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On Subexponential and FPT-time Inapproximability

Fixed-parameter algorithms, approximation algorithms and moderately exponential algorithms are three major approaches to algorithm design. While each of them being very active in its own, there is an increasing attention to the connection between these different frameworks. In particular, whether Independent Set would be better approximable once endowed with subexponential-time or FPT-time is a central question. In this article, we provide new insights to this question using two complementary approaches; the former makes a strong link between the linear PCP conjecture and inapproximability; the latter builds a class of equivalent problems under approximation in subexponential time.

Introduction

Fixed-parameter algorithms, approximation algorithms and moderately exponential/subexponential algorithms are major approaches for efficiently solving NP-hard problems. These three areas, each of them being very active in its own, have been considered as foreign to each other until recently. A polynomial-time approximation algorithm produces a solution whose quality is guaranteed to lie within a certain range from the optimum. One illustrative problem indicating the development of this area is Independent Set 4 . The approximability of Independent Set within constant ratios had remained as one of the most important open problems for a long time in the field. It was only after the novel characterization of NP by PCP theorem [START_REF] Arora | Proof verification and intractability of approximation problems[END_REF] that such inapproximability was proven assuming P = NP. Subsequent improvements of the original PCP theorem led to much stronger result for Independent Set: it is inapproximable within ratios Ω(n ε-1 ) for any ε > 0, unless P = NP [START_REF] Zuckerman | Linear degree extractors and the inapproximability of max clique and chromatic number[END_REF].

Moderately exponential (subexponential, respectively) computation allows exponential (subexponential, respectively) running time for the sake of optimality. In this case, the endeavor lies in limiting the growth of the running time function as much as possible. Parameterized complexity provides an alternative framework to analyze the running time in a more refined way [START_REF] Downey | Parameterized complexity[END_REF]. Given an instance with a parameter k, the aim is to get an O(f (k)•poly(n))time (or equivalently, FPT-time) algorithm, where poly(n) is independent of k. As these two research programs offer a generous running time when compared to that of classic approximation algorithms, a growing amount of attention is paid to them as a way to cope with hardness in approximability. The first one yields moderately exponential approximation. In moderately exponential approximation, the core question is whether a problem is approximable in moderately exponential time while such approximation is impossible in polynomial time. Suppose a problem is solvable in time γ n poly(n), but it is NP-hard to approximate within ratio r. Then, we seek r-approximation algorithms of running time significantly faster than γ n poly(n). This issue has been considered for several problems such as Set Partitioning, Independent Set, Coloring, and Bandwidth [START_REF] Björklund | Set partitioning via inclusion-exclusion[END_REF][START_REF] Bourgeois | Efficient approximation of min coloring by moderately exponential algorithms[END_REF][START_REF] Bourgeois | Approximation of max independent set, min vertex cover and related problems by moderately exponential algorithms[END_REF][START_REF] Cygan | Exact and approximate bandwidth[END_REF][START_REF] Fürer | An exponential time 2-approximation algorithm for bandwidth[END_REF].

The second research program handles approximation by fixed parameter algorithms. We say that a minimization (maximization, respectively) problem Π, together with a parameter k, is parameterized r-approximable if there exists an FPT-time algorithm which computes a solution of size at most (at least, respectively) rk whenever the input instance has a solution of size at most (at least, respectively) k. This line of research was initiated by three independent works [START_REF] Downey | Parameterized approximation problems[END_REF][START_REF] Cai | Fixed-parameter approximation: conceptual framework and approximability results[END_REF][START_REF] Chen | On parameterized approximability[END_REF]. For an excellent overview on early stages of the topic, see [START_REF] Marx | Parameterized complexity and approximation algorithms[END_REF]. Since then very important research has been conducted on several aspects (both computational and structural) of parameterized approximation (see, for example, [START_REF] Bourgeois | Approximation of max independent set, min vertex cover and related problems by moderately exponential algorithms[END_REF][START_REF] Bonnet | Parameterized (in)approximability of subset problems[END_REF][START_REF] Chitnis | Fixed-parameter and approximation algorithms: a new look[END_REF][START_REF] Downey | Parameterized approximation of dominating set problems[END_REF][START_REF] Guo | Safe approximation and its relation to kernelization[END_REF][START_REF] Hajiaghayi | The foundations of fixed parameter inapproximability[END_REF]). In what follows, parameterization means "standard parameterization", i.e., where problems are parameterized by the cost of the optimal solution.

Several natural questions can be asked dealing with these two programs. In particular, the following ones have been asked several times [START_REF] Marx | Parameterized complexity and approximation algorithms[END_REF][START_REF] Downey | Parameterized approximation problems[END_REF][START_REF] Fürer | An exponential time 2-approximation algorithm for bandwidth[END_REF][START_REF] Bourgeois | Approximation of max independent set, min vertex cover and related problems by moderately exponential algorithms[END_REF]:

Q1: can a problem, which is highly inapproximable in polynomial time, be well-approximated in subexponential time? Q2: does a problem, which is highly inapproximable in polynomial time, become well-approximable in FPT-time?

Few answers have been obtained until now. Regarding Q1, negative results can be directly obtained by gap-reductions for certain problems. For instance, Coloring is not approximable in subexponential time within ratio ( 4 /3) -since this would allow to determine whether a graph is 3-colorable or not in subexponential time. This contradicts a widelyacknowledged computational assumption [START_REF] Impagliazzo | Which problems have strongly exponential complexity[END_REF], the Exponential Time Hypothesis.

Exponential Time Hypothesis (ETH):

There exists an > 0 such that no algorithm solves 3Sat in time O(2 n ), where n is the number of variables.

Regarding Q2, [START_REF] Downey | Parameterized approximation problems[END_REF] shows that assuming FPT = W [START_REF] Björklund | Set partitioning via inclusion-exclusion[END_REF], for any r the Independent Dominating Set problem is not r-approximable 5 in FPT-time. Among interesting problems for which Q1 and Q2 are worth being asked are Independent Set, Coloring and Dominating Set. They fit in the frame of both Q1 and Q2 above: they are hard to approximate in polynomial time while their approximability in subexponential or in parameterized time is still open.

In this paper, we study parameterized and subexponential (in)approximability of natural optimization problems. In particular, we follow two guidelines: (i) getting inapproximability results under some conjecture and (ii) establishing classes of uniformly inapproximable problems under approximation preserving reductions.

Following the first direction, we establish a link between a major conjecture in PCP theory and inapproximability in subexponential-time and in FPT-time, assuming ETH. Just below, we state this conjecture while the definition of PCP is deferred to the next section.

Linear PCP Conjecture (LPC): 3Sat ∈ PCP 1,β [log |φ| + D, E] for some β ∈ (0, 1),
where |φ| is the size of the 3Sat instance (sum of lengths of clauses), D and E are constant.

Unlike ETH which is widely held to be a reasonable conjecture, LPC is a wide open question. In Lemma 2 stated in Section 2, we claim that if LPC turns out to hold, it implies that one of the most interesting questions in subexponential and parameterized approximation is answered in the negative. In particular, the following holds for Independent Set on n vertices, for any constant 0 < r < 1 assuming ETH:

(i) there is no r-approximation algorithm in time O(2 n 1-δ ) for any δ > 0; (ii) there is no r-approximation algorithm in time O(2 o(n) ), if LPC holds; (iii) there is no r-approximation algorithm in time O(f (k)n O(1) ), if LPC holds,
where k is the size of a maximum independent set and f is any function.

We observe that (i) is not conditional upon LPC. In fact, this is an immediate consequence of the near-linear PCP construction achieved in [START_REF] Dinur | The PCP theorem by gap amplification[END_REF]. Note that similar inapproximability results under ETH for Max-3Sat and Max-3Lin for some subexponential running time have been obtained in [START_REF] Moshkovitz | Two-query pcp with subconstant error[END_REF].

Following the second guideline, we show that a number of problems are equivalent with respect to approximability in subexponential time. Designing a family of equivalent problems is a common way to provide an evidence in favor of hardness of these problems. One prominent example is the family of problems complete under SERF-reducibility [START_REF] Impagliazzo | Which problems have strongly exponential complexity[END_REF] which leads to equivalent formulations of ETH. More precisely, for a given problem Π, let us formulate the following hypothesis, which can be seen as the approximate counterpart of ETH.

Hypothesis 1 (APETH(Π))

There exist two constants > 0 and r (r

< 1 if Π is a maximization problem, r > 1, otherwise), such that Π is not r-approximable in time 2 n .
We prove that several well-known problems are equivalent with respect to the APETH (APETH-equivalent). To this end, a notion called the approximation preserving sparsification is proposed. A recipe to prove that two problems A and B are APETH-equivalent consists of two steps. The first is to reduce an instance of A into a family of instances in "bounded" version (bounded degree for graph problems, bounded occurrence for satisfiability problems), which are equivalent with respect to approximability. This step is where approximation preserving sparsification comes into play. The second is to use standard approximation preserving reductions to derive equivalences between bounded versions of A and B. In this paper, we consider L-reductions [START_REF] Papadimitriou | Optimization, approximation and complexity classes[END_REF] for this purpose. Furthermore, we show that if APETH fails for one of these problems, then any problem in MaxSNP6 would be approximable for any constant ratio in subexponential FPT-time 2 o(k) , which is also an evidence toward the validity of APETH. This result can be viewed as an extension of [START_REF] Liming | On the existence of subexponential parameterized algorithms[END_REF], which states that no MaxSNP-hard problem allows a algorithm in time 2 o(k) under ETH.

Some preliminaries and notation are given in Section 2. Results derived from PCP and LPC are given in Section 3. The second direction on equivalences between problems is described in Section 4.

Preliminaries and notation

We will use in the sequel the well known sparsification lemma [START_REF] Impagliazzo | Which problems have strongly exponential complexity[END_REF]. Intuitively, this lemma allows to work with 3Sat formula with linear lengths (the sum of the lengths of clauses is linearly bounded in the number of variables). Lemma 1. [START_REF] Impagliazzo | Which problems have strongly exponential complexity[END_REF] For all > 0, a 3Sat formula φ on n variables can be written as the disjunction of at most 2 n 3Sat formulae φ i on (at most) n variables such that φ i contains each variable in at most c clauses for some constant c . Moreover, this reduction needs at most poly(n)2 n -time.

We denote by PCP α,β [q, p] (see for instance [START_REF] Arora | Proof verification and intractability of approximation problems[END_REF] for more on PCP systems) the set of problems for which there exists a PCP verifier V which uses q random bits, reads at most p bits in the proof and is such that:

if the instance is positive, then there exists a proof such that V accepts with probability at least α; if the instance is negative, then for any proof V accepts with probability at most β.

The following theorem is proved in [START_REF] Dinur | The PCP theorem by gap amplification[END_REF] (see also Theorem 7 in [START_REF] Moshkovitz | Two-query pcp with subconstant error[END_REF]), presenting a further refinement of the characterization of NP. Theorem 1. [START_REF] Dinur | The PCP theorem by gap amplification[END_REF] For every > 0,

3Sat ∈ PCP 1, [(1 + o(1)) log n + O (log( 1 / )) , O (log( 1 / ))]
A recent improvement [START_REF] Moshkovitz | Two-query pcp with subconstant error[END_REF] of Theorem 1 (a PCP Theorem with two-query projection tests, sub-constant error and almost-linear size) has some important corollaries in subexponentialtime approximation. In particular: Corollary 1. [START_REF] Moshkovitz | Two-query pcp with subconstant error[END_REF] Under ETH, for every > 0, and δ > 0, it is impossible to distinguish between instances of Max-3Sat with m clauses where at least (1 -)m are satisfiable from instances where at most ((

7 /8) + )m are satisfiable, in time O(2 m 1-δ ).
Under LPC, a stronger version of this result follows by a standard argument.

Lemma 2. Under LPC7 and ETH, there exists r < 1 such that for every > 0 it is impossible to distinguish between instances of Max-3Sat with m clauses where at least (1 -)m are satisfiable from instances where at most (r + )m are satisfiable, in time 2 o(m) .

Proof. Suppose that 3Sat ∈ PCP 1,β [log |φ| + D, E], where β ∈ (0, 1), |φ| is the sum of the lengths of clauses in the 3Sat instance, D and E are constants.

Given an > 0, let such that 0 < < . Given an instance φ of 3Sat on n variables, we apply the sparsification lemma [START_REF] Impagliazzo | Which problems have strongly exponential complexity[END_REF] (with ) to get 2 n instances φ i on at most n variables. Since each variable appears at most c times in φ i , the global size of φ i is |φ i | c n.

Then for each formula φ i we use the previous PCP assumption. The size of the proof is at most E2 |R| = c |φ i | cn for some constants c , c that depend on (where |R| = log n+D is the number of random bits) since E2 |R| is the total number of bits that we read in the proof. Take one variable for each bit in the proof: x 1 , • • • , x cn . For each random string R: take all the 2 E possibilities for the E variables read, and write a CNF formula which is satisfied if and only if the verifier accepts. This can be done with a formula with a constant number of clauses, say C 1 , each clause having a constant number of variables, say C 2 (C 1 and C 2 depends only on E).

If we consider the CNF formula formed by all these CNF formulas for all the random clauses, we get a CNF formula with C 1 2 |R| clauses on variables x 1 , • • • , x cn . The clauses are on C 2 variables but by adding C2 /4 variables we can replace a clause on C 2 variables by an equivalent set of 3-clauses. This way we get a 3-CNF formula and multiply the number of variables and the number of clauses by a constant, so they are still linear in n. For each R we have a set of say C 1 clauses.

Suppose that we start from a satisfiable formula φ i . Then there exists a proof for which the verifier always accepts. By taking the corresponding values for the variables x i , and extending it properly to the new variables y, all the clauses are satisfied.

Suppose that we start from a non satisfiable formula φ i . Then for any proof (i.e., any truth values of variables), the verifier rejects for a proportion of at least (1-β) of the random strings. If the verifier rejects for a random string R, then in the set of clauses corresponding to this variable at least one clause is not satisfied. It means that among the C 1 2 |R| clauses (total number of clauses), at least (1 -β) • 2 |R| are not satisfied, i.e., a fraction (1-β) /C 1 of the clauses.

Then either m = C 1 2 |R| = O(n) clauses are satisfiable, or at least m(1-β) /C 1 clauses are not satisfied by each assignment. Distinguishing between these sets in time 2 o(m) would determine whether φ i is satisfiable or not in 2 o(n) . Doing this for each φ i would solve 3Sat in time poly(n

)2 n + 2 n O(2 o(n) ) = O(2 n
). This is valid for any > 0 so it would contradict ETH.

The (conditional) hardness result of approximating Max-3Sat stated in Lemma 2 will be the basis of the negative results of parameterized approximation in Section 3.1.

Let us now present two useful gap amplification results for Independent Set. First, as noted in [START_REF] Escoffier | Moderately exponential and parameterized approximation: some structural results[END_REF], the so-called self-improvement property [START_REF] Garey | Computers and intractability. A guide to the theory of NPcompleteness[END_REF] can be proven for Independent Set also in the case of parameterized approximation. Lemma 3. [START_REF] Escoffier | Moderately exponential and parameterized approximation: some structural results[END_REF] If there exists a parameterized r-approximation algorithm for some r ∈ (0, 1) for Independent Set, then this is true for any r ∈ (0, 1). Also, the very powerful tool of expander graphs allows us to derive a gap amplification for Independent Set, proved in Theorem 3. But first, in order to prove the theorem, let us recall some basics about gap amplification and expander graphs.

Definition 1. A graph G is a (n, d, α)-expander graph if: (i) G has n vertices; (ii) G is d-regular;
(iii) all the eigenvalues λ of G but the largest one is such that |λ| αd. Lemma 4. For any positive integer k ∈ N * and any α > 0 there exist d and a (k 2 , d, α)expander graph. Moreover, d depends only on α, and this graph can be computed in polynomial time for every fixed α.

Proof. The lemma follows from the following two lemmata.

Lemma 5. [START_REF] Gabber | Explicit constructions of linear-sized superconcentrators[END_REF][START_REF] Hoory | Expander graphs and their applications[END_REF] For every positive integer k, there exists a (k 2 , 8, 5

√ 2 /8)-expander graph, computable in polynomial time.
If G is a graph with adjacency matrix M , let us denote G k the graph with adjacency matrix M k . Then, the following lemma also holds.

Lemma 6. [33] If G is an (n, d, α)-expander graph, then G k is an (n, d k , α k )-expander graph.
Proof (Lemma 6). G k is obviously d k regular, and the eigenvalues of G k are the eigenvalues of G to the power of k.

To complete the proof of the lemma, take α > 0 and let p be the smallest integer such that ( 5 √ 2 /8) p α. Graph G p is as required and Lemma 4 is proved.

Let G be a graph on n vertices and H be a (n, d, α)-expander graph. Let t be a positive integer. Build the graph G t on N = nd t-1 vertices: each vertex corresponds to a (t -1)random walk x = (x 1 , • • • , x t ) on H (meaning that x 1 is chosen at random, and x i+1 is chosen randomly in the set of neighbors of x i ), and two vertices

x = (x 1 , • • • , x t ) and y = (y 1 , • • • , y t ) in G t are adjacent iff {x 1 , • • • , x t , y 1 , • • • , y t } is a clique in G.
Then, the following holds. Theorem 2. [START_REF] Hoory | Expander graphs and their applications[END_REF] Let G be a graph on n vertices and H be a (n, d, α)-expander graph. If b > 6α then, denoting by ω(G) the clique-number (size of a maximum clique) of G, it holds that:

-if ω(G) bn then ω(G t ) (b + 2α) t N ; -if ω(G) bn then ω(G t ) (b -2α) t N .
We are well prepared now to prove the following theorem.

Theorem 3. Let G be a graph on n vertices (for sufficiently large n) and a > b be two positive real numbers. Then for any real r > 0 one can build in polynomial time a graph G r and specify constants a r and b r such that:

(i) G r has N Cn vertices, where C is some constant independent of G (but may depend on r);

(ii) if ω(G) bn then ω(G r ) b r N ; (iii) if ω(G) an then ω(G r ) a r N ; (iv) br /ar r. Proof. Set k = √ n . We modify G by adding k 2 -n dummy (isolated) vertices. Let G be the new graph. It has n = k 2 vertices. Note that n ( √ n + 1) 2 = n + 2 √ n + 1 = n + o(n).
Let n be such that 1 -n /n 1 for a small . Due to Lemma 4, we consider a (k 2 , d, α)expander graph H for a sufficiently small α (the value of which will be fixed later). According to Theorem 2 (applied on G ) we build in polynomial time a graph G t on N = n d t vertices such that (choosing α < b /6):

-if ω(G) bn then ω(G ) = ω(G) bn , hence ω(G t ) (b + 2α) t N ; -if ω(G) an then ω(G ) = ω(G) an (1 -), hence ω(G t ) (a(1 -) -2α) t N .
We choose and α such that a(1-)-2α > b+2α, and then t such that (a(1-)-2α) t /(b+2α) t r. The number of vertices of G t is clearly linear in n (first point of the theorem). Then, b r = (b + 2α) t and a r = (a(1 -) -2α) t fulfil items (ii), (iii) and (iv) of theorem's statement.

3 Some consequences of (almost-) linear size PCP system

Parameterized inapproximability bounds

It is shown in [START_REF] Chen | Strong computational lower bounds via parameterized complexity[END_REF] that, under ETH, for any function f no algorithm running in time f (k)n o(k) can determine whether there exists an independent set of size k, or not (in a graph with n vertices). A challenging question is to obtain a similar result for approximation algorithms for Independent Set. In the sequel, we propose a reduction from Max-3Sat to Independent Set that, based upon the negative result of Corollary 1, only gives a negative result for some function f (because Corollary 1 only avoids some subexponential running times and not, for instance, time 2 m /log m ). However, this reduction gives the inapproximability result sought, if the consequence of LPC given in Lemma 2 (which strengthens Corollary 1 and seems to be a much weaker assumption than LPC) is used instead. We emphasize the fact that the results in this section are valid as soon as a hardness result for Max-3Sat as that in Lemma 2 holds.

The proof of the following theorem essentially combines the parameterized reduction in [START_REF] Chen | Strong computational lower bounds via parameterized complexity[END_REF] and a classic gap-preserving reduction. Theorem 4. Under LPC and ETH, there exists r < 1 such that no approximation algorithm for Independent Set running in time f (k)n o(k) can achieve approximation ratio r in graphs of order n.

Proof. We denote by N the number of vertices in a graph (to avoid confusion with the number of variables in a formula). We will show that the existence of such an algorithm for any r < 1 would contradict the hardness result for Max-3Sat in Lemma 2, hence ETH or LPC. Consider a constant r < 1. Let 0 < < 1 -r. We show that the existence of an (r + )-approximation algorithm for Independent Set running in time f (k)N o(k) would allow to distinguish in time 2 o(m) between instances of Max-3Sat where (1 -)m clauses are satisfiable and instances where at most (r + )m clauses are satisfiable, for some > 0. W.l.o.g., we can assume that f is increasing, and that f (k) 2 k .

Take an instance I of Max-3Sat, let K be an integer that will be fixed later. We build a graph G I as follows:

-partition the m clauses into K groups H 1 , • • • , H K each of them containing roughly m /K clauses;
each group H i involves a number s i 3m /K of variables; for all possible values of these variables, add a vertex in the graph G I if these values satisfy at least λm /K clauses in H i (the value of λ will also be fixed later); finally, add an edge between two vertices if they have one contradicting variable.

In particular, the vertices corresponding to the same group of clauses form a clique. It is easy to see that the so-constructed graph contains N K2 3m /K vertices.

The following easy claim holds.

Claim. If a variable assignment A satisfies at least λm /K clauses in at most s groups, then it satisfies at most λm + ( s(1-λ)m /K) clauses.

Proof of claim.

A satisfies at most m /K clauses in at most s groups, and at most λm /K in the other K -s groups, so in total at most sm /K + (K-s)λm /K = λm + s(1-λ)m /K, that completes the proof of the claim. 3 Now, let us go back to the proof of the theorem. Assume an independent set of size at least t in G I . Then one can achieve a partial solution that satisfies at least λm /K clauses in at least t groups. So, at least tλm /K clauses are satisfiable. In other words, if at most (r + )m clauses are satisfiable, then a maximum independent set in G I has size at most K • (r+ ) /λ. Suppose that at least (1 -)m clauses are satisfiable. Then, using the claim, there exists a solution satisfying at least λm /K clauses in at least

( (1--λ) /(1-λ)) • K groups; otherwise, it should be λm + s(1-λ)m /K < (1 -)m.
Then, there exists an independent set of size

( (1--λ) /(1-λ)) • K in G I . Now, set K = f -1 (m) /(1-2 )
. Set also λ = 1 -, and = 3 . Run the assumed (r + )approximation parameterized algorithm for Independent Set in G I with parameter k = (1 -2 )K. Then, if at least (1 -)m clauses are satisfiable, there exists an independent set of size at least

( (1--λ) /(1-λ)) • K = (1 - 3 / )K = (1 -2 )K = k;
so, the algorithm must output an independent set of size at least (r + )k. Otherwise, if at most (r + )m clauses are satisfiable, the size of an independent set is at most K

• (r+ ) /λ = K • (r+ 3 ) /(1-) = k • (r+ 3 ) /((1-)(1-2 )) = k(r + r + o( )).
So, for sufficiently small, the algorithm allows to distinguish between the two cases of Max-3Sat (for ), i.e., whether at least (1 -)m clauses are satisfiable, or at most (r + )m clauses.

The running time of the algorithm is k) , for some increasing and unbounded function ψ. So,

f (k)N o(k) , with f (k) = f ((1 -2 )K) = m and N o(k) = N k /ψ(
N o(k) = (K2 3m /K ) k /ψ(k) = K2 3m(1-2 ) /ψ(k) = O(2 o(m) ).
The following result follows from Lemma 3 and Theorem 4.

Corollary 2. Under LPC and ETH, for any r ∈ (0, 1) there is no r-approximation parameterized algorithm for Independent Set (i.e., an algorithm that runs in time f (k)poly(n) for some function f ).

Let us now consider Dominating Set which is known to be W [START_REF] Björklund | Set partitioning via inclusion-exclusion[END_REF]-hard [START_REF] Downey | Parameterized complexity[END_REF]. The existence of a parameterized constant-factor approximation algorithm for this problem is open [START_REF] Downey | Parameterized approximation problems[END_REF].

Here, we present an approximation preserving reduction (fitting the parameterized framework) which, given a graph G(V, E) on n vertices where V is a set of

K cliques C 1 , • • • , C K , builds a graph G (V , E
) such that G has an independent set of size α if and only if G has a dominating set of size 2K -α. Using the fact that the graphs produced in the proof of Theorem 4 are of this form (vertex set partitioned into cliques), this reduction will allow us to obtain a lower bound (based on the same hypothesis) for the approximation of min dominating set.

The graph G is built as follows:

for each clique C i in G, add a clique C i of the same size in G ; add also: an independent set S i of size 3K, each vertex in S i being adjacent to all vertices in C i and a special vertex t i adjacent to all the vertices in C i ;

for each edge e = {u, v} with u and v not in the same clique in G, add an independent set W e of size 3K; suppose that u ∈ C i and v ∈ C j ; then, each vertex in W e is linked to t i and to all vertices in C i but u, and to t j and to all vertices in C j but v.

Informally, the reduction works as follows. The set S i ensures that we have to take at least one vertex in each C i , the fact that |W e | = 3K ensures that it is never interesting to take a vertex in W e . If we take t i in a dominating set, this will mean that we do not take any vertex in the set C i in the corresponding independent set in G. If we take one vertex in C i (but not t i ), this vertex will be in the independent set in G. Let us state this property in the following lemma.

Lemma 7. G has an independent set of size α if and only if G has a dominating set of size 2K -α.

Proof. Suppose that G has an independent set S of size α. Then, S has one vertex in α sets C i , and no vertex in the other K -α sets. We build a dominating set T in G as follows:

for each vertex in S we take its copy in G . For each clique C i without vertices in S, we take t i and an arbitrary vertex in C i . The set T has size α +2(K -α) = 2K -α. For each C i , one of its vertices is in T ; so, vertices in C i , t i and vertices in S i are dominated. Now consider a vertex in W e with e = {u, v}, u ∈ C i and v ∈ C j . If C i ∩ S = ∅ (or C j ∩ S = ∅), then t i ∈ T (or t j ∈ T ) and, by construction, t i is adjacent to all vertices in W e . Otherwise, there exist w ∈ S ∩ C i and x ∈ S ∩ C j . Since S is an independent set, either w = u or x = v. If w = u, by construction w (its copy in C i ) is adjacent to all vertices in W e and, similarly, for x if x = v. So, T is a dominating set. Conversely, suppose that T is a dominating set of size 2K -α. Since S i is an independent set of size 3K, T cannot contain S i entirely, so at least one vertex in N (S i ) has to be in T . But any vertex in N (S i ) dominates all the vertices in S i . Thus, we can assume that T ∩S i = ∅ and the same occurs with W e . In particular, there exists at least one vertex in T in each C i . Now, suppose that T has two different vertices u and v in the same C i . Then, we can replace v by t i getting a dominating set (vertices in S i are still dominated by u, and any vertex in some W e which is adjacent to v is adjacent to t i ). So, we can assume that T has the following form: exactly one vertex in each C i , and K -α vertices t i . Hence, there are α cliques C i , where t i is not in T . We consider in G the set S constituted by the α vertices in T in these α sets. Take two vertices u and v in S with, say, u ∈ C i and v ∈ C j (with t i ∈ T and t j ∈ T ). If there were an edge e = {u, v} in G, neither u nor v would have dominated a vertex in W e (by construction). Since neither t i nor t j is in T , this set would not have been a dominating set, a contradiction. So, S is an independent set. Theorem 5. Under LPC and ETH, there exists an r > 1 such that there is no r-approximation algorithm for Dominating Set running in time f (k)n o(k) where n is the order of the graph.

Proof. In the proof of Theorem 4, we produce a graph G I which is made of K cliques and such that: if at least (1-)m clauses are satisfiable in I, then there exists an independent set of size (1 -O( ))K; otherwise (at most (r + )m clauses are satisfiable in I), the maximum independent set has size at most (r + O( ))K. The previous reduction transforms G I in a graph G I such that, applying Lemma 7, in the first case there exists a dominating set of size at most 2K -(1 -O( ))K = K(1 + O( )) while, in the second case, the size of a dominating set is at least 2K -(r + O( ))K = K(2 -r -O( )). Thus, we get a gap with parameter k = K(1+O( )). Note that the number of vertices in

G I is n = n+K+3K+3K|E I | = O(n 3 )
(where E I is the set of edges in G I ). If we were able to distinguish between these two sets of instances in time f (k )n o(k ) , this would allow to distinguish the corresponding independent set instances in time

f (k )n o(k ) = g(k)n o(k) since k = K(1 + O( )) = k(1 + O( )) (k = K(1 -3
) being the parameter chosen for the graph G I ). Such a lower bound immediately transfers to Set Cover since a graph on n vertices for Dominating Set can be easily transformed into an equivalent instance of Set Cover with ground set and set system both of size n. Corollary 3. Under LPC and ETH, there exists r > 1 such that there is no r-approximation algorithm for Set Cover running in time f (k)m o(k) in instances with m sets.

On the approximability of Independent Set and related problems in subexponential time

As mentioned in Section 2, an almost-linear size PCP construction [START_REF] Moshkovitz | Two-query pcp with subconstant error[END_REF] for 3Sat allows to get the negative result stated in Corollary 1. In this section, we present further consequences of Theorem 1, based upon a combination of known reductions with (almost) linear size amplifications of the instance. First, Theorem 1 combined with the reduction in [START_REF] Arora | Proof verification and intractability of approximation problems[END_REF] showing inapproximability results for Independent Set in polynomial time and the gap amplification of Theorem 3, leads to the following result. Theorem 6. Under ETH, for any r > 0 and any δ > 0, there is no r-approximation algorithm for Independent Set running in time O(2 n 1-δ ), where n is the order of the input graph.

Proof. Again, to avoid confusion we denote in this proof by N the number of vertices in a graph. Given an > 0, let be such that 0 < < . Given an instance φ of 3Sat on n variables, we first apply the sparsification lemma [START_REF] Impagliazzo | Which problems have strongly exponential complexity[END_REF] (with ) to get 2 n instances φ i on at most n variables. Since each variable appears at most c times in φ i , the global size of φ i is

|φ i | c n.
Consider a particular φ i , r > 0 and δ > 0. We use the fact that 3Sat∈ PCP 1,r [(1 + o(1)) log |φ| + D r , E r ] (where D r and E r are constants that depend only on r), in order to build the following graph G φi (see also [START_REF] Arora | Proof verification and intractability of approximation problems[END_REF]):

for any random string R of size (1 + o(1)) log |φ| + D r , and any possible value of the E r bits read by V, add a vertex in the graph if V accepts; if two vertices are such that they have at least one contradicting bit (they read the same bit which is 1 for one of them and 0 for the other one), add an edge between them.

In particular, the set of vertices corresponding to the same random string is a clique. Assume that φ i is satisfiable. Then there exists a proof for which the verifier accepts for any random string R. Take for each random string R the vertex in G φi corresponding to this proof. There is no conflict (no edge) between any of these 2 |R| vertices, hence α(G φi ) = 2 |R| (where, in a graph G, α(G) denotes the size of a maximum independent set).

If φ i is not satisfiable, then α(G φi ) r2 |R| . Indeed, suppose that there is an independent set of size α > r2 |R| . This independent set corresponds to a set of bits with no conflict, defining part of a proof that we can arbitrarily extend to a proof Π. The independent set has α vertices corresponding to α random strings (for which V accepts), meaning that the probability of acceptance for this proof Π is at least α /2 |R| > r, a contradiction with the property of the verifier.

Furthermore, 1) vertices (for some constants C, C that depend on ) since |φ i | c n. Then, one can see that, for any r > r, an r -approximation algorithm for Independent Set running in time O(2 N 1-δ ) would allow to decide whether φ i is satisfiable or not in time O(2 n 1-δ ) for some δ < δ. Doing this for each of the formula φ i would allow to decide whether φ is satisfiable or not in time

G φi has N 2 |R| 2 Er C |φ i | 1+o(1) = Cn 1+o ( 
poly(n)2 n + 2 n O(2 n 1-δ ) = O(2 n
). This is valid for any > 0 so it would contradict ETH.

Combining this reduction with the gap amplification of Theorem 3 allows to create a gap with any constant in (0, 1). Since the reduction in this amplification is linear with respect to the number of vertices, we get the claimed result.

Let us note that the result of Theorem 6 has been powerfully improved very recently in [START_REF] Chalermsook | Independent set, induced matching, and pricing: connections and tight (subexponential time) approximation hardnesses[END_REF], where it is proved that under ETH, for any δ > 0 any r larger than some constant, any r-approximation algorithm for Independent Set must run in at least 2 n 1δ /r 1+δ poly(n) time.

Note also that, since (for k n), n k 1-δ = O(2 n 1-δ ), for some δ < δ, the following holds.

Corollary 4. Under ETH, for any r > 0 and any δ > 0, there is no r-approximation algorithm for Independent Set running in time O(n k 1-δ ), where n is the order of the input graph, and k is the size of a maximum independent set.

The results of Theorem 6 and Corollary 4 can be immediately extended to problems that are linked to Independent Set by approximation preserving reductions (that preserve at least constant ratios) that have linear amplifications of the sizes of the instances, as in the following proposition.

Proposition 1. Under ETH, for any r > 0 and any δ > 0, there is no r-approximation algorithm for either Set Packing or Bipartite Subgraph running in time O(2 n 1-δ ) in a graph of order n.

Proof. Consider the following reduction from Independent Set to Bipartite Subgraph given in [START_REF] Simon | On approximate solutions for combinatorial optimization problems[END_REF]. Let G(V, E) be an instance of Independent Set of order n. Construct a graph G (V , E ) for Bipartite Subgraph by taking two distinct copies of G (denote them by G 1 and G 2 , respectively) and adding the following edges: a vertex v i1 of copy G 1 is linked with a vertex v j2 of G 2 , if and only if either i = j or (v i , v j ) ∈ E. The graph G has 2n vertices. Let now S be an independent set of G. Then, obviously, taking the two copies of S in G 1 and G 2 induces a bipartite graph of size 2|S|. Conversely, consider an induced bipartite graph in G of size t, and take the largest among the two color classes. By construction, it corresponds to an independent set in G, whose size is at least t /2 (note that it cannot contain 2 copies of the same vertex). So, any r-approximate solution for Bipartite Subgraph in G can be transformed into an r-approximate solution for Independent Set in G. Observe finally that the size of G is two times the size of G.

Dealing with minimization problems, Theorem 6 and Corollary 4 can be extended to Coloring, using the reduction given in [START_REF] Lund | On the hardness of approximating minimization problems[END_REF]. Note that this reduction uses the particular structure of graphs produced in the inapproximability result in [START_REF] Arora | Proof verification and intractability of approximation problems[END_REF] (as in Theorem 6). Hence, the following result can be derived. Proposition 2. Under ETH, for any r > 1 and any δ > 0, there is no r-approximation algorithm for Coloring running in time O(2 n 1-δ ) in a graph of order n.

Proof. In [START_REF] Lund | On the hardness of approximating minimization problems[END_REF] the following reduction is presented. Given a graph G whose vertex set is partitioned into K cliques each of size S, and given a prime number q > S, a graph H q having the following properties can be built in polynomial time:

the vertex set of H q is partitioned into q 2 K cliques, each of size q 3 ; α(H q ) max{q 2 α(G); q 2 (α(G) -1) + K; qK};

-if α(G) = K, then χ(H q ) = q 3 .
Fix a ratio r > 1, and let r IS > 0 be such that r IS + r 2 IS 1 /r. Start from the graph G φi produced in the proof of Theorem 6 for ratio r IS . The vertex set of G φi is partitioned into K = 2 |R| cliques, each of size at most 2 Er . By adding dummy vertices (a linear number, since E r is a fixed constant), we can assume that each clique has the same size S = 2 Er , so the number of vertices in

G φi is N = KS = 2 |R| 2 Er .
Let q > max{S, 1 /r IS } be a prime number, and consider the graph H q produced from G φi by the reduction in [START_REF] Lund | On the hardness of approximating minimization problems[END_REF] mentioned above. If φ i is satisfiable, α(G φi ) = K and then by the third property of the graph H q , χ(H q ) = q 3 . Otherwise, by the second property α(H q ) max{q 2 α(G φ ); q 2 (α(G φ ) -1) + K; qK}. Formula φ i being not satisfiable, α(G φi ) r IS K.

Set that holds only for the form 2 n 1-δ ). Note that this is in some sense optimal since it is easy to see that, for any increasing and unbounded function r(n), Independent Set is approximable within ratio 1 /r(n) in subexponential time (simply consider all the subsets of V of size at most n /r(n) and return the largest independent set among these sets).

Corollary 5. Under LPC and ETH Theorem 6 and Propositions 1, 2 and 3 hold for any time complexity 2 o(n) . Indeed, using LPC, the same proof as in Theorem 6 creates for each φ i a graph on N = O(n) variables with either an independent set of size αN (if φ i is satisfiable) or a maximum independent set of size at most ( α /2)N (if φ i is not satisfiable). Then using expander graphs, usual arguments allow to amplify this gap from 1 /2 to any constant r > 0 while preserving the linear size of the instance (see Theorem 3). Results for the other problems immediately follow from the same arguments as above.

Subexponential approximation preserving reducibility

In this section, we study subexponential approximation preserving reducibility. Recall that APETH(Π) (Hypothesis 1) states that it is hard to approximate in subexponential time problem Π, within some constant ratio r. We exhibit that a set of problems are APETHequivalent using the notion of approximation preserving sparsification. We then link APETH with approximation in subexponential FPT-time.

Approximation preserving sparsification and APETH equivalences

Recall that the sparsification lemma for 3Sat reduces a formula φ to a set of formulae φ i with bounded occurrences of variables such that solving the instances φ i would allow to solve φ. We attempt to build an analogous construction for subexponential approximation using the notion of approximation preserving sparsification.

Given an optimization problem Π and some parameter of the instance, Π-B denotes the problem restricted to instances where the parameter is at most B. For example, we can prescribe the maximum degree of a graph or the maximum number of literal occurrences in a formula as the parameter. Definition 2. An approximation preserving sparsification from a problem Π to a bounded parameter version Π-B of Π is a pair (f, g) of functions such that, given any > 0 and any instance I of Π:

1. f maps I into a set f (I, ) = (I 1 , I 2 , . . . , I t ) of instances of Π, where t 2 n and n i = |I i | n; moreover, there exists a constant B (independent on I) such that any I i has parameter at most B ; 2. for any i t, g maps a solution S i of an instance I i (in f (I, )) into a solution S of I; 3. there exists an index i t such that if a solution S i is an r-approximation in I i , then S = g(I, , I i , S i ) is an r-approximation in I; 4. f is computable in time 2 n poly(n), and g is computable in time polynomial in |I|.

With a slight abuse of notation, let APETH(Π-B) denote the hypothesis: ∃B such that APETH(Π-B), meaning that Π is hard to approximate in subexponential time even for some bounded parameter family of instances. Then the following holds8 . Theorem 8. If there exists an approximation preserving sparsification from Π to Π-B, then APETH(Π) if and only if APETH(Π-B).

Proof. Obviously, APETH(Π) is implied by APETH(Π-B). Now, assume APETH(Π) holds, for some ratio r. We show that APETH(Π-B) holds for the same ratio. Let > 0, = /2, and suppose that Π-B is r-approximable in time 2 n poly(n). Then given an instance I of Π, compute f (I, ) (in time 2 n poly(n)). For each of the t instances I i , compute an r-approximate solution S i in time 2 ni poly(n i ) = 2 n poly(n), and use g to transform S i into a solution S for I. Let S * be the best of these solutions. We obtain S * in time 2 n 2 n poly(n) = 2 n poly(n). By item 3 of Definition 2, S * is an r-approximation of I. We can do this for any , leading to a contradiction.

We now illustrate this technique on some problems. It is worth noticing that the sparsification lemma for 3Sat in [START_REF] Impagliazzo | Which problems have strongly exponential complexity[END_REF] is not approximation preserving 9 ; one cannot use it to argue that approximating Max-3Sat (in subexponential time) is equivalent to approximating Max-3Sat with bounded occurrences. Proposition 4. There exists an approximation preserving sparsification from Independent Set to Independent Set-B and one from Vertex Cover to Vertex Cover-B.

Proof. Let > 0. It is well known that the positive root of 1 = x -1 + x -1-B goes to one when B goes to infinity. Then, consider a B such that this root is at most 2 . Our sparsification is obtained via a branching tree: the leaves of this tree will be the set of instances I i ; f consists of building this tree; a solution of an instance in the leaf corresponds, via the branching path leading to this leaf, to a solution of the root instance, and that is what g makes.

More precisely, for Independent Set, consider the following usual branching tree, starting from the initial graph G: as long as the maximum degree is at least B , consider a vertex v of degree at least B , and branch on it: either take v in the independent set (and remove N [v]), or do not take it. The branching stops when the maximum degree of the graph induced by the unfixed vertices is at most B -1. When branching, at least B + 1 vertices are removed when taking v, and one when not taking v; thus the number of leaves is t 2 n (by the choice of B ). Then, f and g satisfy items 1 and 2 of the definition. For item 3, it is sufficient to note that g maps S i in S by adding adequate vertices. Then, if we consider the path in the tree corresponding to an optimal solution S * , leading to a particular leaf G i , we have that |S * | = |S * ∩ G i | + k for some k 0, and the solution S computed by g is of size

|S| = |S i | + k. So, |S| /|S * | |Si| /|S * ∩Gi| r if S i is an r-approximation for G i .
The same argument holds also for Vertex Cover.

Analogous arguments apply more generally to any problem where we have a "sufficiently good" branching rule when the parameter is large. Indeed, suppose we can ensure the decrease in instance size by g(B) for non decreasing and unbounded function g in all (possibly except for one) branches. Then such a branching rule can be utilized to yield an approximation preserving sparsification as in Proposition 4.

We give another approximation preserving sparsification, where there is no direct branching rule allowing to remove a sufficiently large number of vertices.

Let Generalized Dominating Set be defined as follows: given a graph G(V, E) where V is partitioned into V 1 , V 2 , V 3 , we ask for a minimum size set of vertices V ⊆ V 1 ∪ V 2 which dominates all vertices in V 2 ∪ V 3 . Of course, the case V 2 = V corresponds to the usual Dominating Set problem. Note that Generalized Dominating Set is also a generalization of Set Cover, with V 2 = ∅, V 3 being the ground set and V 1 being the set system. Proposition 5. There exists an approximation preserving sparsification from Generalized Dominating Set to Generalized Dominating Set-B.

for each vertex v in V 1 ∪ V 2 , add a vertex v in G , and link v to all its homologous vertices in the cliques (there is at most one per clique); hence, if v ∈ V 1 ∪ V 2 has t neighbors in V 2 ∪ V 3 , v will be linked to t vertices; such vertices v will be informally referred to as vertices not in the cliques or vertices outside the cliques.

Note that the size of each clique C v is at most B, so there is at most Bn vertices in all the cliques. There are |V 1 | n vertices v , so |V | (B + 1)n, the reduction has linear size (with respect to n). Each vertex in a clique has degree at most (B -1) + 1 = B, and each vertex v has degree at most B, so G has degree at most B.

Let D be a generalized dominating set of G. For each vertex v in V 2 ∪ V 3 , there exists a vertex w ∈ D dominating it. We select the corresponding vertex in G in the clique C v . This adds up to

|V 2 ∪ V 3 | vertices. Moreover, for each vertex v in V 1 ∪ V 2 which is not in D, we select the corresponding vertex v ; hence, we select |V 1 ∪ V 2 | -|D| more vertices. By construction, this is an independent set S in G of size |S| = |V 1 | + 2|V 2 | + |V 3 | -|D|.
Conversely, take an independent set S of G . Suppose that S contains no vertex from a clique C u . Then we can add a vertex from C u to S, and (possibly) remove the vertex v which was adjacent to it. We get an independent set of at least the same size. By repeating the argument, we can assume that S takes one vertex from each clique C u . Consider in G the set D of vertices that corresponds to vertices v (which are not in cliques) in G that are not in S. Note that S is made of |V 2 |+|V 3 | vertices in the cliques and |V 1 |+|V 2 |-|D| vertices outside the cliques. So, we have

|D| = |V 1 | + 2|V 2 | + |V 3 | -|S|. Consider now a vertex v in V 2 ∪ V 3 .
There is a vertex w ∈ S in the clique C v , so the vertex v adjacent to this vertex w is not in S, hence its corresponding vertex is in D. Then, D is a generalized dominating set.

Suppose that we have an r-approximate solution S in G : |S| rα(G ), we can build a solution D of size

|D| |V 1 | + 2|V 2 | + |V 3 | -rα(G ) = rγ(G) + (1 -r)(|V 1 | + 2|V 2 | + |V 3 |)
where γ(G) is the size of a generalized dominating set in G. Since vertices in V 1 and V 2 have degree at most B, we know that γ(G) (|V2|+|V3|) /B. Note that each vertex in V 1 has at least one neighbor (otherwise, it can be removed from the graph), so that there are at most

|V 1 | B(|V 2 | + |V 3 |). Then |V 1 | + 2|V 2 | + |V 3 | (B + 2)(|V 2 | + |V 3 |) B(B + 2)γ(G)
. Putting all the above together, we get |D| γ(G)(r + (1 -r)B(B + 2)).

Note that similarly, APETH(Set Cover) implies APETH(Independent Set-B), when the complexity of Set Cover is measured by n + m.

Then, we have the following set of equivalent problems.

Theorem 9. Set Cover, Independent Set, Independent Set-B, Vertex Cover, Vertex Cover-B, Dominating Set, Dominating Set-B, Max Cut-B, Max-kSat-B (for any k 2) are APETH-equivalent.

Proof. Equivalence between Vertex Cover-B, Independent Set-B, Max Cut-B, Max-3Sat-B, Max-2Sat-B, Dominating Set-B follow immediately from [START_REF] Papadimitriou | Optimization, approximation and complexity classes[END_REF]. Indeed, for these problems [START_REF] Papadimitriou | Optimization, approximation and complexity classes[END_REF] provides L-reductions with linear size amplification. The equivalence between Max-kSat-B problems is also well known (just replace a clause of size k by k -1 clauses of size 3). The equivalence between Independent Set and Independent Set-B, Vertex Cover and Vertex Cover-B follows from Proposition 4. Finally, Lemma 8 allows us to conclude for Dominating Set.

APETH and parameterized approximation

The equivalence drawn in Theorem 9 gives a first intuition that the corresponding problems should be hard to approximate in subexponential time for some ratio. In this section we show another argument towards this hypothesis: if it fails, then any MaxSNP problem admits for any r < 1 a parameterized r-approximation algorithm in subexponential time 2 o(k) , which would be quite surprising. The following theorem can be construed as an extension of [START_REF] Liming | On the existence of subexponential parameterized algorithms[END_REF].

Theorem 10. The following statements are equivalent: (i) APETH(Π) holds for one (equivalently all) problem(s) in Theorem 9; (ii) there exist a MaxSNP-complete problem Π, some ratio r < 1 and a constant > 0 such that there is no parameterized r-approximation algorithm for Π with running time O(2 k poly(|I|)); (iii) for any MaxSNP-complete problem Π, there exist a ratio r < 1 and an > 0 such that no parameterized r-approximation algorithm for Π can run in time O(2 k poly(|I|)).

Proof. (i) ⇒ (ii): We show it for Π =Independent Set-B, which is MaxSNP-complete. Suppose that for any r and any there is a parameterized r-approximation algorithm A which runs in time O(2 k ). Given an instance G of Independent Set-B, we run A on the instance (G, k) for k = 1 to n. Consider the largest k for which an independent set is given: it has size at least ρ • k, while the optimum is at most k since no solution is output for k + 1.

Since k n, the overall iteration takes n • 2 o(n) -time.

(ii) ⇒ (iii): suppose that (iii) is false, and consider a MaxSNP-complete problem Π 2 which admits for every > 0 and every r < 1 a parameterized r-approximation algorithm running in time 2 k poly(|I|). Then, as we will show, this is true for any MaxSNP problem, contradicting (ii).

Indeed, let Π 1 be a MaxSNP problem. There exists an L-reduction from Π 1 to Π 2 , let α and β be the constants of the L-reduction. Let (I 1 , k) be an instance of Π 1 and let (I 2 , α • k) be the instance of Π 2 , where I 2 := f (I 1 ) defined by the L-reduction. Let r ∈ (0, 1) and > 0, and let A be a parameterized r -approximation of Π 2 which runs in time 2 k poly(|I|) where r = 1 -(1-r) /(αβ) < 1 and = /α. We present an algorithm which uses A as a subroutine and produces in time 2 k poly(|I|) a solution of Π 1 of size at least rk whenever opt(I 1 ) k.

Suppose that opt(I 1 ) k. We iteratively run A over the instances (I 2 , αk), (I 2 , αk-1), • • • by decreasing the parameter. Let lb αk be the first integer for which that A returns a solution, let us call it sol 2 , of size at least r lb upon (I 2 , lb). Let sol 1 := g(sol 2 ), where g is defined by the L-reduction. Note that if opt(I 2 ) > αk then sol 2 αr k; if opt(I 2 ) αk, then lb opt(I 2 ) hence sol 2 r opt(I 2 ). Now, from the property of L-reduction, we have opt(I 1 ) -sol 1 β(opt(I 2 ) -sol 2 ), or equivalently sol 1 opt(I 1 ) -β(opt(I 2 ) -sol 2 ). By considering the two previous cases, and the fact that opt(I 2 ) αopt(I 1 ) we easily get that whenever opt(I 1 ) k, the iterative applications of A combined with the algorithm g returns a solution sol 1 of size at least (1αβ(1 -r ))k = rk. It is easily verified that the overall algorithms performs O(2 k • poly(|I 1 |)) steps.

(iii) ⇒ (i): Suppose that for any r and any there is an r-approximation algorithm for Independent Set-B with running time O(2 n ). Given a graph G and an integer k, if k n /(B+1) we output an independent set of size n /(B+1) (any maximal independent set). Otherwise, we compute an r-approximate solution S in time O(2 n ) = O(2 k ) for = /(B+1). If |S| rk we output it, otherwise ropt(G) |S| < rk, hence opt(G) < k. This contradicts (iii) for Independent Set-B.

As an interesting complement of the above theorem, we show that trade-offs between (exponential) running time and approximation ratio do exist for any MaxSNP problem. In [START_REF] Cai | On fixed-parameter tractability and approximability of np optimization problems[END_REF], it is shown that every MaxSNP problem Π is fixed-parameter tractable in time 2 O(k) for the standard parameterization, while in [START_REF] Papadimitriou | Optimization, approximation and complexity classes[END_REF] it is shown that Π is approximable in polynomial time within a constant ratio ρ Π . We prove here that there exists a family of parameterized approximation algorithms achieving ratio ρ Π + , for any > 0, and running in time 2 O( k) . This is obtained as a consequence of a result in [START_REF] Kim | Improved parameterized algorithms for above average constraint satisfaction[END_REF]. Proposition 6. Let Π be a standard parameterization of a MaxSNP-complete problem. For any > 0, there exists a parameterized (ρ Π + )-approximation algorithm for Π running in time γ k • poly(|I|) for some constant γ.

Proof. Given a parameter k and a set of constraints with at most c variables per constraint, the problem Max-c-Csp Above Average asks if there is a variable assignment that satisfies at least ρ • m + k constraints. Here ρ is the expected fraction of constraints satisfied by a uniform random assignment. In [START_REF] Kim | Improved parameterized algorithms for above average constraint satisfaction[END_REF], the following theorem is proved. Let Π be a problem in the class MaxSNP, defined in the standard way by max S |{x : φ(x, G, S)}|. As shown in [START_REF] Papadimitriou | Optimization, approximation and complexity classes[END_REF], for each of the (polynomially many) possible values x i of x, consider the corresponding formula φ i (G, S) = φ(x i , G, S). Since φ is fixed, this is a fixed size formula involving (at most) a fixed number t of variables (corresponding to the predicate S). The goal is then to find S satisfying the largest number of formulae φ i . Let ρ Π be the expected fraction of constraints satisfied by a uniform random assignment. It is easy to find deterministically an assignment satisfying as many formulae as a random one, so Π is ρ Π -approximable in polynomial time. Note that Π can be interpreted as a Max-c-Csp parameterized by the number of satisfied constraints.

To get the claimed (ρ Π + )-approximation algorithm for 0 1 -ρ Π , we run the algorithm A given in Theorem 11 on the instance ({φ i : 1 i m}, k ) (where m is the number of formulas φ i ). We take k so that it satisfies ρ Π • m + k = k(ρ Π + ). If k formulae are satisfiable, then, clearly, k(ρ Π + ) folmulae are also satisfiable, so the algorithm will output an assignment satisfying at least this number of constraints (formulae). The running time is γ k poly(n). The claim holds since k = k -ρ Π (m -k) and k m.

Conclusion

More interesting questions remain untouched in the junction of approximation and (sub)exponential-time/FPT-time computations. This paper is only a first step in this direction and we wish to motivate further research. Among a range of problems to be tackled, we propose the following.

-Our inapproximability results are conditional upon the Linear PCP Conjecture. Is it possible to relax the condition to a more plausible one? -Or, we dare ask whether (certain) inapproximability results in FPT-time imply strong improvement in the PCP theorem. For example, would the converse of Lemma 2 hold? -Can we design approximation preserving sparsifications for problems like Max Cut or Max-3Sat? It seems to be difficult to design a sparsifier based on branching rules, so a novel idea is needed.

Note that we have considered in this article constant approximation ratios. As noted earlier, ratio 1 /r(n) is achievable in subexponential time for any increasing and unbounded function r for Independent Set. However, dealing with parameterized approximation algorithms, achieving a non-constant ratio is also an open question. More precisely, finding in FPT-time an independent set of size g(k) when there exists an independent set of size k is not known for any unbounded and increasing function g. Finally, let us note that, in the same vein of the first part of our work, [START_REF] Mathieson | A proof checking view of parameterized complexity[END_REF] studied a proof checking view of parameterized complexity. Possible links between these two approaches are worth being investigated in future works.

Theorem 11 .

 11 ([25]) For every c 2, Max-c-Csp Above Average can be solved in time O(γ k • m), where γ is a constant depending only on c.

Actually, the result is even stronger: it is impossible to obtain a ratio r = g(k) for any function g.

All the definitions concerning MaxSNP are given in the appendix. The reader can also find those definitions in the seminal paper[START_REF] Papadimitriou | Optimization, approximation and complexity classes[END_REF].

Note that LPC as expressed in this article implies the result even with replacing (1 -)m by m. However, we stick with this lighter statement (1 -)m in order, in particular, to emphasize the fact that perfect completeness is not required in the LPC conjecture.

Note that we could consider a more general definition, leading to the same theorem, by allowing: (1) a slight amplification of the size of Ii (ni αn for some fixed α in item 1), (2) an expansion of the ratio in item 3 (if Si is r-approximate S is h(r) approximate where h(r) goes to 1 when r goes to 1) and (3) a computation time 2 n poly(n) for g in item 4.

One of the reasons is that when a clause C is contained in a clause C , a reduction rule removes C , that is safe for the satisfiability of the formula, but not when considering approximation.

Research supported by the French Agency for Research under the DEFIS program TODO, ANR-09-EMER-010 Also, Institut Universitaire de France 4 The problems discussed in the paper are all defined in the appendix.

By the choice of q, qK q 2 r IS K, so α(H q ) q 2 r IS K + K = (q 2 r IS + 1)K. Since the number of vertices in H q is Kq 5 , we get that χ(H q ) q 5 /(q 2 r IS +1). The gap created for the chromatic number in the two cases is then at least: q 5 (q 2 r IS + 1)

The result follows since H q has Kq 5 vertices and q is a constant (that depends only on the ratio r and on the constant number of bits p read by V), so the size of H q is linear in the size of G φi .

Concerning the approximability of Vertex Cover and Min-Sat in subexponential time, the following holds. Proposition 3. Under ETH, for any > 0 and any δ > 0, there is no (( 7 /6) -)-approximation algorithm for Vertex Cover running in time O(2 n 1-δ ) in graphs of order n, nor for Min-Sat running in time O(2 m 1-δ ) in CNF formulae with m clauses.

Proof. We combine the following theorem with a well known reduction. Theorem 7. [START_REF] Moshkovitz | Two-query pcp with subconstant error[END_REF] Under ETH, for every > 0, and δ > 0, it is impossible to distinguish between instances of max 3-lin with m equations where at least (1 -)m are satisfiable from instances where at most ((

Consider an instance I of max 3-lin on m equations. Build the following graph G I :

for any equation and any of the eight possible values of the 3 variables in it, add a vertex in the graph if the equation is satisfied; if two vertices are such that they have one contradicting variable (the same variable has value 1 for one vertex and 0 for the other one), then add an edge between them.

In particular, the set of vertices corresponding to the same equation is a clique. Note that each equation is satisfied by exactly 4 values of the variables in it. Then, the number of vertices in the graph is N = 4m. Consider an independent set S in the graph G I . Since there is no conflict, it corresponds to a partial assignment that can be arbitrarily completed into an assignment τ for the whole system. Each vertex in S corresponds to an equation satisfied by τ (and S has at most one vertex per equation), so τ satisfies (at least) |S| equations. Reciprocally, if an assignment τ satisfies α clauses, there is obviously an independent set of size α in G I . Hence, if (1 -)m equations are satisfiable, there exists an independent set of size at least (1 -)m, i.e., a vertex cover of size at most N -(1 -)m = N ( 3 /4 + /4).

If at most (( 1 /2) + )m equations are satisfiable, then each vertex cover has size at least N -(( 1 /2) + )m = N ( 7 /8 -/4).

We now handle the Min-Sat problem via the following reduction [START_REF] Marathe | On approximation algorithms for the minimum satisfiability problem[END_REF]. Given a graph G, build the following instance on Min-Sat. For each edge {v i , v j } add a variable x ij . For each vertex v i add a clause c i . Variable x ij appears positively in c i and negatively in c j . Then, take a vertex cover V * of size k; for any x ij , fix the variable to true if

is in c j then, by construction, x ji is false. So c j is not satisfied, and the assignment satisfies at most k clauses. Conversely, consider a truth assignment that satisfies

Since the number of clauses in the reduction equals the number of vertices in the initial graph, the result is concluded.

All the results given in this section are valid under ETH and rule out some ratios in subexponential time of the form 2 n 1-δ . It is worth noticing that if LPC holds, then all these results would hold for any subexponential time (in contrast to the result of [START_REF] Chalermsook | Independent set, induced matching, and pricing: connections and tight (subexponential time) approximation hardnesses[END_REF] for Independent Proof. Let > 0, and consider the following branching algorithm, where B 4 will be specified later (as a function of ):

1. remove all edges between two vertices in V 1 , as well as all edges between two vertices in V 3 ; 2. if there exists a vertex v ∈ V 1 of degree at least B , branch on it; 3. otherwise, if there exists a vertex v ∈ V 2 of degree at least B 2 , branch on it; 4. otherwise, if there exists a vertex v ∈ V 3 of degree at least B 3 , branch on a neighbor of v.

Note that branching on a vertex v in V 1 or V 2 means that if v is taken, then v is removed from the graph, its neighbors in V 2 are transferred to V 1 (they are already dominated), while its neighbors in V 3 are removed from the graph. If v is not taken, if it is in V 1 then it is removed from the graph, and if it is in V 2 then it is transferred to V 3 (we still need to dominate it). By principle, in a leaf of the tree, each vertex in V 1 has degree at most B , while each vertex in V 2 has degree at most B 2 , and each vertex of V 3 has degree at most B 3 . Then the graph has bounded maximum degree B = B 3 .

However, when branching it might be the case that only at most one vertex is removed from the graph in each branch. To show that the number of leaves in the tree is indeed sufficiently small, we change the branching measure by introducing appropriate weights on the vertices of the graph. Let w 1 = min{ 1 /2, 1 /4 + d(v) /4B } be the weights of vertices in V 1 , w 2 = min{1, 3 /4 + d(v) /4B } and w 3 = 1 /2 be the weights of vertices in V 2 and V 3 respectively. Then the global weight of G is W (G) n.

Consider a branching step on a vertex v ∈ V 1 corresponding to item 2 of the algorithm: if v is taken, the weight of the instance is reduced by at least ( 1 /2) + ( B /4) ( 1 /2 for v, and at least 1 /4 for each of its neighbors). If v is not taken, then the weight is reduced by 1 /2.

In a branching step on a vertex v ∈ V 2 corresponding to item 3 of the algorithm, if v is taken, the weight of the instance is reduced by at least 1 + B 2 /B = 1 + B . Indeed, there is a weight-reduction of 1 /2 for v, and of at least 1 /B for each of its neighbors, since we know that every vertex in V 1 has degree at most B -1. If v is not taken, the weight reduces by at least 1 /4.

In a branching step on a vertex w ∈ V 1 ∪ V 2 neighbor of v corresponding to item 4, when w is taken v is removed, so the degree of at least B 3 vertices decreases by 1. Since vertices in V 1 and V 2 have degree at most B -1 and B 2 -1 respectively, the total weight is reduced by at least B 3 /B 2 = B . When w is not taken, the weight is reduced by at least 1 /4. Then, it suffices to choose B sufficiently large such that the branching factor of these three branchings is at most 2 .

The fact that an approximate solution on a leaf can be transferred to an approximate solution to the root is completely similar to the case of independent set. Combining Proposition 5 with some reductions, the following can be shown.

Lemma 8. APETH( Dominating Set) implies APETH( Independent Set-B).

Proof. Using Proposition 5, it holds that:

of Generalized Dominating Set-B, and use the following reduction (adapted from [START_REF] Papadimitriou | Optimization, approximation and complexity classes[END_REF] to this generalized version). Build a graph G = (V , E ) where:

if a vertex is in the neighborhood of two such vertices, there will be two different vertices in G ); such vertices will be informally referred to as vertices in the cliques;

Appendix

Definitions of the problems considered

Vertex Cover

Input: A graph G = (V, E).

Goal: Find a smallest vertex cover of G, i.e., a set C of vertices such that for every e = {u, v} ∈ E, C ∩ {u, v} = ∅.

Independent Set

Input: A graph G = (V, E).

Goal: Find a largest independent set in G, i.e., a set of vertices which are pairwise nonadjacent.

Dominating Set

Input: A graph G = (V, E).

Goal: Find a smallest dominating set in G, i.e., a set of vertices S such that every vertex in V \ S has a neighbor in S.

Independent Dominating Set

Input: A graph G = (V, E). Goal: Find a smallest set of vertices which is simultaneously an independent set and a dominating set in G.

Generalized Dominating Set

) (some of the sets being possibly empty).

Bipartite Subgraph

Input: A graph G = (V, E). Goal: Find an induced bipartite subgraph of G containing a maximum number of vertices.

Coloring

Input: A graph G = (V, E). Goal: Find a proper (vertex-)coloring of G, i.e., a coloring where no adjacent vertices get the same color, using a smallest number of colors.

Max Cut

Input: A graph G = (V, E). Goal: Find a set S ⊆ V such that the number of edges having exactly one endpoint in S is maximized.

3Sat

Input: A 3CNF φ on the variable set V . Question: Does there exist a truth assignment of V satisfying all clauses of φ?

Max-kSat

Input: A CNF φ on the variable set V containing at most k literals per clause.

Goal: Find a truth assignement of V that satisfies a maximum number of clauses.

Min-Sat

Input: A CNF φ on the variable set V .

Goal: Find a truth assignement of V that satisfies a minimum number of clauses.

Max-3Lin

Input: A system Az = b of linear equations in the variable set V over F 2 , each equation involving exactly 3 variables. Goal: Find an assignment of values to V satisfying a maximum number of equations.

Max-c-Csp

Input: A collection of m boolean functions on the variable set V , where each function depends on at most c variables. Goal: Find a boolean assignment of V that satisfies a maximum number of equations.

Max-c-Csp Above Average

Input: A collection of m boolean functions on the variable set V , where each function depends on at most c variables, and a nonnegative integer k. Parameter: k. Question: Does there exist a boolean assignment of V that satisfies at least ρ • m functions, where ρ is the average fraction of functions satisfied by a uniform random assignment?

Set Packing

Input: A universe U and a collecton F of subsets of U.

Goal: Find a maximum number of sets from U which are pairwise disjoint.

Set Cover

Input: A universe U and a collecton F of subsets of U.

Goal: Find a minimum number of sets from F whose union is U.

Some words about MaxSNP and L-reductions

By Fagin's Theorem, NP is characterized as the class of graph problems expressible in existential second-order logic. In this logic, one can quantify existentially and universally over the vertices but one is restricted to existential quantification over sets of vertices. In SNP (for Strict NP), the quantification over vertices can only be universal. We now introduce L-reductions which are linear reductions mostly preserving approximation schemata.

Let Π A and Π B be two optimization problems, v A and v B being the two corresponding functions mapping a solution to its value. An L-reduction is defined by two functions f and g computable in polynomial-time and two constants α and β such that: MaxSNP is the class of problems that L-reduce to a maximization version of a SNP problems.

A problem Π is MaxSNP-hard if all the MaxSNP problems L-reduce to Π.

A problem is MaxSNP-complete if it is both MaxSNP-hard and in MaxSNP.