1 corresponding to item 2 of the algorithm:
if v is taken, the weight of the instance is reduced by at least (1/2) + (B

′
/4) (1/2 for v, and at

least 1/4 for each of its neighbors). If v is not taken, then the weight is reduced by 1/2.
In a branching step on a vertex v ∈ V2 corresponding to item 3 of the algorithm, if v is

taken, the weight of the instance is reduced by at least 1 + B′2/B′ = 1+B′. Indeed, there is
a weight-reduction of 1/2 for v, and of at least 1/B′ for each of its neighbors, since we know
that every vertex in V1 has degree at most B′ − 1. If v is not taken, the weight reduces by
at least 1/4.

In a branching step on a vertex w ∈ V1 ∪ V2 neighbor of v corresponding to item 4,
when w is taken v is removed, so the degree of at least B′3 vertices decreases by 1. Since
vertices in V1 and V2 have degree at most B′−1 and B′2−1 respectively, the total weight is
reduced by at least B′3/B′2 = B′. When w is not taken, the weight is reduced by at least 1/4.

Then, it suffices to choose B′ sufficiently large such that the branching factor of these
three branchings is at most 2ε.

The fact that an approximate solution on a leaf can be transferred to an approximate
solution to the root is completely similar to the case of independent set. ut

Combining Proposition 5 with some reductions, the following can be shown.

Lemma 8. APETH(Dominating Set) implies APETH( Independent Set-B).

Proof. Using Proposition 5, it holds that:

APETH(Dominating Set)⇒ APETH(Generalized Dominating Set)
⇒ APETH(Generalized Dominating Set-B)

Consider an instance G = (V1, V2, V3, E) of Generalized Dominating Set-B, and use
the following reduction (adapted from [32] to this generalized version). Build a graph G′ =
(V ′, E′) where:

– for each vertex v in V2 ∪ V3, consider a clique Cv of size |N [v] ∩ (V1 ∪ V2)|, where each
vertex of Cv corresponds to one vertex in N [v]∩ (V1∪V2) (note that cliques are disjoint;
if a vertex is in the neighborhood of two such vertices, there will be two different vertices
in G′); such vertices will be informally referred to as vertices in the cliques;
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– for each vertex v in V1 ∪ V2, add a vertex v′ in G′, and link v′ to all its homologous
vertices in the cliques (there is at most one per clique); hence, if v ∈ V1 ∪ V2 has t
neighbors in V2 ∪ V3, v′ will be linked to t vertices; such vertices v′ will be informally
referred to as vertices not in the cliques or vertices outside the cliques.

Note that the size of each clique Cv is at most B, so there is at most Bn vertices in all the
cliques. There are |V1| 6 n vertices v′, so |V ′| 6 (B+1)n, the reduction has linear size (with
respect to n). Each vertex in a clique has degree at most (B−1)+1 = B, and each vertex v′
has degree at most B, so G′ has degree at most B.

Let D be a generalized dominating set of G. For each vertex v in V2 ∪ V3, there exists
a vertex w ∈ D dominating it. We select the corresponding vertex in G′ in the clique Cv.
This adds up to |V2 ∪ V3| vertices. Moreover, for each vertex v in V1 ∪ V2 which is not in D,
we select the corresponding vertex v′; hence, we select |V1 ∪ V2| − |D| more vertices. By
construction, this is an independent set S in G′ of size |S| = |V1|+ 2|V2|+ |V3| − |D|.

Conversely, take an independent set S of G′. Suppose that S contains no vertex from
a clique Cu. Then we can add a vertex from Cu to S, and (possibly) remove the vertex v′
which was adjacent to it. We get an independent set of at least the same size. By repeating
the argument, we can assume that S takes one vertex from each clique Cu. Consider in G
the set D of vertices that corresponds to vertices v′ (which are not in cliques) in G′ that are
not in S. Note that S is made of |V2|+ |V3| vertices in the cliques and |V1|+ |V2|−|D| vertices
outside the cliques. So, we have |D| = |V1| + 2|V2| + |V3| − |S|. Consider now a vertex v in
V2 ∪ V3. There is a vertex w ∈ S in the clique Cv, so the vertex v′ adjacent to this vertex w
is not in S, hence its corresponding vertex is in D. Then, D is a generalized dominating set.

Suppose that we have an r-approximate solution S in G′: |S| > rα(G′), we can build a
solution D of size |D| 6 |V1| + 2|V2| + |V3| − rα(G′) = rγ(G) + (1 − r)(|V1| + 2|V2| + |V3|)
where γ(G) is the size of a generalized dominating set in G. Since vertices in V1 and V2 have
degree at most B, we know that γ(G) > (|V2|+|V3|)/B. Note that each vertex in V1 has at
least one neighbor (otherwise, it can be removed from the graph), so that there are at most
|V1| 6 B(|V2|+ |V3|). Then |V1|+2|V2|+ |V3| 6 (B+2)(|V2|+ |V3|) 6 B(B+2)γ(G). Putting
all the above together, we get |D| 6 γ(G)(r + (1− r)B(B + 2)). ut

Note that similarly, APETH(Set Cover) implies APETH(Independent Set-B), when
the complexity of Set Cover is measured by n+m.

Then, we have the following set of equivalent problems.

Theorem 9. Set Cover, Independent Set, Independent Set-B, Vertex Cover,
Vertex Cover-B, Dominating Set, Dominating Set-B, Max Cut-B, Max-kSat-B
(for any k > 2) are APETH-equivalent.

Proof. Equivalence between Vertex Cover-B, Independent Set-B, Max Cut-B, Max-
3Sat-B, Max-2Sat-B, Dominating Set-B follow immediately from [32]. Indeed, for these
problems [32] provides L-reductions with linear size amplification. The equivalence between
Max-kSat-B problems is also well known (just replace a clause of size k by k − 1 clauses
of size 3).

The equivalence between Independent Set and Independent Set-B, Vertex Cover
and Vertex Cover-B follows from Proposition 4. Finally, Lemma 8 allows us to conclude
for Dominating Set. ut

4.2 APETH and parameterized approximation

The equivalence drawn in Theorem 9 gives a first intuition that the corresponding problems
should be hard to approximate in subexponential time for some ratio. In this section we show
another argument towards this hypothesis: if it fails, then any MaxSNP problem admits for
any r < 1 a parameterized r-approximation algorithm in subexponential time 2o(k), which
would be quite surprising. The following theorem can be construed as an extension of [26].
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Theorem 10. The following statements are equivalent:

(i) APETH(Π) holds for one (equivalently all) problem(s) in Theorem 9;
(ii) there exist a MaxSNP-complete problem Π, some ratio r < 1 and a constant ε > 0

such that there is no parameterized r-approximation algorithm for Π with running time
O(2εkpoly(|I|));

(iii) for any MaxSNP-complete problem Π, there exist a ratio r < 1 and an ε > 0 such that
no parameterized r-approximation algorithm for Π can run in time O(2εkpoly(|I|)).

Proof. (i) ⇒ (ii): We show it for Π =Independent Set-B, which is MaxSNP-complete.
Suppose that for any r and any ε there is a parameterized r-approximation algorithm A
which runs in time O(2εk). Given an instance G of Independent Set-B, we run A on the
instance (G, k) for k = 1 to n. Consider the largest k for which an independent set is given:
it has size at least ρ ·k, while the optimum is at most k since no solution is output for k+1.
Since k 6 n, the overall iteration takes n · 2o(n)-time.

(ii) ⇒ (iii): suppose that (iii) is false, and consider a MaxSNP-complete problem Π2

which admits for every ε′ > 0 and every r′ < 1 a parameterized r-approximation algorithm
running in time 2εkpoly(|I|). Then, as we will show, this is true for any MaxSNP problem,
contradicting (ii).

Indeed, let Π1 be a MaxSNP problem. There exists an L-reduction from Π1 to Π2, let α
and β be the constants of the L-reduction. Let (I1, k) be an instance of Π1 and let (I2, α ·k)
be the instance of Π2, where I2 := f(I1) defined by the L-reduction. Let r ∈ (0, 1) and ε > 0,
and let A be a parameterized r′-approximation of Π2 which runs in time 2ε

′kpoly(|I|) where
r′ = 1− (1−r)/(αβ) < 1 and ε′ = ε/α. We present an algorithm which uses A as a subroutine
and produces in time 2εkpoly(|I|) a solution of Π1 of size at least rk whenever opt(I1) > k.

Suppose that opt(I1) > k. We iteratively runA over the instances (I2, αk), (I2, αk−1), · · ·
by decreasing the parameter. Let lb > αk be the first integer for which that A returns a
solution, let us call it sol2, of size at least r′lb upon (I2, lb). Let sol1 := g(sol2), where g
is defined by the L-reduction. Note that if opt(I2) > αk then sol2 > αr′k; if opt(I2) 6 αk,
then lb > opt(I2) hence sol2 > r′opt(I2).

Now, from the property of L-reduction, we have opt(I1) − sol1 6 β(opt(I2) − sol2), or
equivalently sol1 > opt(I1) − β(opt(I2) − sol2). By considering the two previous cases, and
the fact that opt(I2) 6 αopt(I1) we easily get that whenever opt(I1) > k, the iterative
applications of A combined with the algorithm g returns a solution sol1 of size at least (1−
αβ(1−r′))k = rk. It is easily verified that the overall algorithms performs O(2εk ·poly(|I1|))
steps.

(iii) ⇒ (i): Suppose that for any r and any ε there is an r-approximation algorithm
for Independent Set-B with running time O(2εn). Given a graph G and an integer k,
if k 6 n/(B+1) we output an independent set of size n/(B+1) (any maximal independent
set). Otherwise, we compute an r-approximate solution S in time O(2ε

′n) = O(2εk) for
ε′ = ε/(B+1). If |S| > rk we output it, otherwise ropt(G) 6 |S| < rk, hence opt(G) < k. This
contradicts (iii) for Independent Set-B. ut

As an interesting complement of the above theorem, we show that trade-offs between (expo-
nential) running time and approximation ratio do exist for any MaxSNP problem. In [6], it
is shown that every MaxSNP problem Π is fixed-parameter tractable in time 2O(k) for the
standard parameterization, while in [32] it is shown that Π is approximable in polynomial
time within a constant ratio ρΠ . We prove here that there exists a family of parameterized
approximation algorithms achieving ratio ρΠ + ε, for any ε > 0, and running in time 2O(εk).
This is obtained as a consequence of a result in [25].

Proposition 6. Let Π be a standard parameterization of a MaxSNP-complete problem. For
any ε > 0, there exists a parameterized (ρΠ + ε)-approximation algorithm for Π running in
time γεk · poly(|I|) for some constant γ.
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Proof. Given a parameter k and a set of constraints with at most c variables per constraint,
the problem Max-c-Csp Above Average asks if there is a variable assignment that satisfies
at least ρ ·m + k constraints. Here ρ is the expected fraction of constraints satisfied by a
uniform random assignment. In [25], the following theorem is proved.

Theorem 11. ([25]) For every c > 2, Max-c-Csp Above Average can be solved in
time O(γk ·m), where γ is a constant depending only on c.

Let Π be a problem in the class MaxSNP, defined in the standard way by maxS |{x :
φ(x,G, S)}|. As shown in [32], for each of the (polynomially many) possible values xi of x,
consider the corresponding formula φi(G,S) = φ(xi, G, S). Since φ is fixed, this is a fixed size
formula involving (at most) a fixed number t of variables (corresponding to the predicate S).
The goal is then to find S satisfying the largest number of formulae φi. Let ρΠ be the
expected fraction of constraints satisfied by a uniform random assignment. It is easy to
find deterministically an assignment satisfying as many formulae as a random one, so Π
is ρΠ -approximable in polynomial time. Note that Π can be interpreted as a Max-c-Csp
parameterized by the number of satisfied constraints.

To get the claimed (ρΠ + ε)-approximation algorithm for 0 6 ε 6 1 − ρΠ , we run the
algorithm A given in Theorem 11 on the instance ({φi : 1 6 i 6 m}, k′) (where m is the
number of formulas φi). We take k′ so that it satisfies ρΠ ·m+ k′ = k(ρΠ + ε). If k formulae
are satisfiable, then, clearly, k(ρΠ + ε) folmulae are also satisfiable, so the algorithm will
output an assignment satisfying at least this number of constraints (formulae). The running
time is γk

′
poly(n). The claim holds since k′ = εk − ρΠ(m− k) and k 6 m. ut

5 Conclusion

More interesting questions remain untouched in the junction of approximation and (sub)ex-
ponential-time/FPT-time computations. This paper is only a first step in this direction and
we wish to motivate further research. Among a range of problems to be tackled, we propose
the following.

– Our inapproximability results are conditional upon the Linear PCP Conjecture. Is it
possible to relax the condition to a more plausible one?

– Or, we dare ask whether (certain) inapproximability results in FPT-time imply strong
improvement in the PCP theorem. For example, would the converse of Lemma 2 hold?

– Can we design approximation preserving sparsifications for problems like Max Cut or
Max-3Sat? It seems to be difficult to design a sparsifier based on branching rules, so a
novel idea is needed.

Note that we have considered in this article constant approximation ratios. As noted earlier,
ratio 1/r(n) is achievable in subexponential time for any increasing and unbounded function r
for Independent Set. However, dealing with parameterized approximation algorithms,
achieving a non-constant ratio is also an open question. More precisely, finding in FPT-time
an independent set of size g(k) when there exists an independent set of size k is not known
for any unbounded and increasing function g.

Finally, let us note that, in the same vein of the first part of our work, [30] studied a proof
checking view of parameterized complexity. Possible links between these two approaches are
worth being investigated in future works.
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Appendix

Definitions of the problems considered

Vertex Cover
Input: A graph G = (V,E).
Goal: Find a smallest vertex cover of G, i.e., a set C of vertices such that for every e =
{u, v} ∈ E, C ∩ {u, v} 6= ∅.

Independent Set
Input: A graph G = (V,E).
Goal: Find a largest independent set in G, i.e., a set of vertices which are pairwise nonad-

jacent.

Dominating Set
Input: A graph G = (V,E).
Goal: Find a smallest dominating set in G, i.e., a set of vertices S such that every vertex

in V \ S has a neighbor in S.

Independent Dominating Set
Input: A graph G = (V,E).
Goal: Find a smallest set of vertices which is simultaneously an independent set and a

dominating set in G.

Generalized Dominating Set
Input: A graph G = (V,E) with a partition V = (V1, V2, V3) (some of the sets being

possibly empty).
Goal: Find a smallest set of vertices V ′ ⊆ V1 ∪ V2 which dominate all vertices in V2 ∪ V3.

Bipartite Subgraph
Input: A graph G = (V,E).
Goal: Find an induced bipartite subgraph of G containing a maximum number of vertices.

Coloring
Input: A graph G = (V,E).
Goal: Find a proper (vertex-)coloring of G, i.e., a coloring where no adjacent vertices get

the same color, using a smallest number of colors.

Max Cut
Input: A graph G = (V,E).
Goal: Find a set S ⊆ V such that the number of edges having exactly one endpoint in S is

maximized.
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3Sat
Input: A 3CNF φ on the variable set V .
Question: Does there exist a truth assignment of V satisfying all clauses of φ?

Max-kSat
Input: A CNF φ on the variable set V containing at most k literals per clause.
Goal: Find a truth assignement of V that satisfies a maximum number of clauses.

Min-Sat
Input: A CNF φ on the variable set V .
Goal: Find a truth assignement of V that satisfies a minimum number of clauses.

Max-3Lin
Input: A system Az = b of linear equations in the variable set V over F2, each equation

involving exactly 3 variables.
Goal: Find an assignment of values to V satisfying a maximum number of equations.

Max-c-Csp
Input: A collection of m boolean functions on the variable set V , where each function

depends on at most c variables.
Goal: Find a boolean assignment of V that satisfies a maximum number of equations.

Max-c-Csp Above Average
Input: A collection of m boolean functions on the variable set V , where each function

depends on at most c variables, and a nonnegative integer k.
Parameter: k.
Question: Does there exist a boolean assignment of V that satisfies at least ρ ·m functions,

where ρ is the average fraction of functions satisfied by a uniform random assignment?

Set Packing
Input: A universe U and a collecton F of subsets of U .
Goal: Find a maximum number of sets from U which are pairwise disjoint.

Set Cover
Input: A universe U and a collecton F of subsets of U .
Goal: Find a minimum number of sets from F whose union is U .

Some words about MaxSNP and L-reductions

By Fagin’s Theorem, NP is characterized as the class of graph problems expressible in
existential second-order logic. In this logic, one can quantify existentially and universally
over the vertices but one is restricted to existential quantification over sets of vertices. In
SNP (for Strict NP), the quantification over vertices can only be universal.

We now introduce L-reductions which are linear reductions mostly preserving approxi-
mation schemata.

Let ΠA and ΠB be two optimization problems, vA and vB being the two corresponding
functions mapping a solution to its value. An L-reduction is defined by two functions f and g
computable in polynomial-time and two constants α and β such that:

– f maps instances of ΠA to instances of ΠB .
– g maps solutions of f(I) to solutions of I.
– OPTB(f(I)) 6 αOPTA(I).
– for every solution S of f(I), |OPTA(I)− vA(g(S))| 6 β|OPTB(f(I))− vB(S)|.

MaxSNP is the class of problems that L-reduce to a maximization version of a SNP problems.
A problem Π is MaxSNP-hard if all the MaxSNP problems L-reduce to Π.
A problem is MaxSNP-complete if it is both MaxSNP-hard and in MaxSNP.
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