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Weak approximation of martingale representations

Rama CONT and Yi LU

November 2014

Abstract

We present a systematic method for computing explicit approximations to martingale
representations for a large class of Brownian functionals. The approximations are based on
a notion of pathwise functional derivative and yield a consistent estimator for the integrand
in the martingale representation formula for any square-integrable functional of the solution
of an SDE with path-dependent coefficients. Explicit convergence rates are derived for
functionals which are Lipschitz-continuous in the supremum norm. The approximation and
the proof of its convergence are based on the Functional Ito calculus, and require neither
the Markov property, nor any differentiability conditions on the coefficients of the stochastic
differential equations involved.
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1 Introduction

Let W be a standard d-dimensional Brownian motion defined on a probability space (Ω,F ,P)
and (FWt ) its (P-completed) natural filtration. We consider a Brownian martingale X which
takes values in Rd:

X(t) = X(0) +

∫ t

0

σ(u)dW (u)

where σ is a process adapted to (FWt ) satisfying

E

[∫ T

0

‖σ(t)‖2dt

]
<∞ and det(σ(t)) 6= 0 dt× dP− a.e

Then X is a square-integrable martingale with the predictable representation property [23,
31]: for any square-integrable FWT -measurable random variable H, or equivalently, any square-
integrable (FWt )-martingale Y (t) = E[H|FWt ], there exists a unique (FWt )-predictable process φ

with E

[∫ T

0

tr(φ(u)tφ(u)d[X](u))

]
<∞ such that:

Y (T ) = Y (0) +

∫ T

0

φ · dX, i.e. H = E[H] +

∫ T

0

φ · dX (1)

The classical proof of this representation result (see e.g. [31]) is non-constructive. However in
many applications, such as stochastic control or mathematical finance, one is interested in an
explicit expression for φ, which represents an optimal control or a hedging strategy.

Expressions for the integrand φ have been derived using a variety of methods and assumptions,
using Markovian techniques [9, 12, 14, 21, 28], integration by parts [2] or, in the general case,
using Malliavin calculus [1, 3, 19, 22, 26, 27, 17]. Some of these methods are limited to the case
where X is a Markov process; others require differentiability and/or ellipticity assumptions on
σ [17], differentiability assumptions, in the Fréchet or Malliavin sense, on H, or an explicit form
for the density of X [2]. Almost all of these methods invariably involve an approximation step,
either through the solution of an auxiliary partial differential equation (PDE) or the simulation
of an auxiliary stochastic differential equation.

A systematic approach to obtaining martingale representation formulae, based on the Func-
tional Ito calculus [11, 6, 5], has been proposed in [7], where it is shown [7, Theorem 5.9] that
for any square-integrable (FXt )-martingale Y ,

∀t ∈ [0, T ], Y (t) = Y (0) +

∫ t

0

∇XY · dX P−a.s.

where ∇XY is the weak vertical derivative of Y with respect to X, constructed as an L2 limit
of pathwise directional derivatives. This approach does not rely on any Markov property nor on
the Gaussian structure of the Wiener space and is thus applicable to functionals of a large class
of processes.

In the present work we build on this approach to propose a general framework for computing
explicit approximations to the integrand φ in a general setting in which X is allowed to be the
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solution of a stochastic differental equation (SDE) with path-dependent coefficients:

dX(t) = σ(t,Xt)dW (t) X(0) = x0 ∈ Rd (2)

where Xt = X(t∧.) designates the trajectory stopped at t and σ : [0, T ]×D([0, T ],Rd)→ GLd(R)
is a Lipschitz map. For any square-integrable variable of the form H = g(X(t), 0 ≤ t ≤ T ) where
g : (D([0, T ],Rd), ‖.‖∞) → R is a continuous functional, we construct an explicit sequence of
approximations φn for the integrand φ in (1). These approximations are constructed as vertical
derivatives, in the sense of the functional Ito calculus, of the weak Euler approximation of the
martingale Y . We show that these provide explicit expressions for these approximations and
analyze their convergence to the integrand φ. Under a Lipschitz assumption on g, we provide
error estimates in L2p. These approximations are easy to compute and readily integrated in
commonly used numerical schemes for approximations of SDEs.

Our approach requires neither the Markov property of the underlying processes nor the dif-
ferentiability of coefficients, making our approach applicable to functionals of a large class of
semimartingales. By contrast to methods based on Malliavin calculus [1, 3, 19, 22, 27, 17], it
does not require Malliavin differentiability of the terminal variable H nor does it involve the
choice of ’Malliavin weights’, a delicate step in these methods.

Ideas based on Functional Ito calculus have also been recently used by Leão and Ohashi
[25] for weak approximation of Wiener functionals, using a space-filtration discretization scheme.
However, unlike the approach proposed in [25], our approach is based on a Euler approximation
on a fixed time grid, rather than the random time grid used in [25], which involves a sequence of
first passage times. Our approach is thus much easier to implement and analyze and is readily
integrated in commonly used numerical schemes for approximations of SDEs, which are typically
based on fixed time grids.

Outline We first recall some key concepts and results from the Functional Itô calculus in section
2. Section 3 provides some estimates for the path-dependent SDE (2) and studies some properties
of the Euler approximation for this SDE. In Section 4 we show that the weak Euler approximation
(Definition 9) may be used to approximate any square-integrable martingale adapted to the
filtration ofX by a sequence of smooth functionals ofX, in the sense of the functional Ito calculus.
Moreover, we provide explicit expressions for the functional derivatives of these approximations.
Section 5 analyzes the convergence of this approximation and provides error estimates in Theorem
5.1. Finally, in Section 6 we compare our approximation method with those based on Malliavin
calculus.

Notations: In the sequel, we shall denote by Md,n(R) the set of all d × n matrices with real
coefficients. We simply denote Rd =Md,1(R) andMd(R) =Md,d(R). For A ∈Md(R), we shall

denote by tA the transpose of A, and ‖A‖ =
√

tr (tAA) the Frobenius norm of A. For x, y ∈ Rd,
x · y is the scalar product on Rd.

Let T > 0. We denote by D([0, T ],Rd) the space of functions defined on [0, T ] with values in Rd
which are right continuous with left limits (càdlàg). For a path ω ∈ D([0, T ],Rd) and t ∈ [0, T ],
we denote by:

• ω(t) the value of ω at time t,
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• ω(t−) = lim
s→t,s<t

ω(s) its left limit at t,

• ωt = ω(t ∧ ·) the path of ω stopped at t

• ωt− = ω1[0,t) + ω(t−)1[t,T ]

• ‖ω‖∞ = sup{|ω(t)|, t ∈ [0, T ]} the supremum norm.

We note that ωt and ωt− are elements of D([0, T ],Rd). For a càdlàg stochastic process X, we
shall similarly denote Xt(.) = X(t ∧ .) and Xt− = X1[0,t) +X(t−)1[t,T ].

2 Functional Itô calculus

The Functional Itô calculus [4] is a functional calculus which extends the Ito calculus to path-
dependent functionals of stochastic processes. It was first introduced in a pathwise setting
[6, 5, 11] using a notion of pathwise derivative for functionals on the space of right-continuous
functions with left limits, and extended in [7] to a weak calculus applicable to all square-integrable
martingales, which has a natural connection to the martingale representation theorem. We recall
here some key concepts and results of this approach, following [4].

Let X be the canonical process on Ω = D([0, T ],Rd), and (F0
t )t∈[0,T ] be the filtration gener-

ated by X. We consider now F a functional defined on [0, T ] ×D([0, T ],Rd) with values in R.
In this paper, we are interested in one particular class of such functionals characterized by the
following property: the process t 7→ F (t, ω) defined on Ω is (F0

t )-adapted. Under this condition,
F (t, ·) only depends on the path stopped at t:

∀ω ∈ Ω, F (t, ω) = F (t, ωt). (3)

This motivates us to consider functionals on the space of stopped paths [4]: a stopped path is
an equivalence class in [0, T ]×D([0, T ],Rd) for the following equivalence relation:

(t, ω) ∼ (t′, ω′)⇐⇒ (t = t′ and ωt = ω′t′). (4)

The space of stopped paths is defined as the quotient of [0, T ]×D([0, T ],Rd) by the equivalence
relation (4):

ΛT = {(t, ω(t ∧ ·)), (t, ω) ∈ [0, T ]×D([0, T ],Rd)} =
(
[0, T ]×D([0, T ],Rd)

)
/ ∼

We denote WT the subset of ΛT consisting of continuous stopped paths. We endow this set with
a metric space structure by defining the following distance:

d∞((t, ω), (t′, ω′)) = sup
u∈[0,T ]

|ω(u ∧ t)− ω′(u ∧ t′)|+ |t− t′| = ‖ωt − ω′t′‖∞ + |t− t′|

(ΛT , d∞) is then a complete metric space. Any functional verifying the non-anticipativity con-
dition (3) can be equivalently viewed as a functional on F : ΛT → R:

Definition 1. A non-anticipative functional on D([0, T ],Rd) is a measurable map
F : (ΛT , d∞) −→ R on the space (ΛT , d∞) of stopped paths.
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Using the metric structure of (ΛT , d∞), one can define various notions of continuity for non-
anticipative functionals [6]:

Definition 2. A non-anticipative functional F is said to be:

• continuous at fixed times if for any t ∈ [0, T ], F (t, ·) is continuous with respect to the
uniform norm ‖ · ‖∞ in [0, T ], i.e. ∀ω ∈ D([0, T ],Rd), ∀ε > 0, ∃η > 0, ∀ω′ ∈ D([0, T ],Rd),

sup |ω − ω′| < η =⇒ |F (t, ω)− F (t, ω′)| < ε

• jointly continuous if F is continuous with respect to d∞, i.e. ∀(t, ω) ∈ ΛT , ∀ε > 0, ∃η > 0
such that ∀(t′, ω′) ∈ ΛT ,

d∞ ((t, ω), (t′, ω′)) < η =⇒ |F (t, ω)− F (t′, ω′)| < ε

We denote by C0,0(ΛT ) the set of jointly continuous non-anticipative functionals.

• left-continuous if ∀(t, ω) ∈ ΛT , ∀ε > 0, ∃η > 0 such that ∀(t′, ω′) ∈ ΛT ,

(t′ < t and d∞ ((t, ω), (t′, ω′)) < η) =⇒ |F (t, ω)− F (t′, ω′)| < ε

We denote by C0,0
l (ΛT ) the set of left-continuous functionals. Similarly, we can define the

set C0,0
r (ΛT ) of right-continuous functionals.

We also introduce a notion of local boundedness for functionals.

Definition 3. A non-anticipative functional F is said to be boundedness-preserving if for every
compact subset K of Rd, ∀t0 ∈ [0, T ], ∃C(K, t0) > 0 such that:

∀t ∈ [0, t0], ∀(t, ω) ∈ ΛT , ω([0, t]) ⊂ K =⇒ F (t, ω) < C(K, t0).

We denote by B(ΛT ) the set of boundedness-preserving functionals.

We now recall some notions of differentiability for functionals following [7, 4]. For e ∈ Rd and
ωt ∈ D([0, T ],Rd), we define the vertical perturbation ωet of (t, ω) as the càdlàg path obtained
by shifting the path by e after t

ωet = ωt + e1[t,T ].

Definition 4. A non-anticipative functional F is said to be:

• horizontally differentiable at (t, ω) ∈ ΛT if

DF (t, ω) = lim
h→0+

F (t+ h, ω)− F (t, ω)

h

exists. If DF (t, ω) exists for all (t, ω) ∈ ΛT , then the non-anticipative functional DF is
called the horizontal derivative of F .

5



• vertically differentiable at (t, ω) ∈ ΛT if the map:

Rd −→ R
e 7→ F (t, ωt + e1[t,T ])

is differentiable at 0. Its gradient at 0 is called the vertical derivative of F at (t, ω):

∇ωF (t, ω) = (∂iF (t, ω), i = 1, · · · , d) ∈ Rd

with

∂iF (t, ω) = lim
h→0

F (t, ωt + hei1[t,T ])− F (t, ωt)

h

where (ei, i = 1, · · · , d) is the canonical basis of Rd. If F is vertically differentiable at all
(t, ω) ∈ ΛT , ∇ωF : (t, ω)→ Rd defines a non-anticipative map called the vertical derivative
of F .

We may repeat the same operation on ∇ωF and define similarly ∇2
ωF , ∇3

ωF , · · · . This leads
us to define the the following classes of smooth functionals:

Definition 5 (Smooth functionals). We define C1,k
b (ΛT ) as the set of non-anticipative function-

als F : (ΛT , d∞)→ R which are

• horizontally differentiable with DF continuous at fixed times;

• k times vertically differentiable with ∇jωF ∈ C0,0
l (ΛT ) for j = 0, · · · , k;

• DF,∇ωF, · · · ,∇kωF ∈ B(ΛT ).

We denote C1,∞(ΛT ) = ∩k≥1C1,k(ΛT ),C1,∞
b (ΛT ) = ∩k≥1C1,k

b (ΛT ).

Many examples of functionals may fail to be globaly smooth, but their derivatives may still
be well behaved except at certain stopping times, which motivates the following definition [4]:

Definition 6. A non-anticipative functional F is said to be locally regular of class C1,2
loc(ΛT ) if

there exists an increasing sequence (τn)n≥0 of stopping times with τ0 = 0 and τn −→
n→∞

∞, and a

sequence of functionals Fn ∈ C1,2
b (ΛT ) such that:

F (t, ω) =
∑
n≥0

Fn(t, ω)1[τn(ω),τn+1(ω))(t), ∀(t, ω) ∈ ΛT

We recall now the functional Itô formula for non-anticipative functionals of a continuous
semimartingale [7, Theorem 4.1]:

Proposition 2.1 ([6, 7]). Let S be a continuous semimartingale defined on a probability space
(Ω,F ,P). For any non-anticipative functional F ∈ C1,2

loc(ΛT ) and any t ∈ [0, T ], we have:

F (t, St)− F (0, S0) =

∫ t

0

DF (u, Su)du+

∫ t

0

∇ωF (u, Su) · dS(u)

+
1

2

∫ t

0

tr
(
∇2
ωF (u, Su)d[S](u)

)
P−a.s.
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Actually the same functional Itô formula may also be obtained for functionals whose vertical
derivatives are right-continuous rather than left-continuous. We denote by C1,2

b,r (ΛT ) the set of
non-anticipative functionals F satisfying:

• F is horizontally differentiable with DF continuous at fixed times;

• F is twice vertically differentiable with F ∈ C0,0
l (ΛT ) and ∇ωF,∇2

ωF ∈ C0,0
r (ΛT );

• DF,∇ωF,∇2
ωF ∈ B(ΛT );

The localization is more delicate in this case, and we are not able to state a local version of the
functional Itô formula by simply replacing Fn ∈ C1,2

b (ΛT ) by Fn ∈ C1,2
b,r (ΛT ) in Definition 6

(see Remark 4.2 in [15]). However if the stopping times τn are deterministic, then the functional
Itô formula is still valid (Proposition 2.4 and Remark 4.2 in [15]).

Definition 7. A non-anticipative functional is said to be locally regular of class C1,2
loc,r(ΛT ) if

there exists an increasing sequence (tn)n≥0 of deterministic times with t0 = 0 and tn −→
n→∞

∞,

and a sequence of functionals Fn ∈ C1,2
b,r (ΛT ) such that:

F (t, ω) =
∑
n≥0

Fn(t, ω)1[tn,tn+1)(t), ∀(t, ω) ∈ ΛT

Proposition 2.2 ([7]). Let S be a continuous semimartingale defined on a probability space
(Ω,F ,P). For any non-anticipative functional F ∈ C1,2

loc,r(ΛT ) and any t ∈ [0, T ], we have:

F (t, St)− F (0, S0) =

∫ t

0

DF (u, Su)du+

∫ t

0

∇ωF (u, Su) · dS(u)

+
1

2

∫ t

0

tr
(
∇2
ωF (u, Su)d[S](u)

)
P−a.s.

Finally we present briefly the martingale representation formula established in [7]. Let
(Xt)t∈[0,T ] be a continuous Rd-valued martingale defined on a probability space (Ω,F ,P) with
absolutely continuous quadratic variation:

[X](t) =

∫ t

0

A(u)du

where A is a Md(R)-valued process. Denote by (FXt ) the natural filtration of X and C1,2b (X)

the set of (FXt )-adapted processes Y which admit a functional representation in C1,2
b (ΛT ):

C1,2b (X) = {Y,∃F ∈ C1,2
b (ΛT ), Y (t) = F (t,Xt) dt× dP−a.e.} (5)

If A(t) is non-singular almost everywhere, i.e. det(A(t)) 6= 0, dt × dP-a.e., then for any Y ∈
C1,2b (X), the predictable process

∇XY (t) = ∇ωF (t,Xt)

is uniquely defined up to an evanescent set, independently of the choice of F ∈ C1,2
b (ΛT ) in the

representation (5). This process ∇XY is called the vertical derivative of Y with respect to X.
For martingales which are smooth functionals of X, the operator ∇X : C1,2b (X) 7→ C0,0l (X) yields
the integrand in the martingale representation theorem:
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Corollary 2.1. If Y ∈ C1,2b (X) is a square-integrable martingale, then

∀t ∈ [0, T ], Y (t) = Y (0) +

∫ t

0

∇XY · dX P−a.s.

Consider now the case where X is a square-integrable martingale. Let M2(X) be the space
of square-integrable (FXt )-martingales with initial value zero, equipped with the norm ‖Y ‖2 =√

E|Y (T )|2. Cont & Fournié [7, Theorem 5.8] show that the operator ∇X : C1,2b (X) 7→ C0,0l (X)
admits a unique continuous extension to a weak derivative ∇X :M2(X)→ L2(X) which satisfies
the following martingale representation formula:

Proposition 2.3 ([7]). For any square-integrable (FXt )-martingale Y , we have:

∀t ∈ [0, T ], Y (t) = Y (0) +

∫ t

0

∇XY · dX P−a.s.

This weak vertical derivative ∇XY coincides with the pathwise vertical derivative ∇ωF (t,Xt)
when Y admits a locally regular functional representation, i.e. Y (t) = F (t,Xt) with F ∈
C1,2
loc(ΛT ) ∪ C1,2

loc,r(ΛT ). For a general square-integrable martingale Y , the weak derivative ∇XY
is not directly computable through a pathwise perturbation. An approximation procedure is thus
necessary for computing ∇XY . The result of [7] guarantees the existence of such approximations;
in the sequel we propose explicit constructions of computable versions of such approximations.

3 Euler approximations for path-dependent SDEs

Let W be a standard d-dimensional Brownian motion defined on a probability space (Ω,F ,P)
and (FWt ) its (P-completed) natural filtration. We consider the following stochastic differential
equation with path-dependent coefficient (2):

dX(t) = σ(t,Xt)dW (t), X(0) = x0 ∈ Rd

where σ : ΛT →Md(R) is a non-anticipative functional, assumed to be Lipschitz-continuous:

Assumption 1. σ : (ΛT , d∞)→Md(R) is Lipschitz continuous:

∃σlip > 0, ∀t, t′ ∈ [0, T ],∀ω, ω′ ∈ D([0, T ],Rd), ‖σ(t, ω)− σ(t′, ω′)‖ ≤ σlip d∞ ((t, ω), (t′, ω′)) .

Under this assumption, (2) has a unique strong solution verifying the following estimate:

Proposition 3.1. Under Assumption 1, there exists a unique (FWt )-adapted process X satisfying
(2). Moreover for p ≥ 1, we have:

E
[
‖XT ‖2p∞

]
≤ C(1 + |x0|2p)eCT (6)

for some constant C = C(p, T, σlip) depending on p, T and σlip.
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Proof. Existence and uniqueness of a strong solution follows from [30] (Theorem 7 , Chapter 5):
see [4, Section 5]. Let us prove (6). Using the Burkholder-Davis-Gundy inequality and Hölder’s
inequality, we have:

E
[
‖XT ‖2p∞

]
≤ C(p)

(
|x0|2p + E

[(∫ T

0

‖σ(t,Xt)‖2 dt

)p])

≤ C(p, T )

(
|x0|2p + E

[∫ T

0

‖σ(t,Xt)‖2p dt

])

≤ C(p, T )

(
|x0|2p + E

[∫ T

0

(‖σ(0, 0̄)‖+ σlip(t+ ‖Xt‖∞))
2p
dt

])

≤ C(p, T, σlip)

(
|x0|2p + 1 +

∫ T

0

E‖Xt‖2p∞dt

)

where 0̄ is the path which takes constant value 0. We conclude by Gronwall’s inequality.

In the following, we always assume that Assumption 1 holds. The strong solution X of
equation (2) is then a Brownian martingale and defines a non-anticipative functional X :WT →
Rd given by the Ito map associated to (2).

We assume in addition that:

Assumption 2. det (σ(t,Xt)) 6= 0, dt× dP-a.e.

Denote by (FXt ) the natural filtration of X. Under Assumption 2, FXt = FWt .

3.1 Euler approximations as non-anticipative functionals

We now consider an Euler approximation for the SDE (2) and study its properties as a non-

anticipative functional. Let n ∈ N, δ =
T

n
. The Euler approximation nX of X on the grid

(tj = jδ, j = 0..n) is defined as follows:

Definition 8. [Euler scheme] For ω ∈ D([0, T ],Rd), we denote by nX(ω) ∈ D([0, T ],Rd) the
piecewise constant Euler approximation for (2) computed along the path ω, defined as follows:

nX(ω) is constant in each interval [tj , tj+1), ∀ 0 ≤ j ≤ n− 1 with nX(0, ω) = x0 and

nX(tj+1, ω) = nX(tj , ω) + σ(tj , nXtj (ω))(ω(tj+1−)− ω(tj−)), 0 ≤ j ≤ n− 1 (7)

where nXt(ω) is the path of nX(ω) stopped at time t, and by convention ω(0−) = ω(0).

When computed along the path of the Brownian motion W, nX(W ) is simply the piecewise
constant Euler-Maruyama scheme [29] for the stochastic differential equation (2).

By definition, the path nX(ω) depends only on a finite number of increments of ω: ω(t1−)−
ω(0), · · · , ω(tn−) − ω(tn−1−). We can thus define an application p : Md,n(R) → D([0, T ],Rd)
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as follows: for y = (y1, · · · , yn) ∈Md,n(R) with each yl ∈ Rd for 1 ≤ l ≤ n,

p(y) = p(y1, · · · , yn) = nX(ω) (8)

with ω any path in D([0, T ],Rd) satisfying ω(t1−) − ω(0) = y1, · · · , ω(tn−) − ω(tn−1−) = yn.
And we note pt(y) the path of p(y) stopped at time t.

The application p :Md,n(R)→
(
D([0, T ],Rd), ‖ · ‖∞

)
is locally Lipschitz continuous as shown

by the following lemma.

Lemma 3.1. Let y = (y1, · · · , yn) and y′ = (y′1, · · · , y′n) ∈ Md,n(R) with yl, y
′
l ∈ Rd for

1 ≤ l ≤ n. If max
1≤k≤n

|yk − y′k| ≤ η, then we have:

‖p(y)− p(y′)‖∞ ≤ C(y, η, σlip, T ) max
1≤k≤n

|yk − y′k|

for some constant C depending only on y, η, σlip and T .

Proof. As the two paths p(y) and p(y′) are stepwise constant by definition, it suffices to prove
the inequality at times (tj)0≤j≤n. We prove by induction that:

‖ptj (y)− ptj (y′)‖∞ ≤ C(y, η, σlip, T ) max
1≤k≤j

|yk − y′k| (9)

with some constant C which depends only on y, η, σlip and T .

For j = 0, this is clearly the case as p(y)(0) = p(y′)(0) = x0. Assume that (9) is verified for
some 0 ≤ j ≤ n− 1, consider now ‖ptj+1

(y)− ptj+1
(y′)‖∞, we have:

p(y)(tj+1) = p(y)(tj) + σ(tj , ptj (y))yj+1

and
p(y′)(tj+1) = p(y′)(tj) + σ(tj , ptj (y′))y′j+1.

Thus

|p(y)(tj+1)− p(y′)(tj+1)|
≤ |p(y)(tj)− p(y′)(tj)|+ ‖σ(tj , ptj (y))‖ · |yj+1 − y′j+1|+ ‖σ(tj , ptj (y))− σ(tj , ptj (y′))‖ · |y′j+1|
≤ C(y, η, σlip, T ) max

1≤k≤j
|yk − y′k|+

(
‖σ(0, 0̄)‖+ σlip(tj + ‖ptj (y))‖∞)

)
|yj+1 − y′j+1|

+σlipC(y, η, σlip, T ) max
1≤k≤j

|yk − y′k|(|yj+1|+ |yj+1 − y′j+1|)

≤ C ′(y, η, σlip, T ) max
1≤k≤j+1

|yk − y′k|

where 0̄ is the path which takes constant value 0. And consequently we have:

‖ptj+1(y)− ptj+1(y′)‖∞ ≤ C(y, η, σlip, T ) max
1≤k≤j+1

|yk − y′k|

for some different constant C depending only on y, η, σlip and T . And we conclude by induction.
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3.2 Strong convergence

To simplify the notations, nXT (WT ) will be noted simply nXT in the following. The following
result, which gives a uniform estimate of the discretization error, XT − nXT extends similar
results known in the Markovian case [13, 29, 20] to the path-dependent SDE (2):

Proposition 3.2. Under Assumption 1 we have the following estimate in L2p for the strong
error of the piecewise constant Euler-Maruyama scheme:

E

(
sup

s∈[0,T ]

‖X(s)− nX(s)‖2p
)
≤ C(x0, p, T, σlip)

√
1 + log n

n
, ∀p ≥ 1

with C a constant depending only on x0, p, T and σlip.

Proof. The idea is to construct a ’Brownian interpolation’ nX̂T of the Euler scheme nXT :

nX̂(s) = x0 +

∫ s

0

σ
(
u, nXu

)
dW (u)

where u =
⌊u
δ

⌋
· δ is the largest subdivision point which is smaller or equal to u.

Clearly the process nX̂T is a continuous martingale and ‖ sup
s∈[0,T ]

|X(s) − nX(s)|‖2p can be

controlled by the sum of the two following terms:

‖ sup
s∈[0,T ]

|X(s)− nX(s)|‖2p ≤ ‖ sup
s∈[0,T ]

|X(s)− nX̂(s)|‖2p + ‖ sup
s∈[0,T ]

|nX̂(s)− nX(s)|‖2p (10)

We start with the term ‖ sup
s∈[0,T ]

|X(s)−nX̂(s)|‖2p. Using the Burkholder-Davis-Gundy inequality

and Hölder’s inequality, we have

E‖XT − nX̂T ‖2p∞ ≤ C(p) E

[∫ T

0

∥∥σ(s,Xs)− σ(s, nXs)
∥∥2 ds]p

≤ C(p, T ) E

[∫ T

0

∥∥σ(s,Xs)− σ(s, nXs)
∥∥2p ds]

≤ C(p, T, σlip) E

[∫ T

0

(
(s− s)2p + ‖Xs − nXs‖2p∞

)
ds

]

≤ C(p, T, σlip)

(
1

n2p
+

∫ T

0

E‖Xs − nXs‖2p∞ ds

)
The constants may differ from one line to another, and we have used nXs = nXs as nX is
piecewise constant.

Consider now the second term ‖ sup
s∈[0,T ]

|nX̂(s)− nX(s)|‖2p. Noting that:

nX̂(s)− nX(s) = nX̂(s)− nX̂(s) = σ
(
s, nXs

)
(W (s)−W (s)),

11



we have
‖nX̂T − nXT ‖∞ ≤ C(σlip, T )(1 + ‖nXT ‖∞) sup

s∈[0,T ]

|W (s)−W (s)|

and

E‖nX̂T − nXT ‖2p∞ ≤ C(σlip, T )2p E

[
(1 + ‖nXT ‖∞) sup

s∈[0,T ]

|W (s)−W (s)|

]2p
.

By the Cauchy-Schwarz inequality, we have:

E‖nX̂T − nXT ‖2p∞ ≤ C(p, σlip, T )

(
1 +

√
E‖nXT ‖4p∞

)√
E sup
s∈[0,T ]

|W (s)−W (s)|4p

We will make use of the following result:

∀p > 0, ‖ sup
s∈[0,T ]

|W (s)−W (s)|‖p ≤ C(W,p)

√
T

n
(1 + log n)

which results from the following lemma:

Lemma 3.2. Let Y1, · · · , Yn be non-negative random variables with the same distribution sat-
isfying E

(
eλY1

)
<∞ for some λ > 0. Then we have:

∀p > 0, ‖max(Y1, · · · , Yn)‖p ≤
1

λ
(log n+ C(p, Y1, λ))

We have thus: √
E sup
s∈[0,T ]

|W (s)−W (s)|4p ≤ C(p, T )

(
1 + log n

n

)p
(11)

Furthermore, using again the Burkholder-Davis-Gundy inequality, we have:

E‖nXT ‖4p∞ ≤ E‖nX̂T ‖4p∞

≤ C(p)

x4p0 + E

(∫ T

0

∥∥σ(s, nXs)
∥∥2 ds)2p


≤ C(p, x0, T )

(
1 +

∫ T

0

E
∥∥σ(s, nXs)

∥∥4p ds)

≤ C(p, x0, T, σlip)

(
1 +

∫ T

0

E‖nXs‖4p∞ds

)

We deduce from Gronwall’s inequality that E‖nXT ‖4p∞ is bounded by a constant which de-
pends only on p, x0, T and σlip.

Combining this result with (11), we get:

E‖nX̂T − nXT ‖2p∞ ≤ C(x0, p, T, σlip)

(
1 + log n

n

)p
12



Finally (10) becomes:

E‖XT − nXT ‖2p∞
≤ C(p)

(
E‖XT − nX̂T ‖2p∞ + E‖nX̂T − nXT ‖2p∞

)
≤ C(x0, p, T, σlip)

((
1 + log n

n

)p
+

∫ T

0

E‖Xs − nXs‖2p∞ds

)
And we conclude by Gronwall’s inequality.

Corollary 3.1. Under Assumption 1,

∀α ∈ [0,
1

2
), nα‖XT − nXT ‖∞ −→

n→∞
0, P−a.s.

Proof. Let α ∈ [0,
1

2
). For a p large enough, by Proposition 3.2, we have:

E

∑
n≥1

n2pα‖XT − nXT ‖2p∞

 <∞
Thus ∑

n≥1

n2pα‖XT − nXT ‖2p∞ <∞, P−a.s.

and
nα‖XT − nXT ‖∞ −→

n→∞
0, P−a.s.

4 Smooth functional approximations for martingales

Let g : D([0, T ],Rd) −→ R be a functional which satisfies the following condition:

Assumption 3. g : (D([0, T ],Rd), ‖ · ‖∞) −→ R is continuous with polynomial growth:

∃q ∈ N,∃C > 0,∀ω ∈ D([0, T ],Rd), |g(ω)| ≤ C (1 + ‖ω‖q∞)

and consider the (square-integrable) martingale

Y (t) = E
[
g(XT )|FXt

]
= E

[
g(XT )|FWt

]
.

Y may be represented as a non-anticipative functional of X (or W ):

Y (t) = G(t,Xt) = F (t,Wt)

where the functionals F,G are square-integrable but may not have any smoothness property a
priori. By Proposition 2.3 we have:

g(XT ) = Y (T ) = Y (t) +

∫ T

t

∇XY (s) · dX(s) = Y (t) +

∫ T

t

∇WY (s) · dW (s) P−a.s.

13



where ∇XY (resp. ∇WY ) is the weak vertical derivative of Y with respect to X (resp. W ). The
two representations are related [4, Theorem 4.19] by the equality

t(∇XY (s))σ(s,Xs) = t(∇WY (s))

outside an evanescent set. So if one of them is computable, the other one is computable as well.
However in general neither G nor F is a smooth functional (for example ∈ C1,2

loc,r(ΛT )) so neither
of the two weak derivatives may be computed directly as a pathwise directional derivative.

The main idea is to approximate the martingale Y by a sequence of smooth martingales

nY which admit a functional representation nY (s) = Fn(s,Ws) with Fn ∈ C1,2
loc,r(ΛT ), regular

enough to apply the functional Itô formula. Then by the functional Itô formula, we have:∫ T

t

∇ωFn(s,Ws) · dW (s) = nY (T )− nY (t) −→
n→∞

Y (T )− Y (t) =

∫ T

t

∇XY (s) · dX(s)

One can then use the following estimator for ∇XY :

Zn(s) = t
(
σ−1(s,Xs)

)
∇ωFn(s,Ws),

where the vertical derivative ∇ωFn(s,Ws) = (∂iFn(s,Ws), 1 ≤ i ≤ d) may be computed as a
pathwise derivative

∂iFn(s,Ws) = lim
h→0

Fn(s,Ws + hei1[s,T ])− Fn(s,Ws)

h
,

yielding a concrete procedure for computing the estimator.

We will show in this section that the familiar weak Euler approximation provides a systematic
way of constructing such smooth functional approximations in the sense of Definition 7.

Define the concatenation of two càdlàg paths ω, ω′ ∈ D([0, T ],Rd) at time s ∈ [0, T ], which
we note ω ⊕

t
ω′, as the following càdlàg path on [0, T ]:

ω ⊕
s
ω′ = ωs ⊕

s
ω′ =

{
ω(u) u ∈ [0, s)

ω(s) + ω′(u)− ω′(s) u ∈ [s, T ]

Observe that:
∀z ∈ Rd, ωzs ⊕

s
ω′ = (ωs ⊕

s
ω′) + z1[s,T ].

Definition 9 (Weak Euler approximation). We define the (level-n) weak Euler approximation
of F as the functional Fn defined by

Fn(s, ωs) = E
[
g(nX(ωs ⊕

s
WT ))

]
(12)

Applying this functional to the path of the Wiener process W , we obtain a (FWt )-martingale:

nY (s) = Fn(s,Ws) = E
[
g(nX(WT ))|FWs

]
.
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Observe that, using independence of increments:

nY (s) = E
[
g(nX(WT ))|FWs

]
= E

[
g(nX(Ws ⊕

s
WT ))|FWs

]
= E

[
g(nX(Ws ⊕

s
BT ))|FWs

]
where B is any Wiener process independent from W . We have thus: nY (s) = Fn(s,Ws).

Theorem 4.1. Under Assumptions 1, 2 and 3, the functional Fn defined in (12) is horizontally
differentiable and infinitely vertically differentiable.

Proof. Let (s, ω) ∈ ΛT with tk ≤ s < tk+1 for some 0 ≤ k ≤ n − 1. We start with the vertical
differentiability of Fn at (s, ω), which is equivalent to the differentiability at 0 of the following
map:

v(z) = Fn(s, ωzs ) = E
[
g(nX(ωzs ⊕

s
BT ))

]
, z ∈ Rd

The main idea of the proof is to absorb z in the density function of Gaussian variables when
taking the expectation, which smoothens the dependence of v on z.

As we have already shown, nX(ωzs ⊕
s
BT ) depends only on (ωzs ⊕

s
BT )(t1−) − (ωzs ⊕

s
BT )(0),

· · · , (ωzs ⊕
s
BT )(tn−) − (ωzs ⊕

s
BT )(tn−1−), which are all explicit using the definition of the

concatenation. For j < k, we have:

(ωzs ⊕
s
BT )(tj+1−)− (ωzs ⊕

s
BT )(tj−) = ω(tj+1−)− ω(tj−)

In the case where j = k, we have:

(ωzs ⊕
s
BT )(tk+1−)− (ωzs ⊕

s
BT )(tk−)

= B(tk+1)−B(s) + ω(s) + z − ω(tk−)

= B(tk+1)−B(s) + z + ω(s)− ω(tk−)

And for j > k, we have:

(ωzs ⊕
s
BT )(tj+1−)− (ωzs ⊕

s
BT )(tj−)

= B(tj+1)−B(s) + ω(s) + z − (B(tj)−B(s) + ω(s) + z)

= B(tj+1)−B(tj)

Thus we have:

nX(ωzs ⊕
s
BT ) = p

(
ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−), B(tk+1)−B(s) + z + ω(s)− ω(tk−),

B(tk+2)−B(tk+1), · · · , B(tn)−B(tn−1)
)

where p :Md,n(R)→ D([0, T ],Rd) is the map defined by (8).

Observe from the previous equation that, for a fixed z, the value of nX(tk+1, ω
z
s ⊕
s
BT ) as

a random variable depends only on a finite number of Gaussian variables: B(tk+1) − B(s),
B(tk+2)−B(tk+1), · · · , B(tj)−B(tj−1). Since the joint distribution of these Gaussian variables
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is explicit, v(z) = E
[
g(nXT (ωzs ⊕

s
BT ))

]
can be computed explicitly as an integral in finite

dimension.

Let y = (y1, · · · , yn−k) ∈Md,n−k(R) with each yl ∈ Rd for 1 ≤ l ≤ n− k. We have:

v(z) = E
[
g(nXT (ωzs ⊕

s
BT ))

]
= E

[
g
(
p(ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−),

B(tk+1)−B(s) + z + ω(s)− ω(tk−), B(tk+2)−B(tk+1), · · · , B(tn)−B(tn−1)
)]

=

∫
Rd×(n−k)

g
(
p(ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−), y1 + z + ω(s)− ω(tk−),

y2, · · · , yn−k)
)

Φ(y1, tk+1 − s)
n−k∏
l=2

Φ(yl, δ)dy1dy2 · · · dyn−k

=

∫
Rd×(n−k)

g
(
p(ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−), y1 + ω(s)− ω(tk−),

y2, · · · , yn−k)
)

Φ(y1 − z, tk+1 − s)
n−k∏
l=2

Φ(yl, δ)dy1dy2 · · · dyn−k (13)

with

Φ(x, t) = (2πt)−
d
2 exp

(
−|x|

2

2t

)
, x ∈ Rd

the density function of a d-dimensional Gaussian variable with covariance matrix tId.

Since the only term which depends on z in the integrand of (13) is Φ(y1− z, tk+1− s), which
is a smooth function of z, thus v is differentiable at all z ∈ Rd, in particular at 0. Hence Fn is
vertically differentiable at (s, ω) ∈ ΛT with: for 1 ≤ i ≤ d,

∂iFn(s, ω) =

∫
Rd×(n−k)

g
(
p(ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−), y1 + ω(s)− ω(tk−),

y2, · · · , yn−k)
) y1 · ei
tk+1 − s

Φ(y1, tk+1 − s)
n−k∏
l=2

Φ(yl, δ)dy1dy2 · · · dyn−k

= E
[
g(nX(ωs ⊕

s
BT ))

(B(tk+1)−B(s)) · ei
tk+1 − s

]
(14)

Remark that when s tends towards tk+1, ∇ωFn(s, ω) may tend to infinity because of the term
tk+1 − s in the denominator. However in the interval [tk, tk+1), ∇ωFn(s, ω) behaves well and is
locally bounded.

Iterating this procedure, one can show that Fn is vertically differentiable to any order. For
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example, we have: for z ∈ Rd,

∂iFn(s, ωzs ) =

∫
Rd×(n−k)

g
(
p(ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−), y1 + z + ω(s)− ω(tk−),

y2, · · · , yn−k)
) y1 · ei
tk+1 − s

Φ(y1, tk+1 − s)
n−k∏
l=2

Φ(yl, δ)dy1dy2 · · · dyn−k

Thus we have:

∂2i Fn(s, ω) =

∫
Rd×(n−k)

g
(
p(ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−), y1 + ω(s)− ω(tk−), y2, · · · , yn−k)

)
(

(y1 · ei)2

(tk+1 − s)2
− 1

tk+1 − s

)
Φ(y1, tk+1 − s)

n−k∏
l=2

Φ(yl, δ)dy1dy2 · · · dyn−k

And for i 6= j:

∂ijFn(s, ω) =

∫
Rd×(n−k)

g
(
p(ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−), y1 + ω(s)− ω(tk−),

y2, · · · , yn−k)
) (y1 · ei)(y1 · ej)

(tk+1 − s)2
Φ(y1, tk+1 − s)

n−k∏
l=2

Φ(yl, δ)dy1 · · · dyn−k

The horizontal differentiability of Fn can be proved similarly. Consider the following map:

w(h) = Fn(s+ h, ωs) = E
[
g(nX(ωs ⊕

s+h
BT ))

]
, h > 0

The objective is to show that w is differentiable at 0+.

We assume again that tk ≤ s < tk+1 for some 0 ≤ k ≤ n − 1, and we take an h > 0 small
enough such that s + h < tk+1. Using the same argument and the fact that ωs(s + h) = ω(s),
we have:

nX(ωs ⊕
s+h

BT ) = p(ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−), B(tk+1)−B(s+ h) + ω(s)− ω(tk−),

B(tk+2)−B(tk+1), · · · , B(tn)−B(tn−1))

Let y = (y1, · · · , yn−k) ∈ Md,n−k(R) with each yl ∈ Rd for 1 ≤ l ≤ n − k. We calculate
explicitly w(h):

w(h) = E
[
g(nXT (ωs ⊕

s+h
BT ))

]
= E

[
g
(
p(ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−), B(tk+1)−B(s+ h) + ω(s)− ω(tk−),

B(tk+2)−B(tk+1), · · · , B(tn)−B(tn−1))
)]

=

∫
Rd×(n−k)

g
(
p(ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−), y1 + ω(s)− ω(tk−),

y2, · · · , yn)
)

Φ(y1, tk+1 − s− h)

n−k∏
l=2

Φ(yl, δ)dy1dy2 · · · dyn−k (15)
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Again the only term which depends on h in the integrand of (15) is Φ(y1, tk+1−s−h), which
is a smooth function of h. Therefore Fn is horizontally differentiable with:

DFn(s, ωs) =

∫
Rd×(n−k)

g
(
p(ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−), y1 + ω(s)− ω(tk−),

y2, · · · , yn)
)( d

2(tk+1 − s)
− |y1|2

2(tk+1 − s)2

)
Φ(y1, tk+1 − s)

n−k∏
l=2

Φ(yl, δ)dy1 · · · dyn−k

with

Φ(x, t) = (2πt)−
d
2 exp

(
−|x|

2

2t

)
, x ∈ Rd

The following result shows that the functional derivatives of Fn satisfy the necessary regularity
conditions for applying the functional Itô formula to Fn:

Theorem 4.2. Under Assumptions 1, 2 and 3, Fn ∈ C1,2
loc,r(ΛT ).

Proof. We have already shown in Theorem 4.1 that Fn is horizontally differentiable and twice
vertically differentiable. Using the expressions of DFn, ∇ωFn and ∇2

ωFn obtained in the proof
of 4.1 and the assumption that g has at most polynomial growth with respect to ‖ · ‖∞, we
observe that in each interval [tk, tk+1) with 0 ≤ k ≤ n − 1, DFn, ∇ωFn and ∇2

ωFn satisfy the
boundedness-preserving property. We now prove that Fn is left-continuous, ∇ωFn and ∇2

ωFn
are right-continuous, and DFn is continuous at fixed times.

Let s ∈ [tk, tk+1) for some 0 ≤ k ≤ n − 1 and ω ∈ D([0, T ],Rd). We first prove that Fn is
right-continuous at (s, ω), and is jointly continuous at (s, ω) for s ∈ (tk, tk+1). By definition of
joint-continuity (or right-continuous), we want to show that: ∀ε > 0,∃η > 0,∀(s′, ω′) ∈ ΛT (for
the right-continuity, we assume in addition that s′ > s),

d∞((s, ω), (s′, ω′)) < η)⇒ |Fn(s, ω)− Fn(s′, ω′)| < ε

Let (s′, ω′) ∈ ΛT (with s′ > s for the right-continuity). We assume that d∞((s, ω), (s′, ω′)) ≤
η with an η small enough such that s′ ∈ [tk, tk+1) (this is always possible as if s = tk, we are only
interested in the right-continuity, thus s′ > s). It suffices to prove that |Fn(s, ω)− Fn(s′, ω′)| ≤
C(s, ωs, η) with C(s, ωs, η) a quantity depending only on s, ωs and η, and C(s, ωs, η) −→

η→0
0.

We use the expression of Fn obtained in the proof of Theorem 4.1. Let y = (y1, · · · , yn−k) ∈
Md,n−k(R) with each yl ∈ Rd for 1 ≤ l ≤ n− k, we have:

Fn(s, ω) =

∫
Rd×(n−k)

g
(
p(ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−), y1 + ω(s)− ω(tk−),

y2, · · · , yn)
)

Φ(y1, tk+1 − s)
n−k∏
l=2

Φ(yl, δ)dy1dy2 · · · dyn−k
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and

Fn(s′, ω′) =

∫
Rd×(n−k)

g
(
p(ω′(t1−)− ω′(0), · · · , ω′(tk−)− ω′(tk−1−), y1 + ω′(s′)− ω′(tk−),

y2, · · · , yn)
)

Φ(y1, tk+1 − s′)
n−k∏
l=2

Φ(yl, δ)dy1dy2 · · · dyn−k

with

Φ(x, t) = (2πt)−
d
2 exp

(
−|x|

2

2t

)
, x ∈ Rd

To simplify the notations, we set:

p̃(ω, s, y) = p(ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−), y1 + ω(s)− ω(tk−), y2, · · · , yn)

and

p̃(ω′, s′, y) = p(ω′(t1−)− ω′(0), · · · , ω′(tk−)− ω′(tk−1−), y1 + ω′(s′)− ω′(tk−), y2, · · · , yn)

Similarly p̃t(·) will be the path of p̃(·) stopped at time t.

As ‖ωs − ωs′‖∞ ≤ η < δ, by Lemma 3.1, we have:

‖p̃(ω, s, y)− p̃(ω′, s′, y)‖∞ ≤ C(ωs, y, σlip, T )η

Actually we have the following better estimate of ‖p̃(ω, s, y)− p̃(ω′, s′, y)‖∞:

Lemma 4.1. We have:

‖p̃(ω, s, y)− p̃(ω′, s′, y)‖∞ ≤ C(ωs, σlip, T )

n−k∏
l=1

(1 + |yl|σlip)η

for some constant C which depends only on ωs, σlip and T .

Proof. By Lemma 3.1, we know already that:

‖p̃tk(ω, s, y)− p̃tk(ω′, s′, y)‖∞ ≤ C(ωs, σlip, T )η

Now we prove by induction that, for any k + 1 ≤ j ≤ n,

‖p̃tj (ω, s, y)− p̃tj (ω′, s′, y)‖∞ ≤ C(ωs, σlip, T )

j−k∏
l=1

(1 + |yl|σlip)η (16)

for some constant C which depends only on ωs, σlip and T .

Consider first the case where j = k + 1. We have:

p̃(ω, s, y)(tk+1) = p̃(ω, s, y)(tk) + σ (tk, p̃tk(ω, s, y)) (ω(s)− ω(tk−) + y1)

and
p̃(ω′, s′, y)(tk+1) = p̃(ω′, s′, y)(tk) + σ (tk, p̃tk(ω′, s′, y)) (ω′(s′)− ω′(tk−) + y1)
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As σ is Lipschitz continuous with respect to d∞, we have:

‖σ (tk, p̃tk(ω, s, y))− σ (tk, p̃tk(ω′, s′, y)) ‖ ≤ σlipC(ωs, σlip, T )η

In addition, we have |ω(s) − ω′(s′)| ≤ η and |ω(tk−) − ω′(tk−)| ≤ η as ‖ωs − ω′s′‖∞ ≤ η.
Thus we have:

|p̃(ω, s, y)(tk+1)− p̃(ω′, s′, y)(tk+1)|
≤ |p̃(ω, s, y)(tk)− p̃(ω′, s′, y)(tk)|+ ‖σ (tk, p̃tk(ω, s, y)) ‖2η + σlipC(ωs, σlip, T )η · (2‖ω′s′‖∞ + |y1|)
≤ C(ωs, σlip, T )η + C(σlip, T )(1 + ‖p̃tk(ω, s, y)‖∞)2η + σlipC(ωs, σlip, T )η · (2‖ωs‖∞ + 2η + |y1|)
≤ C ′(ωs, σlip, T )(1 + |y1|σlip)η

with C ′ a constant which depends only on ωs, σlip and T .

Assume now that (16) holds for some j ≥ k + 1. We have:

p̃(ω, s, y)(tj+1) = p̃(ω, s, y)(tj) + σ
(
tj , p̃tj (ω, s, y)

)
yj−k+1

and
p̃(ω′, s′, y)(tj+1) = p̃(ω′, s′, y)(tj) + σ

(
tj , p̃tj (ω′, s′, y)

)
yj−k+1

Thus

|p̃(ω, s, y)(tj+1)− p̃(ω′, s′, y)(tj+1)|
≤ |p̃(ω, s, y)(tj)− p̃(ω′, s′, y)(tj)|+ ‖σ

(
tj , p̃tj (ω, s, y)

)
− σ

(
tj , p̃tj (ω′, s′, y)

)
‖ · |yj−k+1|

≤ C(ωs, σlip, T )

j−k∏
l=1

(1 + |yl|σlip)η · (1 + |yj−k+1|σlip)

≤ C(ωs, σlip, T )

j−k+1∏
l=1

(1 + |yl|σlip)η

And we conclude by induction that

‖p̃(ω, s, y)− p̃(ω′, s′, y)‖∞ ≤ C(ωs, σlip, T )
n−k∏
l=1

(1 + |yl|σlip)η

for some constant C which depends only on ωs, σlip and T .

Now we can control the difference between Fn(s, ω) and Fn(s′, ω′).

|Fn(s, ω)− Fn(s′, ω′)|

≤
∫
Rd×(n−k)

|g(p̃(ω, s, y))Φ(y1, tk+1 − s)− g(p̃(ω′, s′, y))Φ(y1, tk+1 − s′)|
n−k∏
l=2

Φ(yl, δ)dy1dy2 · · · dyn−k

≤
∫
Rd×(n−k)

(
|g(p̃(ω, s, y))− g(p̃(ω′, s′, y))|Φ(y1, tk+1 − s′)

+|g(p̃(ω, s, y))| · |Φ(y1, tk+1 − s)− Φ(y1, tk+1 − s′)|
)
×
n−k∏
l=2

Φ(yl, δ)dy1dy2 · · · dyn−k (17)
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Observe that |Φ(y1, tk+1 − s)− Φ(y1, tk+1 − s′)| ≤ |s− s′| · ρ(y1, η) ≤ ρ(y1, η) · η with

ρ(y1, η) = sup
t∈[tk+1−s−η,δ]

|∂tΦ(y1, t)|

and we have:

ρ(y1, η) −→
η→0

sup
t∈[tk+1−s,δ]

|∂tΦ(y1, t)| = sup
t∈[tk+1−s,δ]

∣∣∣∣Φ(y1, t)

(
|y1|2

2t2
− d

2t

)∣∣∣∣ <∞
So the second part of (17) can be controlled by:∫
Rd×(n−k)

|g(p̃(ω, s, y))|·|Φ(y1, tk+1−s)−Φ(y1, tk+1−s′)|
n−k∏
l=2

Φ(yl, δ)dy1dy2 · · · dyn−k ≤ C(s, ωs, η)

with
C(s, ωs, η) −→

η→0
0.

For the first part of (17), we use the continuity of g and Lemma 4.1. As g is continuous at
p(ωs, y), we have:

|g(p̃(ω, s, y))− g(p̃(ω′, s′, y))| ≤ C(s, ωs, y, η)

with
C(s, ωs, y, η) −→

η→0
0

and
Φ(y1, tk+1 − s′) ≤ sup

t∈[tk+1−s−η,δ]
Φ(y1, t) <∞.

Thus the first part of (17) can also be bounded by C(s, ωs, η) with

C(s, ωs, η) −→
η→0

0.

We conclude that |Fn(s, ωs)− Fn(s′, ω′s′)| ≤ C(s, ωs, η) with C(s, ω, η) depending only on s, ωs
and η, and C(s, ωs, η) −→

η→0
0, which proves the right-continuity of Fn and the joint-continuity of

Fn at all (s, ω) ∈ ΛT for s 6= tk, 0 ≤ k ≤ n− 1.

The right-continuity of ∇ωFn, ∇2
ωFn and the continuity at fixed times of DFn can be deduced

as above using the expressions of ∇ωFn, ∇2
ωFn and DFn obtained in Theorem 4.1. Now it

remains to show that for 1 ≤ k ≤ n and ω ∈ D([0, T ],Rd), Fn is left-continuous at (tk, ω). Let
(s′, ω′) ∈ ΛT with s′ < tk such that d∞((tk, ω), (s′, ω′)) ≤ η. We choose an η small enough in
order that s′ ∈ [tk−1, tk), and we want to show that |Fn(tk, ω) − Fn(s′, ω′)| ≤ C(tk, ωtk , η) for
some C(tk, ωtk , η) depending only on tk, ωtk and η with C(tk, ωtk , η) −→

η→0
0.

We first decompose |Fn(tk, ω)− Fn(s′, ω′)| into two terms:

|Fn(tk, ω)− Fn(s′, ω′)| ≤ |Fn(tk, ω)− Fn(s′, ωs′)|+ |Fn(s′, ωs′)− Fn(s′, ω′)|

For the second part, as Fn is continuous at fixed time s′ by the first part of the proof, and
‖ωs′ − ω′s′‖∞ ≤ η, we have |Fn(s′, ωs′)− Fn(s′, ω′)| ≤ C(tk, ωtk , η) with C(tk, ωtk , η) −→

η→0
0.
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For the first part |Fn(tk, ω) − Fn(s′, ωs′)|, the difficulty is that s′ and tk no longer lie in
the same interval, thus we need to perform one more integration for Fn(s′, ωs′) compared to
Fn(tk, ω). Let y = (y1, · · · , yn−k) ∈ Md,n−k(R) with each yl ∈ Rd for 1 ≤ l ≤ n − k, and
y′ ∈ Rd. Using again the expression of Fn we have obtained in the proof of Theorem 4.1, we
have:

Fn(tk, ω) =

∫
Rd×(n−k)

g
(
p(ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−), y1 + ω(tk)− ω(tk−),

y2, · · · , yn−k)
) n−k∏
l=1

Φ(yl, δ)dy1dy2 · · · dyn−k

and

Fn(s′, ωs′) =

∫
Rd×(n−k+1)

g
(
p(ω(t1−)− ω(0), · · · , y′ + ω(s′)− ω(tk−1−), y1, · · · , yn)

)
Φ(y′, tk − s′)

n−k∏
l=1

Φ(yl, δ)dy
′dy1 · · · dyn−k

=

∫
Rd

(∫
Rd×(n−k)

g(p(ω(t1−)− ω(0), · · · , y′ + ω(s′)− ω(tk−1−), y1, · · · , yn))

n−k∏
l=1

Φ(yl, δ)dy1 · · · dyn−k
)

Φ(y′, tk − s′)dy′

with

Φ(x, t) = (2πt)−
d
2 exp

(
−|x|

2

2t

)
, x ∈ Rd

We now define ζ : Rd → R by: for y′ ∈ Rd,

ζ(y′) =

∫
Rd×(n−k)

g(p(ω(t1−)−ω(0), · · · , y′+ω(s′)−ω(tk−1−), y1, · · · , yn))

n−k∏
l=1

Φ(yl, δ)dy1 · · · dyn−k

By Lemma 3.1 and the continuity of g with respect to ‖ · ‖∞, the map

y′ 7→ g(p(ω(t1−)− ω(0), · · · , y′ + ω(s′)− ω(tk−1−), y1, · · · , yn))

is continuous. As g has at most polynomial growth with respect to ‖ · ‖∞, by the dominated
convergence theorem, ζ is also continuous. Moreover, ζ has at most polynomial growth. And as
tk − s′ ≤ η, we have

Fn(s′, ωs′) =

∫
Rd

ζ(y′)Φ(y′, tk − s′)dy′

=

∫
Rd

(ζ(y′)− ζ(0))Φ(y′, tk − s′)dy′ + ζ(0).

with ∣∣∣∣∫
Rd

(ζ(y′)− ζ(0))Φ(y′, tk − s′)dy′
∣∣∣∣ ≤ C(tk, ωtk , η)
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and C(tk, ωtk , η) −→
η→0

0.

It remains to control the difference between Fn(tk, ω) and ζ(0). We remark that:

ζ(0) =

∫
Rd×(n−k)

g(p(ω(t1−)− ω(0), · · · , ω(s′)− ω(tk−1−), y1, · · · , yn))

n−k∏
l=1

Φ(yl, δ)dy1 · · · dyn−k

= E
[
g(nXT (ωs′ ⊕

tk
BT ))

]
= Fn(tk, ωs′)

As ‖ωs′ − ωtk‖∞ ≤ ‖ωs′ − ω′s′‖∞ + ‖ωtk − ω′s′‖∞ ≤ 2η, again by the continuity of Fn at fixed
time tk established in the first part of the proof, we have:

|Fn(tk, ω)− ζ(0)| ≤ C(tk, ωtk , η)

with C(tk, ωtk , η) −→
η→0

0.

We conclude that
|Fn(tk, ω)− Fn(s′, ω′)| ≤ C(tk, ωtk , η)

with C(tk, ωtk , η) −→
η→0

0, which proves the left-continuity of Fn at (tk, ω).

Corollary 4.1. Under Assumptions 1, 2 and 3, for any t ∈ [0, T ) we have:

Fn(T,WT )− Fn(t,Wt) =

∫ T

t

∇ωFn(s,Ws) · dW (s), P− a.s. (18)

Proof. As Fn ∈ C1,2
loc,r(ΛT ), we can apply the functional Itô formula Proposition 2.2 and we

remark that the finite variation term is zero as nY (s) = Fn(s,Ws) is a martingale.

Remark 4.1. We can also verify using directly the expressions we have obtained in Theorem 4.1
for DFn and ∇2

ωFn that the finite variation terms in (18) cancel each other. By the functional

Itô formula, the finite variation term in (18) equals to DFn(s,Ws)+
1

2
tr(∇2

ωFn(s,Ws)). And for

(s, ω) ∈ ΛT with s ∈ [tk, tk+1), we have:

tr
(
∇2
ωFn(s, ω)

)
=

d∑
i=1

∂2i Fn(s, ω)

=

∫
Rd×(n−k)

g(p(ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−), y1 + ω(s)− ω(tk−), y2, · · · , yn))

d∑
i=1

(
(y1 · ei)2

(tk+1 − s)2
− 1

tk+1 − s

)
Φ(y1, tk+1 − s)

n−k∏
l=2

Φ(yl, δ)dy1 · · · dyn−k

=

∫
Rd×(n−k)

g(p(ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−), y1 + ω(s)− ω(tk−), y2, · · · , yn))(
|y1|2

(tk+1 − s)2
− d

tk+1 − s

)
Φ(y1, tk+1 − s)

n−k∏
l=2

Φ(yl, δ)dy1 · · · dyn−k

= −2DFn(s, ωs)
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which confirms that Fn is a solution of the path-dependent Kolmogorov equation [4, Sec. 5]:

DFn(s,Ws) +
1

2
tr(∇2

ωFn(s,Ws)) = 0.

5 Convergence and error analysis

In this section, we analyze the convergence rate of our approximation method. After having
constructed a sequence of smooth functionals Fn ( Theorem 4.1 and Theorem 4.2), we can now
approximate ∇XY by:

Zn(s) = t(σ−1(s,Xs))∇ωFn(s,Ws)

which, in contrast to the weak derivative∇XY , is computable as a pathwise directional derivative.
In practice, ∇ωFn(s,Ws) can be computed numerically via a finite difference method or a Monte-
Carlo method using the expression (14) of ∇ωFn.

For t ∈ [0, T ], the quantity we are interested in is the integral of ∇XY − Zn along the path
of X between t and T , i.e.∫ T

t

(∇XY − Zn) · dX =

∫ T

t

∇XY (s) · dX(s)−
∫ T

t

∇ωFn(s,Ws) · dW (s)

By the martingale representation formula Proposition 2.3 and Corollary 4.1, we have P-a.s.∫ T

t

(∇XY − Zn) · dX

= Y (T )− Y (t)− (nY (T )− nY (t))

= g(XT )− g(nXT (WT ))− E
[
g(XT )− g(nXT (Wt ⊕

t
BT ))|FXt

]
where nX is the path of the piecewise constant Euler-Maruyama scheme defined in (7). Remark
that by definition of the concatenation operation and using the fact that B and W are two
independent Brownian motions, we have:

E
[
g(nXT (Wt ⊕

t
BT ))|FXt

]
= E

[
g(nXT (Wt ⊕

t
WT ))|FXt

]
= E

[
g(nXT (WT )|FXt

]
Corollary 5.1. Under Assumptions 1, 2 and 3,

∀t ∈ [0, T ],

∫ T

t

(∇XY − Zn) · dX −→
n→∞

0, P−a.s.

Proof. We have already shown that:∫ T

t

(∇XY − Zn) · dX = g(XT )− g(nXT )− E
[
g(XT )− g(nXT )|FXt

]
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As g is continuous with respect to ‖ · ‖∞, by Corollary 3.1, we have:

g(XT )− g(nXT ) −→
n→∞

0, P−a.s.

Moreover, g has at most polynomial growth with respect to ‖ · ‖∞, which, together with Propo-
sition 3.2, ensures the uniform integrability of g(nXT ). And thus

E
[
g(XT )− g(nXT )|FXt

]
−→
n→∞

0, P−a.s.

Corollary 5.2. Under Assumptions 1, 2 and 3,

∀t ∈ [0, T ],

∥∥∥∥∥
∫ T

t

(∇XY − Zn) · dX

∥∥∥∥∥
2p

−→
n→∞

0, ∀p ≥ 1

Under a slightly stronger assumption on g we can obtain a rate of convergence for our ap-
proximation:

Theorem 5.1 (Rate of convergence). Let p ≥ 1 and assume g : (D([0, T ],Rd), ‖.‖∞) → R is
Lipschitz-continuous:

∃glip > 0, ∀ω, ω′ ∈ D([0, T ],Rd), |g(ω)− g(ω′)| ≤ glip sup |ω − ω′| .

Under Assumptions 1, 2 the L2p-error of the approximation Zn of ∇XY along the path of X
between t and T is bounded by:

E

∥∥∥∥∥
∫ T

t

(∇XY − Zn) · dX

∥∥∥∥∥
2p
 ≤ C(x0, p, T, σlip, glip)

√
1 + log n

n
, ∀p ≥ 1

where the constant C depends only on x0, p, T, σlip and glip. In particular:

∀α ∈ [0,
1

2
), nα

(∫ T

t

(∇XY − Zn) · dX

)
−→
n→∞

0, P−a.s.

Proof. This result is a consequence of Proposition 3.2 since∥∥∥∥∥
∫ T

t

(∇XY (s)− Zn(s)) · dX(s)

∥∥∥∥∥
2p

≤ ‖g(XT )− g(nXT )‖2p + ‖E[g(XT )− g(nXT )|FXt ]‖2p

≤ 2‖g(XT )− g(nXT )‖2p
≤ 2glip‖ sup

s∈[0,T ]

|X(s)− nX(s)|‖2p.

The following example how our result may be used to construct explicit approximations with
cotnroled convergence rates for conditional expectation of non-smooth functionals:
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Example 5.1. Let
g(ω) = ψ(ω(T ), sup

t∈[0,T ]

‖ω(t)‖)

where ψ ∈ C0(Rd × R+,R) is a continuous function with polynomial growth, and set Y (t) =
E[g(XT )|Ft]. Then g satisfies Assumption 3, and our approximation method applies. Moreover,
if ψ is Lipschitz-continuous, then Theorem 5.1 yields an explicit control of the approximation
error with a 1/

√
n bound.

6 Comparison with approaches based on the Malliavin cal-
culus

The vertical derivative ∇XY (t) which appears in the martingale representation formula may be
viewed as a ’sensitivity’ of the martingale Y to the initial condition X(t). Thus, our method is
related to methods previously proposed for ’sensitivity analysis’ of Wiener functionals.

One can roughly classify such methods into two categories [2]: methods that differentiate
paths and methods that differentiate densities. When the density of the functional is known,
the sensitivity of an expectation with respect to some parameter is to differentiate directly the
density function with respect to the parameter. However, as this is almost never the case in a
general diffusion model, let alone a non-Markovian model, alternative methods, are used: these
consist of differentiating either the functional g or the process with respect to the parameter
under the expectation sign, then estimating the expectation with the Monte-Carlo method. To
differentiate process, one required the existence of the so-called first variation process, which
requires the regularity of the coefficients of the SDE satisfied by X.

Sensitivity estimators for non-smooth functionals may be computed using Malliavin calculus:
this approach, proposed by Fournié et al. [17] and developed by Cvitanic, Ma and Zhang [8],
Fournié et al. [16], Gobet and Kohatsu-Higa [18], Kohatsu-Higa and Montero [24], Davis and
Johansson [10] and others, uses the Malliavin integration-by-parts formula on Wiener space in
the case where g is not smooth. These methods require quite demanding regularity assumptions
(differentiability and ellipticity condition on σ for example) on the coefficients of the initial SDE
satisfied by X.

By contrast, the approximation method presented here allows for any continuous functional g
with polynomial growth and requires only mild assumptions on σ: Lipschitz continuity and non-
singularity. It is thus applicable to a wider range of examples than the Malliavin approach, while
being arguably simpler from a computational viewpoint. Our method involves discretizing then
differentiating, as opposed to the Malliavin approach which involves differentiating in the Malli-
avin sense, then discretizing the tangent process which, as argued in [2], has its computational
advantages.

In our setting, we have Fn ∈ C1,2
loc,r(ΛT ) which is sufficient for obtaining an approximation of

martingale representations via the functional Itô formula. One can ask if the Euler approximation

nX can also be used to obtain a Clark-Haussmann-Ocone type formula, and in this case, whether
the pathwise vertical derivative ∇ωFn(t,Wt) leads to the same representation as the Clark-
Haussmann-Ocone formula.
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For n ∈ N, define Hn = g(nXT (WT )) with nX the weak piecewise constant Euler-Maruyama
scheme defined by (7). By the definition of nX, the random variable Hn actually depends only
on a finite number of Gaussian variables: W (t1), W (t2)−W (t1), · · · , W (tn)−W (tn−1), thus it
can be written as:

Hn = hn(W (t1),W (t2)−W (t1), · · · ,W (tn)−W (tn−1))

with hn :Md,n(R)→ R (hn is actually g ◦ p with p defined by (8)).

Clearly if hn is a smooth function with polynomial growth, then Hn ∈ D1,2 with Malliavin
derivative [26]:

DtHn = (DktHn, 1 ≤ k ≤ d) ∈ Rd

with

DktHn =

n−1∑
j=0

∂kjhn(W (t1),W (t2)−W (t1), · · · ,W (tn)−W (tn−1))1[tj ,tj+1)(t), t ∈ [0, T )

In this case, assume that t ∈ [tj , tj+1) for some 0 ≤ j ≤ n− 1, we have: for 1 ≤ k ≤ d,

E
[
DktHn|FWt

]
= E

[
∂kjhn(W (t1),W (t2)−W (t1), · · · ,W (tn)−W (tn−1))|FWt

]
= E

[
∂kjhn(ω(t1), ω(t2)− ω(t1), · · · , ω(tj)− ω(tj−1),W (tj+1)−W (t) + ω(t)− ω(tj),

W (tj+2)−W (tj+1), · · · ,W (tn)−W (tn−1))
]
|ωt=Wt

= E
[ ∂
∂h
hn(ω(t1), ω(t2)− ω(t1), · · · , ω(tj)− ω(tj−1),W (tj+1)−W (t) + ω(t)− ω(tj) + hek,

W (tj+2)−W (tj+1), · · · ,W (tn)−W (tn−1))|h=0

]
|ωt=Wt

=
∂

∂h

(
E
[
hn(ω(t1), ω(t2)− ω(t1), · · · , ω(tj)− ω(tj−1),W (tj+1)−W (t) + ω(t)− ω(tj) + hek,

W (tj+2)−W (tj+1), · · · ,W (tn)−W (tn−1))
]
ωt=Wt

)
|h=0

which is none other than

∂kFn(t,Wt) = lim
h→0

Fn(t,Wt + hek1[t,T ])− Fn(t,Wt)

h
.

So in the case where hn are smooth, our method provides the same result as given by the Clark-
Haussmann-Ocone formula applied to hn. However, in our framework, as the functional g is only
assumed to be continuous with polynomial growth, the function hn may fail to be differentiable.
So, even in the cylindrical case, it is not clear whether the random variable Hn is differentiable
in the Malliavin sense, and even if it is the case, it is difficult to obtain an explicit form for
E
[
DtHn|FWt

]
using the Malliavin calculus.

The reason our approximation method works even in the cases where Hn is not differentiable
in the Malliavin sense is that our regularity assumptions are not on the terminal variable Hn,
but on the martingale nY (t) = E

[
Hn|FWt

]
; as shown in Section 4, nY is differentiable in the

pathwise sense even when Hn is not differentiable in the Malliavin sense.
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