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Designing Fresnel microlenses for focusing astigmatic

multi-Gaussian beams by using fractional order

Fourier transforms

A Patiño1,2, P-E Durand2, É Fogret2 and P Pellat-Finet2

1 Universidad Technológica de Bolivar, Cartagena de Indias, Colombia
2 Laboratoire de mathématiques et applications des mathématiques, Université de Bretagne
Sud, B P 92116, 56321 Lorient cedex, France

E-mail: alberto.patino-vanegas@univ-ubs.fr

Abstract. According to a scalar theory of diffraction, light propagation can be expressed by
two-dimensional fractional order Fourier transforms. Since the fractional Fourier transform
of a chirp function is a Dirac distribution, focusing a light beam is optically achieved by
using a diffractive screen whose transmission function is a two–dimensional chirp function.
This property is applied to designing Fresnel microlenses, and the orders of the involved
Fourier fractional transforms depend on diffraction distances as well as on emitter and receiver
radii of curvature. If the emitter is astigmatic (with two principal radii of curvature), the
diffraction phenomenon involves two one-dimensional fractional Fourier transforms whose orders
are different. This degree of freedom allows us to design microlenses that can focus astigmatic
Gaussian beams, as produced by a line-shaped laser diode source.

1. Introduction

Laser microtooling makes use of more and more powerful laser diodes for obtaining mechanical
effects on various materials for a lot of applications. Anyway, in many cases it can be useful to
gather several laser diodes to increase the focus irradiance. Figure 1 shows a light source made
up of 19 aligned laser diodes; the whole device is about 2 cm long. Each laser diode is about
0.5 mm long and 0.25 mm wide (we own such a source at λ = 0.808µm). The problem to solve
is twofold:

(i) How to focus all the sources on a common area?

(ii) The considered laser diodes emit Gaussian beams whose waists are elliptical, so that beam
divergences along two orthogonal directions are different from each other. When imaged
through a lens, these Gaussian beams become astigmatic, in the sense that they are focused
on two orthogonal segments at different distances. We have to design sphero-cylindrical
lenses that compensate this effect.

Several solutions to the former technical problem have been proposed: beam shaping
technique based on rectangular cubes and stripe-mirror plates [1]; array of multi-prisms [2];
two mirror beam shaping [3].

Diffractive computed elements have the advantage of providing solutions of the two above
mentioned points at once. They are generally compact and can be produced with high qualities;
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Figure 1. A source made up of 19 laser diodes, as used for microtooling. Each diode produces
an astigmatic Gaussian beam whose waist is elliptical, as shown in the figure.

they also can be combined with refractive elements in hybrid systems [4]. They can be used to
solve problems similar to the above mentioned one [5, 6].

In this paper, we explain how to design Fresnel microlenses that provide solutions for the
considered problem. First, we design spherical diffractive lenses, able to focus a plane wave
on a given off axis point at a given distance. Such a lens can be considered as introducing a
spatial chirp function and the analysis is developed in the framework of fractional Fourier optics
[7, 8, 9]. Then we examine the problem of focusing an astigmatic Gaussian beam on a plane
surface. Expressing Fresnel diffraction with the help of fractional Fourier transforms has the
advantage of splitting the analysis in two parts, dealing with one-dimensional transforms that
can be adapted to orthogonal directions. Finally, since we consider microlenses, we choose to
set a lens in front of each of the 19 laser diodes; each lens is appropriately shifted.

2. Background theories and results

2.1. The fractional order Fourier transform

With Cartesian coordinates, if ρ = (ξ, η), we denote ρ = (ξ2 + η2)1/2 and dρ = dξ dη. Then,
according to Namias [10, 11], we define the two-dimensional Fourier transform of order α of
function f by

Fα[f ](σ) =
ie−iα

sin α
exp[−iπσ2cotα]

∫

R2

exp[−iπρ2 cot α] exp

[

2iπρ · σ

sin α

]

f(ρ) dρ , (1)

where ρ ·σ denotes the Euclidean scalar product of ρ and σ. (Generally α is a complex number
[10, 11], although in this paper we consider real α only.)

The usual Fourier transform is obtained for α = π/2. The operator F0 is the identity operator.
Fractional order Fourier transforms compose according to

Fα ◦ Fβ = Fα+β . (2)

In this paper, we also use the one-dimensional fractional Fourier transform, defined by

F [1]
α [f ](ξ′) =

eis(α)π/4 e−iα/2

√

| sin α|
e−iπξ′2 cot α

∫

R

e−iπξ2 cot α exp

[

2iπξξ′

sin α

]

f(ξ) dξ , (3)

where s(α) is the sign of α. According to Fubini theorem, if f is a two-dimensional function, we
have

Fα[f ](ξ′, η′) = F [1]
α

[

F [1]
α [fη](ξ

′)
]

(η′) , (4)

where fη is defined for every η by
fη(ξ) = f(ξ, η) . (5)

Eq. (2) holds true for one-dimensional fractional order Fourier transforms.
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2.2. Fresnel diffraction as a fractional Fourier transform

We shortly recall some results of fractional Fourier optics [7, 8, 9]. Let A be a monochromatic
spherical emitter whose radius of curvature is RA and wavelength is λ (radius is taken from
vertex to center of curvature); let B be a spherical receiver (radius RB) at a distance D. We
choose coordinates r = (x, y) on A and s on B. According to a scalar theory of difraction, the
field amplitude UB on B is deduced from the field amplitude UA on A by [7, 8, 9, 12, 13]

UB(s) =
i

λD
exp

[

− iπ

λ

(

1

RB
+

1

D

)

s2

]
∫

R2

exp

[

− iπ

λ

(

1

D
− 1

RA

)

r2

]

exp

[

2iπ

λD
s · r

]

UA(r) dr ,

(6)
where a constant factor exp[−2iπD/λ] has been omitted.

For expressing Eq. (6) as a fractional order Fourier transform, we introduce an auxiliary
parameter ε such that εRA > 0 and

ε2 =
D(D + RB)

(RA − D)(D − RA + RB)
, (7)

and choose α ∈] − π, π[, such that αD ≥ 0 and

cot2 α =
(D + RB)(RA − D)

D(D − RA + RB)
. (8)

We use scaled variables

ρ =
r√

λεRA
, σ = (cos α + ε sin α)

s√
λεRA

, (9)

and scaled field amplitudes

VA(ρ) = UA

(

√

λεRA ρ

)

, VB(σ) = UB

( √
λεRA σ

cos α + ε sin α

)

. (10)

Finally, Eq. (6) becomes

VB(σ) = eiα(cos α + ε sin α)Fα[VA](σ) . (11)

Eq. (11) means that the field transfer by diffraction from an arbitrary emitter to an arbitrary
receiver can be expressed by a fractional order Fourier transform.

So far, both α and ε have been implicitly assumed to be real numbers. A generalization to
complex values is sometimes necessary [8, 14].

Finally, we point out that Eqs. (7) and (8) still stand for a plane receiver (RB → ∞): then

cot2 α =
RA − D

D
. (12)

2.3. Chirp functions, their fractional Fourier transforms and their interpretation in optics

Let δρ0
= δ(ρ − ρ0) denote the Dirac distribution (or generalized function) whose support is

{ρ0}. According to Namias [10], we have

Fα[δρ0
](σ) =

ie−iα

sin α
exp

[

−iπ(σ2 + ρ2
0) cot α +

2iπσ · ρ0

sin α

]

= −Γ−α,ρ0
(σ) , (13)

and Γα,ρ0
will be called a scaled chirp function.
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so
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sr

σρ

A B

z
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D

P

Figure 2. Top left: complex amplitude on emitter A, corresponding to the phase of a Fresnel
lens (represented by grey levels). Top right: corresponding focus on receiver B. The lens is not
centred, so that the focus on B is shifted by s0. Parameters in the figure are spatial ones; scaled
parameters are needed for actual simulations, according to Eq. (9).

By inverting the fractional Fourier transform in Eq. (13), we obtain

δ(σ − σ0) = Fα[Γα,σ0
](σ) . (14)

Optically, Eq. (14) means that a chirp function represents the field amplitude of a converging
wave: the focus is a luminous point whose amplitude is represented by a Dirac distribution. The
result can be explicitely deduced by passing from scaled variables to spatial ones: Γα,σ0

is seen
like the scaled field amplitude on A corresponding to

UA(r) =
ieiα

sin α
exp

[

iπ

λεRA

(

r2 + (cos α + ε sin α)s2
0

)

cot α − 2iπ(cos α + ε sin α)

λεRA
s0 · r

]

. (15)

The field on B (radius RB), at a distance D, is a luminous point, located at s0, provided that ε
and α are chosen according to Eqs. (7) and (8). The situation is illustrated in Fig. 2.

We introduce the scaled function Gα,a such that

Gα,a(ξ) =
eis(α)π/4e−iα/2

√

| sin α|
exp

[

−iπ(ξ2 + a2) cot α +
2iπaξ

sinα

]

, (16)

so that the former scaled chirp functions Γ can be written

Γα,ρ0
(σ) = Γα,ξ0,η0

(ξ, η) = Gα,ξ0(ξ)Gα,η0
(η) . (17)

We then define the function Cα,a,R by

Cα,a,R(x) =
eis(α)π/4e−iα/2

√

| sin α|
exp

[

iπ

λεR

(

x2 + (cos α + ε sin α)a2
)

cot α

]

× exp

[

−2iπ(cos α + ε sin α)

λεR
ax

]

, (18)
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so that Eq. (15) becomes

UA(r) = UA(x, y) = Cα,x′

0
,RA

(x)Cα,y′

0
,RA

(y) , (19)

whith s0 = (x′

0, y
′

0).
Functions Gα,a are scaled versions of functions Cα,a,R. The one-dimensional fractional Fourier

transform of order α of Gα,a is the Dirac distribution δa.

2.4. Fractional sampling

The Shannon–Whittaker sampling theorem is extended to the fractional domain as follows. A
function is said to be α-bandlimited if its fractional Fourier transform of order α has a finite
support. Let f be a α-bandlimited function: the support of its fractional Fourier transform
of order α is included in [−B/2, B/2]. Then f can be exactly reconstructed from its sampled
values f(n sinα/B) according to [15]

f(ξ) = eiπξ2 cot α
∑

n

e−iπn2 sin α cos α/B2

f

(

n sin α

B

) sin

(

πBξ

sin α
− nπ

)

πBξ

sinα
− nπ

. (20)

The sampling rate should be less than or equal to

∆ξ =
sin α

B
. (21)

3. Design of Fresnel microlenses

3.1. Spherical microlenses

A Fresnel lens is obtained when the field on the emitter A is given by Eq. (15). Since holographic
plates are plane, the lens will be built on a plane, say P. The field amplitude on P is related to
the amplitude on A by [9, 12, 13]

UP (r) = UA(r) exp

[

iπ

λRA
r2

]

, (22)

where UA(r) is given by Eq. (15).
For the actual microlens computing we have to determine the sampling rate. We assume

having Nx Ny pixels on the diffractive element P (the Fresnel lens is related to x and y orthogonal
axis), and N ′

x N ′

y on the receiver B. We assume N ′

x = Ny and N ′

y = Ny. We denote ∆x∆y the
pixel size on A, and ∆x′ ∆y′ on B. We reason on x only: the corresponding scaled pixel on P is

∆ξ =
∆x√
λεRA

. (23)

According to Eq. (21), the support of the scaled field on B is [−Bξ/2, Bξ/2] with

Bξ =
sin α

∆ξ
, (24)

so that the size of the scaled pixel on B is

∆ξ′ =
Bξ

Nx
=

sinα

Nx∆ξ
. (25)

With spatial variables (x′, y′) on B, the size of a pixel is ∆x′ ∆y′ with

∆x′ =
λεRA

cos α + ε sin α

sinα

Nx∆x
, ∆y′ =

λεRA

cos α + ε sin α

sin α

Ny∆y
. (26)
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3.2. Sphero-cylindrical microlenses

By comparison with Eqs. (15) and (22), the field corresponding to a sphero-cylindrical lens
takes the form

UP (x, y) = Cαx,0,Rx(x)Cαy ,0,Ry(y) exp

[

iπ

λRx
x2

]

exp

[

iπ

λRy
y2

]

, (27)

where Rx and Ry are the principal radii of curvature [16] of the sphero-cylindrical wave emerging
from the lens (the lens is assumed to be illuminated by a plane wave). The orders αx and αy

are computed according to Eq. (12) for a plane receiver. Explicitly

cot2 αx =
Rx − Dx

Dx
, cot2 αy =

Ry − Dy

Dy
, (28)

where Dx (Dy) is the distance where the focus line parallel to the x-axis (y-axis) should be
observed. In each case, parameters εx and εy are computed according to Eq. (7), and then
scaled variables and scaled functions, according to Eqs. (9) and (10).

Using fractional order Fourier transforms allows us to separate variables in representing light
propagation from an astigmatic surface, as it should be clear from Eq. (27).

An example is given in Fig. 3. The focal distances of the lens are f ′

x = Dx = 10mm,
and f ′

y = Dy = 15mm. The wavelength is λ = 0.808µm. The radii are Rx = 20mm, and
Ry = 18, 75mm. We have αx = 0.7 854 (εx = 1) and αy = 1.1 071 (εy = 2).

a cb

Figure 3. Design of a sphero-cylindrical Fresnel lens. (a) Complex amplitude on emitter P,
corresponding to the phase levels of the lens (represented by grey levels). (b) Focus line at
distance 10 mm. (c) Focus line at distance 15 mm. (Numerical simulations.)

So far the lens was centred. Off axis focus lines centred at x′

0 6= 0 for the one, and y′0 6= 0
for the other, are obtained by considering functions Cαx,x′

0
,Rx

(x) and Cαy ,y′

0
,Ry

(y) in place of

Cαx,0,Rx(x) and Cαy ,0,Ry(y) in Eq. (27). Such lenses will be used in Sect. 4.4.

4. Focusing an astigmatic Gaussian beam

4.1. Cylindrical Gaussian beams

We recall some useful properties of Gaussian beams [9]. We consider a cylindrical Gaussian
beam at wavelength λ and denote w0 its waist (transverse) radius. At a distance d from the
waist, the beam transverse radius is wd such that

wd
2 = w0

2 +
λd2

π2w0
2

, (29)

and the radius of curvature of the wave surface is

Rd = −d − π2w0
4

λ2d
. (30)
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wdx

z

Waist plane Rdx

Wave surfacex

w0x

dx

Figure 4. Gaussian beam parameters in the section of plane x–z. The direction of light
propagation is z. The waist (tranverse) radius is w0x. The principal curvature radius of the
wave surface at a distance dx is Rdx, and the transverse beam radius (along x) on this surface is
wdx. An equivalent diagram can be drawn in the orthogonal y–z section, with parameters w0y,
dy, Rdy and wdy. The Gaussian beam is astigmatic if w0x 6= w0y or if dx 6= dy; then Rdx 6= Rdy

and wdx 6= wdy. The Gaussian beam is cylindrical if w0x = w0y and dx = dy; then Rdx = Rdy

and wdx = wdy, and indices x and y are dropped.

These parameters are illustrated in Fig. 4.
We consider a lens transforming an incident Gaussian beam into an image Gaussian beam.

We denote f ′ the image focal length of the lens. The waist of the object Gaussian beam is
located on the lens axis, at W0, and the waist of the image Gaussian beam at W ′

0 (generally, W ′

0
is not the paraxial image of W0 [9]). If F is the object focus of the lens and F ′ its image focus,
we denote q = FW0 and q′ = F ′W ′

0. Then we have [8, 9]

q′ =
−f ′2

q +
π2w0

4

λ2q

. (31)

The waist radius of the image beam is w′

0 with

w′

0
2

=
f ′2λ2

π2w0
2

1

1 +
λ2q2

π2w0
4

. (32)

4.2. Astigmatic Gaussian beams

4.2.1. Gaussian beam with elliptical waist. We apply the former results to astigmatic Gaussian
beams. We consider a Gaussian beam whose waist is elliptical, with dimensions w0x and w0y. At
a distance d, the wave surface has two principal curvature radii Rdx and Rdy, that is, according
to Eq. (30)

Rdx = −d − π2w0x
4

λ2d
, Rdy = −d − π2w0y

4

λ2d
. (33)

On this surface, according to Eq. (29), the beam area is (generally) an ellipse whose dimensions
are wdx and wdy with

wdx
2 = w2

0x +
λd2

π2w0x
2

, wdy
2 = w2

0y +
λd2

π2w0y
2

. (34)
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The diffraction from the elliptical waist to the wave surface at a distance d can be expressed as
two one-dimensional fractional Fourier transforms — in the sense of Eq. (4) — whose orders are
αx and αy, where the x and y directions are orthogonal to each other, and are along the principal
sections of the wave surface [17]. The field amplitude, on the wave surface, corresponding to the
fundamental mode, is written [9]

Ud(x, y) = U0

√

w0xw0y

wdxwdy
exp

[

− x2

w2
dx

− iπd

λ
+

iαx

2

]

exp

[

− y2

w2
dy

− iπd

λ
+

iαy

2

]

, (35)

where U0 is a dimensional constant.

4.2.2. Focusing an astigmatic Gaussian beam. We consider a Gaussian beam with elliptical
waist. We deduce from Eq. (31) that a spherical lens focuses such a beam on two “focal”
segments located at distances q′x and q′y from the image focus F ′, with

q′x =
−f ′2

q +
π2w0x

4

λ2q

, q′y =
−f ′2

q +
π2w0y

4

λ2q

. (36)

Indeed, these “focal” segments are one-dimensional waists, along the two principal directions x
and y.

We now consider a sphero-cylindrical lens having two object foci Fx and Fy, two image foci
F ′

x and F ′

y. The image focal lengths are f ′

x and f ′

y. Then Eqs. (36) are generalized according to

q′x =
−f ′

x
2

qx +
π2w0x

4

λ2qx

, q′y =
−f ′

y
2

qy +
π2w0y

4

λ2qy

, (37)

where qx = FxW0, qy = FyW0, q′x = F ′

xW ′

0x, and q′y = F ′

yW
′

0y (W ′

0x and W ′

0y are where the focal
segments intercept the optical axis).

4.2.3. General wave surface. When focused by a lens, an astigmatic Gaussian beam has two
one-dimensional waists, located at different points on the optical axis, according to Eqs. (36)
and (37). Then we have to consider a Gaussian beam with two waists. The former formulae can
be applied if we use distances dx and dy in place of d, for example in Eqs. (33) and (34). Let
S be a wave surface at a distance dx from the x–waist and dy from the y–waist. We generalize
Eq. (35): the field amplitude on S is

US(x, y) = U0

√

w0xw0y

wdxwdy
exp

[

− x2

w2
dx

− iπdx

λ
+

iαx

2

]

exp

[

− y2

w2
dy

− iπdy

λ
+

iαy

2

]

, (38)

where U0 is a dimensional constant.

4.3. Optical setup

Before we give explicit results about the microlenses we have designed, we provide some features
of the optical setup to be used in imaging the 19 laser diodes. The main point consists in using
a refractive microlens in front of every laser diode. The reason is that each laser diode emits
a Gaussian beam whose divergence angles overpass the capability of diffracted components, as
produced nowadays. Numerical aperture of diffractive lenses is not sufficient for solving our
problem with a unique diffractive element. Reducing the divergences is first obtained by using
two refractive spherical microlenses (Fig. 5).
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Diffractive lens

Laser diode

Spherical
microlens

Figure 5. Optical set up for each one of the 19 laser diodes (see Fig. 1). The laser diode emits
a Gaussian beam with elliptical waist. A spherical refractive microlens is set in front of the laser
diode. The astigmatic Gaussian beam incident on the diffractive lens has two one-dimensional
waists.

4.4. Designing a Fresnel lens for focusing an astigmatic Gaussian beam

We consider a Gaussian beam (with two waists), and a plane Fresnel lens at distances dx and
dy from the waists. The complex amplitude of the field incident on the lens is

UP (x, y) = US(x, y) exp

[

iπx2

λRx

]

exp

[

iπy2

λRy

]

, (39)

where US(x, y) is given by Eq. (38), and where Rx and Ry have been obtained from Eq (33)
after changing d into dx and dy.

We use the method of Sect. 3.2 and the following data:

λ = 0.808µm , w0x = 341.74µm , w0y = 176.47µm , dx = 3mm , dy = 4mm .

In the first step we design a centred Fresnel lens that concentrates the luminous energy on
an elliptical area, as shown in Fig. 6. The focal lengths of the lens are f ′

x = 40mm and
f ′

y = 7, 2mm. The data of the image Gaussian beam (behind the diffractive lens) are

q′x = −285.23µm , q′y = −11.31µm , w′

0x = 30.00µm , w′

0y = 10.49µm .

At a distance z = 300mm from the diffractive lens, we obtain an elliptical illuminated area
(Fig. 6) with

w′

x = 2.23mm , w′

y = 7.18mm .

These data hold for the field amplitude. If we consider the irradiance, the beam transverse radii
are

W ′

x =
w′

x√
2

= 1.58mm , W ′

y =
w′

y√
2

= 5.08mm .

We then consider the 19 laser diodes that constitute the luminous source to be imaged on a
given area. The area is assumed to be almost a square area (5×5 mm2). The result is obtained
by aligning side by side 19 elliptical luminous areas, identical to the one given in Fig. 6 c. For
that purpose, the former centred lens in set in front of the central laser diode (number 10). Then
we set a lens in front of every laser diode of the source: each lens is appropriately shifted. The
shift is also calculated so that contiguous laser diodes will produce contiguous luminous areas.
The result is illustrated in Fig. 7 (bottom right).
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a b c

Figure 6. Focusing an astigmatic Gaussian beam on an elliptial area. (a) Gaussian beam
irradiance in the lens plane. (b) Phase levels of the sphero-cylindrical Fresnel lens (represented
by grey levels). (c) Irradiance at 30 mm from the lens. (Numerical simulations.)

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 result19

Figure 7. The 19 Fresnel lenses to be set in front of the 19 laser diodes. Each lens is
appropriately shifted and produces an elliptical illuminated area, according to Fig. 6. Botton
right: the resulting irradiance in the focus plane. For display convenience, the lenses are
organized in an array: in fact they are aligned along a segment, as the laser diodes.

4.5. Another solution

This time we want to transform the elliptical waist into a circular illuminated area (radius
about 10mm). Intuitively we understand that between the two one-dimensional waists of an
astigmatic Gaussian beam, there is a circular illuminated area. The situation is similar to the
least diffusion circle that lies between the sagittal and tangential focal segments of a refractive
lens, in presence of astigmatism.

The optical setup is that of Fig. 5 once more, so that the Gaussian beam incident on the
diffractive lens is as in Sect. 4.4.

The location of the circular area, say C, can be found as follows. Let C be the point where

XVII Reunión Iberoamericana de Óptica & X Encuentro de Óptica, Láseres y Aplicaciones IOP Publishing
Journal of Physics: Conference Series 274 (2011) 012108 doi:10.1088/1742-6596/274/1/012108

10



the searched area intercepts the optical axis. Let W ′

0x (W ′

0y) be where the one-dimensional waist
(radius w′

0x) along x (y) intercepts the optical axis. We denote d′x = W ′

0xC and d′y = W ′

0yC.
According to Eq. (29) — or (34) — the transverse beam radius along x on C is w′

dx with

w′

dx
2

= w′

0x
2
+

λ2d′x
2

π2w′

0x
2 , (40)

and the transverse beam radius along y on C is w′

dy with

w′

dy
2

= w′

0y
2
+

λ2d′y
2

π2w′

0y
2 . (41)

The illuminated area on C is circular if w′

dx = w′

dy.

In our case, w′

0x and w′

0y are about 10 µm, while d′x and d′y are about 10 mm. Then

w′

0x
2 ≪ λ2d′x

2

π2w′

0x
2 , w′

0y
2 ≪

λ2d′y
2

π2w′

0y
2 , (42)

so that w′

dx = w′

dy and Eqs. (40) and (41) lead to

|d′x|
w′

0x

=
|d′y|
w′

0y

. (43)

There are two solutions for C: one between W ′

0x and W ′

0y, the other out of the segment W ′

0xW ′

0y.
We designed a diffractive lens whose image focal lengths are f ′

x = 19.3mm and f ′

y = 10.2mm.
Then we have:

w′

0x = 14.52µm , w′

0y = 14.85µm , q′x = −30µm , q′y = −40µm .

Since w′

0x and w′

0y are very small, if C is between W ′

0x and W ′

0y the illuminated area is also very
small, and the solution is not acceptable to our purpose. Moreover, approximations of Eq. (42)
do not hold (d′x and d′y are a few microns long).

If zc is the distance from the diffractive lens to C, the other solution gives zc = 419.5mm.
Considering the irradiance, the transverse radius of the circular area at that distance is 10.02mm
(Fig. 8).

a b c

Figure 8. Focusing an astigmatic Gaussian beam on a circular area. (a) Gaussian beam
irradiance in the lens plane. (b) Phase levels of the sphero-cylindrical Fresnel lens (represented
by grey levels). (c) Irradiance at 30 mm from the lens. (Numerical simulations.)

Finally we consider the source made up of 19 laser diodes. We set a Fresnel lens such as
the lens of Fig. 8 in front of each diode (behind a spherical microlens, Fig. 5): the lens is
appropriately shifted, so that the illuminated area is the same for every laser diode. Since the
19 laser diodes are incoherent between them, the total irradiance is the sum of the irradiances
of the diodes (see Fig. 9).
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 result

Figure 9. The 19 Fresnel lenses to be set in front of the 19 laser diodes. Each lens is
appropriately shifted and produces a circular illuminated area, according to Fig. 8. Botton
right: the resulting irradiance in the focus plane.

5. Conclusion

The former study shows that focusing a multi-Gaussian beam source on a unique area is possible
by using both refractive and diffractive microlenses. Refractive lenses are necessary because
diffractive elements have not a sufficient numerical aperture. Diffractive microlenses are useful
because they can be designed to obtaining focal areas with arbitrary shapes.
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[14] Pellat-Finet P and Fogret É 2006 Complex order fractional Fourier transforms and their use in diffraction
theory. Application to optical resonators Opt. Comm. 258 103–13.

[15] Torres R, Pellat-Finet P and Torres Y 2006 Sampling theorem for fractional bandlimited signals: A self-
contained proof. Application to digital holography IEEE Signal Process. Lett. 13 676–9

[16] Struik D J 1988 Lectures on classical differential geometry (New York: Dover)
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